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Abstract——Exogenous administration of inflammato-
ry stimuli to humans and laboratory animals and chronic
endogenous inflammatory states lead tomotivational def-
icits and ultimately anhedonia, a core and disabling
symptom of depression present in multiple other psychi-
atric disorders. Inflammation impacts neurotransmitter
systems and neurocircuits in subcortical brain regions
including the ventral striatum, which serves as an inte-
gration point for reward processing andmotivational de-
cision-making. Many mechanisms contribute to these
effects of inflammation, including decreased synthesis,
release and reuptake of dopamine, increased synaptic
and extrasynaptic glutamate, and activation of kynure-
nine pathway metabolites including quinolinic acid.
Neuroimaging data indicate that these inflammation-in-
duced neurotransmitter effectsmanifest as decreased ac-
tivation of ventral striatum and decreased functional
connectivity in reward circuitry involving ventral stria-
tum and ventromedial prefrontal cortex. Neurocircuitry
changes in turn mediate nuanced effects on motivation
that include decreased willingness to expend effort for
reward while maintaining the ability to experience re-
ward. Taken together, the data reveal an inflammation-
induced pathophysiologic phenotype that is agnostic to
diagnosis. Given the many mechanisms involved, this

phenotype represents an opportunity for development of
novel and/or repurposed pharmacological strategies that
target inflammation and associated cellular and systemic
immunometabolic changes and their downstream effects
on the brain. To date, clinical trials have failed to capital-
ize on the unique nature of this transdiagnostic pheno-
type, leaving the field bereft of interpretable data for
meaningful clinical application. However, novel trial de-
signs incorporating established targets in the brain and/
or periphery using relevant outcome variables (e.g., an-
hedonia) are the future of targeted therapy in psychiatry.

Significance Statement——Emerging understanding
of mechanisms by which peripheral inflammation can
affect the brain and behavior has created unprecedent-
ed opportunities for development of pharmacological
strategies to treat deficits in motivation including an-
hedonia, a core and disabling symptom of depression
well represented in multiple psychiatric disorders.
Mechanisms include inflammation and cellular and
systemic immunometabolism and alterations in dopa-
mine, glutamate, and kynurenine metabolites, reveal-
ing a target-rich environment that nevertheless has yet
to be fully exploited by current clinical trial designs
and drugs employed.

ABBREVIATIONS: ACC, anterior cingulate cortex; Akt, protein kinase B; BBB, blood-brain barrier; BH4, tetrahydrobiopterin; BMI, body
mass index; CNS, central nervous system; CRP, C-reactive protein; COX, cyclooxygenase; CSF, cerebrospinal fluid; D2, dopamine 2 receptor;
DA, dopamine; DAMP, danger-associated molecular pattern; DAT, DA transporter; DSM, Diagnostic and Statistical Manual of Mental Disor-
ders; EAAT, excitatory amino acid transporter; EPA, eicosapentaenoic acid; FAO, fatty acid oxidation; FDA, Federal Drug Administration; FMT,
fecal microbiota transplant; HCV, hepatitis C virus; HIF-1, hypoxia-inducible factor-1; HK, hexokinase; HVA, homovanillic acid; IDO, indole-
amine 2,3-dioxygenase; IFN, interferon; IL, interleukin; JAK, Janus kinase; KP, kynurenine pathway; KYN, kynurenine; KYNA, kynurenic
acid; LAT, large neutral amino acid transporter; LDL, low-density lipoprotein; L-DOPA, L-3,4-dihydroxyphenylalanine; LPS, lipopolysaccharide;
MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NAC, N-acetyl cysteine; NE, norepinephrine; NET, NE
transporter; NF-kB, nuclear factor jB; NLRP3, NOD-, LRR-, and pyrin domain–containing protein; NMDA, N-methyl-D-aspartate; NMDAR, N-
methyl-D-aspartate receptor; OXPHOS, oxidative phosphorylation; PBMC, peripheral blood mononuclear cell; PD, Parkinson disease; PET, posi-
tron emission tomography; PI3K, phosphoinositide 3-kinase; PTSD, post-traumatic stress disorder; PUFA, polyunsaturated fatty acid; QUIN,
quinolinic acid; ReHo, regional homogeneity; SAMe, S-adenosylmethionine; SNRI, serotonin norepinephrine reuptake inhibitor; SSRI, selective
serotonin reuptake inhibitor; Th, T helper; TLR, toll-like receptor; TNF, tumor necrosis factor; TSPO, translocator protein; VMAT2, vesicular
monoamine transporter 2; vmPFC, ventromedial prefrontal cortex; xCT, cystine-glutamate exchanger.
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I. Introduction

A wealth of knowledge regarding the impact of in-
flammation on the brain has yielded an opportunity
to develop innovative pharmacological therapies that
target the immune system and its effects on the brain
to treat inflammation-related symptoms (Miller and
Raison, 2016). Data demonstrate that inflammation
affects neurotransmitter systems and relevant neuro-
circuits in the brain that ultimately regulate behav-
iors related to motivation, leading to anhedonia, a
symptom of mood and anxiety disorders that is com-
monly found across a spectrum of psychiatric and
medical illnesses (Miller and Raison, 2016). These be-
haviors and their link to the inflammatory response
are believed to have grown out of evolutionary surviv-
al priorities of sickness or wounding that demanded a
protective, reparative response with associated shifts
in energy resources to fighting infection and wound
healing and a reorientation of motivated behavior to en-
ergy conservation (Raison and Miller, 2013; Miller and
Raison, 2016; Treadway et al., 2019a; Wang et al., 2019).
In the modern world, in which pathogens and predators
are largely mitigated, new threats have emerged, many
of which are consequences of the Western lifestyle. Poor
dietary habits, sedentary behavior, and chronic stress
can fuel a persistent, nonresolving inflammatory state
through obesity, metabolic syndrome, and diabetes, as
well as related inflammatory illnesses including cardio-
vascular disease, cancer, neurodegenerative disorders,
and accelerated aging (Christ and Latz, 2019; Furman
et al., 2019). Thus, inflammatory states that in ancestral
times may have promoted survival can become chronic
and unremitting, leading to behavioral changes that
serve as a pathophysiological substrate for shifts in re-
ward processing that ultimately aid and abet anhedonia,
a core symptom of depression that is also well repre-
sented in other psychiatric disorders, including anxiety
disorders, post-traumatic stress disorder (PTSD), and
schizophrenia. Anhedonia also has a prominent associa-
tion with suicide, which represents a critical and press-
ing public health concern (Ducasse et al., 2018, 2020).
Pharmacological targets for inflammation and its

effects on the brain encompass inflammation itself, in-
cluding inflammatory cells and their inflammatory
mediators (e.g., cytokines), their signaling pathways,
and their metabolism of glucose and fatty acids, as
well as the impact of inflammation on relevant neuro-
nal and glial cells affecting neurotransmitter systems
such as dopamine (DA), glutamate, and the kynure-
nine pathway (KP) and the neurocircuits they regu-
late (Haroon et al., 2012; Miller et al., 2017).
Taken together, the identification of pathophysio-

logical mechanisms (inflammation and its effects on
the brain) that lead to specific symptom’s dimensions

(motivational deficits and anhedonia) across disorders
provides a pivotal entr�ee into the future of drug develop-
ment in psychiatry. Such a future embraces the concept
of targeting treatments to transdiagnostic, biologically
based subgroups of patients with common symptom pre-
sentations while moving away from drug development
for currently conceived diagnostic groups based on con-
sensus taxonomy and represented in the Diagnostic and
Statistical Manual of Mental Disorders (DSM). This ap-
proach has become an exceedingly successful strategy in
oncology, in which targeted treatments focus on specific
pathologic signaling pathways, agnostic to tumor type
(Baudino, 2015).
In this review, we will provide the background and

foundation for identifying and characterizing the bio-
logic subgroup of patients with increased inflamma-
tion. In the process, we will identify the many
mechanisms involved in the effects of inflammation
on the brain, ultimately revealing a multitude of
pharmacological targets for treatment. Finally, we
will discuss the shortcomings of the extant literature
on the use of anti-inflammatory drugs to treat psychi-
atric disorders and will provide recommendations for
future clinical trial design.

II. Inflammation in Depression

A. Increased Inflammatory Markers in Patients with
Major Depression

The hypothesis that inflammation may play a role
in psychiatric disorders evolved from early studies on
patients with major depression. Based on sampling
inflammatory markers in the peripheral blood of pa-
tients with depression, initial studies characterized
increases in acute phase proteins that are primarily
produced in the liver in response to inflammatory cy-
tokines (Maes et al., 1992; Maes, 1995). These early
reports were followed by a substantial literature rep-
resented by hundreds of studies that replicated and
extended early findings demonstrating that, com-
pared with controls, patients with depression exhibit
mean increases in all of the inflammatory molecules
that typify a chronic inflammatory response, includ-
ing increases in peripheral blood inflammatory cyto-
kines, chemokines, and adhesion molecules, as well
the acute phase proteins. There have been numerous
meta-analyses of this literature, and the inflammato-
ry cytokines tumor necrosis factor (TNF) and inter-
leukin (IL)-6 and the acute phase protein C-reactive
protein (CRP) appear to be some of the most reliably
elevated inflammatory biomarkers in patients with
depression as a group and are robust to a range of
confounds, including body mass index (BMI), smok-
ing, age, and treatment status (Howren et al., 2009;
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Dowlati et al., 2010; Kohler et al., 2017; Osimo et al.,
2020). Finally, a number of studies have shown that
inflammatory biomarkers including CRP and IL-6
predict the subsequent development of depression
(Valkanova et al., 2013; Osimo et al., 2019; Mac Giol-
labhui et al., 2020).
Examination of gene expression in peripheral blood

immune cells of patients with major depression has
also revealed activation of canonical inflammatory sig-
naling pathways, including toll-like receptors (TLRs);
nuclear factor jB (NF-kB); the NOD-, LRR-, and pyrin
domain–containing protein (NLRP3) inflammasome
complex, which via caspase-1 cleaves pro–IL-1b and IL-
18 into their mature forms; markers of oxidative stress;
and the inflammatory cytokines themselves (Hajebrahi-
mi et al., 2014; Keri et al., 2014; Chen et al., 2017;
Hung et al., 2014, 2017). Activation of these inflamma-
tory pathways reflects the components of the funda-
mental innate immune response to microbe-derived
pathogen-associated molecular patterns, possibly relat-
ed to infection or the microbiome, and danger-associat-
ed molecular patterns (DAMPs), which are generated
by host cells under stress (Fleshner and Crane, 2017).
A number of studies have also conducted whole-ge-

nome expression analyses in depressed versus control
subjects using samples of whole blood, which include
neutrophils, or gradient-isolated peripheral blood
mononuclear cells (PBMCs), which do not contain
neutrophils (Spijker et al., 2010; Yi et al., 2012; Mos-
tafavi et al., 2014; Guilloux et al., 2015; Hori et al.,
2016; Jansen et al., 2016; Le et al., 2018; Leday et al.,
2018). Different array platforms have been employed,
and in at least two cases, deep RNA sequencing was
conducted, making comparison of these studies chal-
lenging at best. Results from this work generally indi-
cate that peripheral blood immune cells from patients
with depression exhibit increased activation of signal-
ing pathways related to inflammation and the innate
immune response, including genes enriched for IL-6
signaling and pathway enrichment of type 1 interfer-
on (IFN) signaling (Mostafavi et al., 2014; Jansen et
al., 2016). Of note, increased expression of a TNF re-
ceptor gene was within the top 15 of the strongest in-
dividual gene findings in one report (Mostafavi et al.,
2014). Most relevant to the focus of the current re-
view, in one small study, ingenuity pathway analysis
of PBMCs in patients with depression versus controls
(n ffi 20 per group), revealed a gene network centered
around TNF with NF-kB as a connecting hub that
was associated with morphometric measures of the
caudate (Savitz et al., 2013), a key brain region in-
volved in both motivation and motor activity. Of rele-
vance to immunometabolism (see below), one study on
PBMCs from patients with postpartum depression
found a positive association with multiple genes in-
volved in energy metabolism, including glycolysis/

gluconeogenesis and lipid metabolism, as well as
pathways related to cytokine/cytokine receptor inter-
actions and TLR signaling (Pan et al., 2018). Finally,
in a recent report using multivariate mixture model-
ing and consensus clustering, four subgroups of pa-
tients with depression emerged, two of which
exhibited increased inflammatory markers (IL-6 and
CRP): one was dominated by immune cell subsets of
predominately myeloid lineage (neutrophils and
monocytes), and the other was characterized by an
abundance of lymphoid cells (Lynall et al., 2020).
Whether these subgroups represent discrete immuno-
logic phenotypes or a progression from early innate
immune responses that transition to greater repre-
sentation of adaptive (lymphocytic) immune responses
as the disease becomes more chronic (and potentially
more treatment-resistant) remains unclear (Felger
and Miller, 2020). Nevertheless, these data support
the notion that there may be multiple immunopheno-
types of inflammation in depression and possibly oth-
er psychiatric disorders, further suggesting that
targeting specific immune pathways and immunologic
subgroups may be especially relevant given heteroge-
neous populations of patients with psychiatric disor-
ders with and without increased inflammation (Felger
and Miller, 2020; Lynall et al., 2020).
In addition to the peripheral blood, increased in-

flammatory markers have also been described in the
cerebrospinal fluid (CSF) of depressed subjects
(Felger et al., 2020; Franzen et al., 2020), and post-
mortem studies have identified evidence of increased
inflammatory signaling in brain parenchyma, repre-
sented by increased TLR expression and expression of
inflammatory cytokines as well as evidence of im-
mune cell trafficking to the brain and activation of
microglia, the immune cells of the brain (Pandey et
al., 2014, 2017; Torres-Platas et al., 2014a,b; Enache
et al., 2019). Microglial activation has also been sug-
gested by positron emission tomography (PET) in pa-
tients with depression using ligands to the
translocator protein (TSPO), whose expression is in-
creased in activated microglia (Setiawan et al., 2015;
Richards et al., 2018; Enache et al., 2019). It should
be noted, however, that although TSPO binds to acti-
vated microglia in neuroinflammatory states, it does
not distinguish the many states and functions of acti-
vated microglia that include, for example, synaptic
pruning that is unrelated to inflammation. TSPO li-
gands also bind to other activated cells in the brain,
including astrocytes, vascular endothelial cells, and
neurons, making interpretation of the results chal-
lenging (Notter et al., 2020).

1. Association with Treatment Response. In a meta-
analysis and recent systematic review of the litera-
ture, increased inflammatory markers in depression
have been associated with a reduced treatment
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response to conventional antidepressants, especially
in ambulatory patients with depression (Strawbridge
et al., 2015; Arteaga-Henr�ıquez et al., 2019). For ex-
ample, elevated biomarkers of inflammation including
CRP at baseline have been associated with a poor re-
sponse to selective serotonin reuptake inhibitors
(SSRIs) and serotonin norepinephrine reuptake inhib-
itors (SNRIs) (Uher et al., 2014; Cattaneo et al., 2016;
Jha et al., 2017). Moreover, patients who have failed
multiple treatment trials have been found to exhibit
increased inflammatory markers including IL-6, TNF,
soluble TNF receptor 2, and CRP, and treatment-re-
sistant versus treatment-responsive patients with de-
pression were recently shown using binomial logistic
models to exhibit a signature of mRNAs including
P2X purinoceptor 7, IL-1b, TNF, and C-X-C motif li-
gand 12 (Haroon et al., 2018b; Chamberlain et al.,
2019; Cattaneo et al., 2020). Interestingly, drugs that
affect DAergic and noradrenergic pathways, including
bupropion and nortriptyline, which also increases DA
release in frontal cortex, have exhibited improved effi-
cacy compared with SSRIs in patients with increased
inflammation (see impact of inflammation on DA be-
low) (Uher et al., 2014; Jha et al., 2017; Arteaga-
Henr�ıquez et al., 2019). Increased inflammatory
markers have also been associated with increased re-
sponsiveness to electroconvulsive therapy and keta-
mine (Yang et al., 2015; Kruse et al., 2018). Taken
together, these data suggest that inflammatory
markers may help guide treatment selection in pa-
tients with depression. Nevertheless, most studies to
date have examined the predictive capacity of inflam-
matory biomarkers using post hoc analyses. Few
studies have a priori randomized patients on the basis
of inflammation and determined treatment response
(see below for further discussion of anti-inflammatory
trial failures).

B. Induction of Depressive Symptoms after
Administration of Inflammatory Stimuli

Much of the data that have substantiated the ef-
fects of inflammation on behavior has been derived
from studies examining the impact of various inflam-
matory stimuli on symptoms of depression. Probably
the most extensive literature in this regard comes
from the administration of the inflammatory cytokine
IFN-a to patients with cancer (malignant melanoma
or renal cell carcinoma) or infectious diseases (pri-
marily hepatitis C). IFN-a has been shown to induce a
variety of depressive symptoms, with early appear-
ance of neurovegetative symptoms including anhedo-
nia, psychomotor slowing, and fatigue and later
appearance of more cognitive symptoms including de-
pressed mood and cognitive dysfunction (Capuron et
al., 2002a; Capuron and Miller, 2004; Wichers et al.,
2005; Su et al., 2019a). Depending on the dose of IFN-
a, �30%–50% of patients meet symptom criteria for

major depression, and comparisons between patients
with IFN-a–induced depression and otherwise healthy
depressed individuals reveal marked overlap in symp-
toms (Capuron et al., 2009). Aside from IFN-a, similar
findings have been found in healthy controls acutely
administered either typhoid or influenza vaccination
or low-dose endotoxin (Brydon et al., 2008, 2019; Har-
rison et al., 2009, 2016; Eisenberger et al., 2010;
Moieni et al., 2019a). In each case, depressive symp-
toms are induced, including symptoms of depressed
mood, anhedonia, and psychomotor slowing. In combi-
nation, these data provide strong evidence that there
is a cause-and-effect relationship between inflamma-
tion and depressive symptoms given that subjects did
not exhibit depressive symptoms prior to inflammato-
ry exposure and their behavior was significantly
changed after administration of an acute or chronic
inflammatory challenge. In addition, as discussed in
detail below, these studies have provided the founda-
tion for examining the neurotransmitter systems and
neurocircuits that mediate the effects of inflammation
on the brain and behavior.

C. Inhibition of Inflammation Reduces Depressive
Symptoms

To complement the data demonstrating that admin-
istration of inflammatory stimuli can cause depres-
sive symptoms, there is an emerging literature to
suggest that blocking inflammation can reverse de-
pressive symptoms. These studies again address the
cause-and-effect relationship between inflammation
and depression or depressive symptoms and provide
the proof of concept of using anti-inflammatory drugs
to treat patients with depression. The most convinc-
ing evidence in this regard is the reduction of depres-
sive symptoms seen in patients with autoimmune and
inflammatory disorders administered anticytokine
therapies. For example, in a recent meta-analysis of
the published literature and a mega-analysis of stud-
ies conducted by Janssen and GlaxoSmithKline,
strong evidence was provided for the antidepressant
efficacy of a variety of anticytokine therapies, with
treatments targeting TNF, IL-6, and IL-12/23 showing
the most reliable effects (Kappelmann et al., 2018;
Wittenberg et al., 2020). Metaregression examining
predictors of response revealed that severity of de-
pressive symptoms at baseline was a better predictor
of response than improvement in underlying disease
activity (Kappelmann et al., 2018). Moreover, in the
mega-analysis, results for IL-12/23 remained signifi-
cant after controlling for physical response to treat-
ment (Wittenberg et al., 2020). These results suggest
that the effects of anticytokine therapy on disease ac-
tivity do not fully account for results. Anticytokine
treatments have also been studied in patients with
major depression who were otherwise medically
healthy (Raison et al., 2013; Salvadore, 2018;
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McIntyre et al., 2019). These studies have indicated
responsiveness to treatment, but only in patients
with evidence of high inflammation at baseline, and
improvement has been primarily seen in symptoms of
anhedonia (Raison et al., 2013; Salvadore, 2018; Lee
et al., 2020). Other drugs with anti-inflammatory ac-
tivity, including nonsteroidal anti-inflammatory
drugs, statins, minocycline, omega 3 fatty acids, and
others, have also been studied in depression (Kohler-
Forsberg et al., 2019). These studies have multiple de-
sign issues, and all of these drugs have off-target ef-
fects, making it difficult to interpret the results (see
discussion of clinical trials below). Indeed, in the larg-
est randomized, controlled trial to date, the nonsteroi-
dal anti-inflammatory drugs celecoxib or minocycline
(a microglial stabilizer) both failed to separate from
placebo in reducing depressive symptom scores in a
heterogeneous sample of patients with depression and
bipolar disorder (Husain et al., 2020).

D. Evolution of a Concept: Beyond Depression

1. An Inflammatory Subgroup. There was great
initial excitement in the potential role of the immune
system in depression. However, the relationship be-
tween inflammation and depression is now recognized
as much more nuanced than originally appreciated.
Although it had been suggested that depression might
be an inflammatory disorder, it turns out that only a
subgroup of patients with depression exhibit in-
creased inflammation (Raison and Miller, 2011). This
conclusion is not surprising given the well known in-
trinsic heterogeneity as it relates to patients with ma-
jor depression, as well as the concept of depression.
Few studies have directly examined this issue, but
the estimate based on a recent meta-analysis of the
literature is that approximately 30% of patients with
depression exhibit high inflammation (as reflected by
a CRP > 3 mg/l) (Osimo et al., 2019). This cutoff for
increased inflammation is derived from categories of
inflammatory risk for cardiovascular disease as rec-
ommended by the American Heart Association and
Centers for Disease Control and Prevention (Ridker,
2003). CRP values between 1 and 3 mg/l are consid-
ered mild/moderate inflammation (inflammatory
risk), whereas <1 mg/l is considered normal. Of note,
given the relatively small percentage of patients with
depression with high inflammation, it is not surpris-
ing that the response to anti-inflammatory drugs in
heterogeneous samples of subjects with depression as
noted above has been mixed.
A number of factors are associated with inflamma-

tion in depression, including obesity, metabolic syn-
drome, aging, medical disorders and their treatments,
childhood trauma, and treatment resistance (Ambro-
sio et al., 2018; Haroon et al., 2018b; Lacey et al.,
2020; Milaneschi et al., 2020; Miller et al., 2008). For
example, 45% of patients enrolled in an anticytokine

trial for treatment resistant depression exhibited a
CRP > 3 mg/l (Raison et al., 2013). Other factors that
are emerging as relevant to inflammation in depres-
sion and other neuropsychiatric symptoms are the mi-
crobiome and chronic infectious diseases including
chronic viral illnesses such as cytomegalovirus and
post-viral syndromes such as those after coronavirus
disease 19 (Simanek et al., 2014; Jiang et al., 2015;
Dinan and Cryan, 2019; Marshall, 2020).

2. Inflammation in Other Psychiatric Disorders.
Aside from the recognition that only a relatively

small percentage of patients with depression exhibit
increased inflammation, it is also now appreciated
that increased inflammation is not solely the purview
of depression but is apparent in multiple other psychiat-
ric disorders. For example, meta-analyses of the
literature have demonstrated increased peripheral in-
flammatory markers including inflammatory cytokines,
chemokines, and acute phase reactants in patients with
bipolar disorder and schizophrenia, as well as anxiety
disorders, PTSD, obsessive compulsive disorder, and
personality disorders such as borderline personality dis-
order (Kahl et al., 2006; Goldsmith et al., 2016; Costello
et al., 2019; Yang and Jiang, 2020). Indeed, data for a
role of inflammation in schizophrenia and bipolar disor-
der are similar to those seen in depression (Goldstein et
al., 2009; Najjar and Pearlman, 2015). Moreover, suicide
has been linked with inflammation, possibly through its
association with anhedonia (Ducasse et al., 2020).

3. ATransdiagnostic Pathway to Behavioral Pathology.
Such reliable immunologic findings across disorders
have challenged the field to think beyond depression
and turn to a transdiagnostic phenomenology wherein
inflammation plays a role in pathology agnostic to
psychiatric diagnosis. Based on the rich literature of
the impact of inflammatory mediators on neurotrans-
mitter systems and specific neurocircuits in the brain,
it has become increasingly apparent that inflamma-
tion is not about any given disorder but is a patho-
physiological mechanism that can exist within any
given population of subjects with similar consequen-
ces on the brain and behavior across disorders.
As detailed below, based on a variety of experimen-

tal strategies, inflammation has been shown to in-
crease the reuptake and decrease the synthesis and
release of monoamine neurotransmitters while de-
creasing the reuptake and increasing the release of
glutamate (Miller and Raison, 2016). In conjunction
with effects on growth factors and synaptic plasticity,
the impact of inflammation on neurotransmitter metab-
olism appears to disrupt neurocircuitry in the basal
ganglia, which is involved in motivation as well as mo-
tor activity (Fig. 1) (Miller and Raison, 2016). These ef-
fects of inflammation on the brain ultimately
contribute to symptoms of anhedonia and psychomotor
retardation, which characterize mood disorders. These
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symptoms also manifest themselves in other disorders,
including the negative symptoms in schizophrenia or
anhedonia in PTSD. Indeed, increased TNF and IL-6
were found to be associated with the deficit syndrome
in schizophrenia, and total negative symptoms, blunted
affect, and alogia correlated with TNF (Goldsmith et
al., 2018). Similar results were found with psychomotor
speed in patients with schizophrenia in which interac-
tive effects with diagnosis were found for TNF and oth-
er inflammatory markers in association with multiple
measures of psychomotor speed, including reduced per-
formance on finger tapping and trail making tasks and
the symbol coding test (Goldsmith et al., 2020b). In ad-
dition, increased inflammation in patients with PTSD
as measured by a composite score of inflammatory
markers previously associated with elevated CRP in
both plasma and CSF was associated with altered func-
tional connectivity in reward circuitry that in turn was
correlated with anhedonia-related subscales from the
Beck Depression Inventory (Felger et al., 2020; Mehta
et al., 2020).

Data indicate that inflammation also impacts threat
circuitry, including the dorsal anterior cingulate cortex
(ACC), amygdala, insula, and hippocampus, which
leads to anxiety, arousal, and alarm (Capuron et al.,
2005; Miller et al., 2013; Davies et al., 2020). For ex-
ample, endotoxin has been shown to enhance sensitivi-
ty of threat-related regions including the amygdala
and dorsal ACC to negative social feedback (Muscatell
et al., 2016) while exaggerating activation of the ven-
tral striatum to positive social feedback and images of
social support (Inagaki et al., 2015; Muscatell et al.,
2016). Moreover, in a recent study, administration of
IFN-a in patients with hepatitis C was shown to in-
crease right amygdala reactivity to sad faces, whereas
blockade of TNF in patients with inflammatory arthri-
tis resulted in decreased reactivity in this same brain
region (Davies et al., 2020). Finally, alterations in func-
tional connectivity within threat circuitry such as the
amygdala have been associated with symptoms of anx-
iety in patients with major depression (Mehta et al.,
2018).
Taken together, these data support that inflamma-

tory effects on the brain defy conventional diagnostic
boundaries and contribute to common symptom clus-
ters across disorders. As noted above, inflammation
has multiple effects on neurocircuitry, including, nota-
bly, both reward and threat circuitry. This review will
focus on the impact of inflammation on the brain
leading to motivational deficits and anhedonia.

III. Mechanisms by which Inflammation Leads
to Anhedonia

Regarding the mechanisms by which inflammatory
exposure may lead to anhedonia, it is important to
recognize that anhedonia is a complex construct. Mul-
tiple components of this construct can contribute to
anhedonia, including decreases in effort-based moti-
vation for reward, reward anticipation, reinforcement
learning, and hedonic capacity (Treadway and Zald,
2011; Treadway et al., 2012; Berridge and Kringel-
bach, 2015; Cooper et al., 2018). Each of these compo-
nents may be variably represented in the clinical
presentation of anhedonia (Cooper et al., 2018), and
as described in detail below, it appears that inflamma-
tion has preferential effects on effort-based motiva-
tion, reward anticipation, and reinforcement learning
while having a lesser impact on the capacity to expe-
rience reward (i.e., consummatory reward processes).
These findings may be a result of the well character-
ized effects of inflammation on DA and glutamate (see
below) (Treadway and Zald, 2011; Cooper et al., 2018),
whereas effects on opioidergic pathways that partici-
pate in consummatory reward processes (pleasure
systems) in the brain have been less studied in this
context (Berridge and Kringelbach, 2015). It should
also be noted that within the diagnostic nomenclature

Fig. 1. Inflammation-induced alterations in dopamine and glutamate con-
verge to affect corticostriatal reward and motor circuitry and drive symp-
toms of anhedonia and psychomotor retardation. Peripheral innate immune
activation and the release of inflammatory cytokines in patients with de-
pression have been associated with elevated glutamate concentrations in
basal ganglia regions, as well as decreased dopamine availability and re-
duced functional connectivity between the ventral and dorsal striatum and
reward and motor-related cortical regions, ventromedial prefrontal cortex
(vmPFC), and presupplementary motor area (pre-SMA). In turn, inflamma-
tion-related changes in both basal ganglia glutamate and corticostriatal con-
nectivity correlated with symptoms of anhedonia and psychomotor
retardation and may involve deficits in reward- or goal-directed behaviors
such as reward anticipation, effort expenditure, reinforcement learning, and
motor control, as well as heightened sensitivity to aversive stimuli. These ef-
fects on corticostriatal circuits may be mediated via inflammation-induced
decreases in dopamine synthesis and release along with increased reuptake,
resulting in overall reduction in dopaminergic signaling. In parallel, inflam-
matory cytokines promote glutamate release and spillover into the extrasy-
naptic space while impairing removal of glutamate via reuptake, ultimately
contributing to loss of synaptic integrity and circuit dysfunction. DS, dorsal
striatum; SN, substantia nigra; VS, ventral striatum; VTA, ventral tegmen-
tal area.
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of psychiatric disorders, symptoms like anhedonia
(along with other psychiatric symptoms) must impair
everyday function to rise to the level of clinical (diag-
nostic) relevance. Thus, inflammation can aid and
abet anhedonia by affecting its contributing compo-
nents but in many instances does not lead to frank
dysfunction and disease (e.g., effects of typhoid and in-
fluenza vaccination or endotoxin). Whether anhedonia
occurs as a clinically relevant symptom in the context
of inflammation is a matter of degree (of inflammation)
and/or the presence of additional contributing factors
related to the regulation of reward processing, includ-
ing genetic and environmental factors.

A. Impact of Inflammation on Reward-Related Brain
Regions and Circuitry

1. Neuroimaging Studies. Much of the causal evi-
dence for the effects of inflammation on neural cir-
cuits relevant to anhedonia has derived from studies
on patients receiving chronic administration of IFN-a
for hepatitis C virus (HCV) or malignant melanoma
(Capuron et al., 2012; Dowell et al., 2016) or healthy
volunteers exposed to low-dose endotoxin or typhoid
vaccination (Fig. 1). For example, early studies using
PET with fluorine-18–labeled fluorodeoxyglucose re-
vealed evidence of increased resting-state glucose me-
tabolism in basal ganglia nuclei in subcortical brain
regions consistent with changes observed in Parkin-
son disease (PD) (Juengling et al., 2000; Capuron et
al., 2007). Increased metabolism in the left putamen
and left nucleus accumbens in turn was associated
with anergia and fatigue (Capuron et al., 2007). In-
creased glucose metabolism in these selected basal
ganglia nuclei in PD is believed to be secondary to in-
creased oscillatory burst activity as a result of a loss
of DA and an associated decreased postsynaptic dopa-
mine 2 receptor (D2)-mediated inhibition of these
brain nuclei (Wichmann and DeLong, 1999). Adminis-
tration of levodopa has been shown to reduce this in-
creased glucose metabolism in PD (Feigin et al.,
2001), and interestingly, levodopa has been success-
fully used to reverse PD-like symptoms in patients
administered IFN-a (Bersano et al., 2008).
Consistent with PET studies indicating reduced DA

function as a result of IFN-a administration, functional
magnetic resonance imaging has also revealed inflam-
mation-induced alterations of responses in basal gan-
glia nuclei associated with motivation and motor
activity. Four to 6 weeks of IFN-a treatment led to re-
duced activation of the bilateral ventral striatum in re-
sponse to reward feedback and associated reward
prediction error signaling in patients treated for HCV
infection (Capuron et al., 2012). Reduced ventral stria-
tal activation was in turn correlated with self-reported
symptoms of reduced motivation. Administration of
IFN-a has also been associated with acute alterations

in striatal microstructure, which predicted symptoms
of fatigue (Dowell et al., 2016).
Findings with IFN-a have been paralleled by func-

tional magnetic resonance imaging studies involving
exposure to acute immune challenges to healthy par-
ticipants (Harrison et al., 2009; Eisenberger et al.,
2010). For example, administration of endotoxin to
healthy subjects led to blunted activation of the ven-
tral striatal response in anticipation of reward cues in
association with depressive symptoms (Eisenberger et
al., 2010; Lasselin et al., 2020). Furthermore, endo-
toxin-induced decreases in ventral striatal activity in
anticipation of reward were associated with plasma
cytokine responses in female, but not male, healthy
participants who completed a monetary reward task
(Moieni et al., 2019b). Endotoxin administration has
also been associated with decreased motivation for
high-effort reward options with no effect on reward
sensitivity (Draper et al., 2018). In healthy controls
exposed to typhoid vaccination, decreased functional
connectivity within mesolimbic circuitry including the
nucleus accumbens and subgenual ACC was modulat-
ed by IL-6 and associated with vaccination-induced
mood changes (Harrison et al., 2009). Increases in IL-
6 after typhoid vaccination have also been correlated
with slowed reaction times (Brydon et al., 2008), sug-
gesting that cytokine-induced changes in the basal
ganglia can contribute to both motivational deficits
and psychomotor retardation. Of note, typhoid vacci-
nation has also been shown to decrease ventral stria-
tal encoding of reward prediction error and increase
insula encoding of punishment prediction error in a
probabilistic instrumental learning task (Harrison et
al., 2016). Decreased ventral striatal reward predic-
tion error signaling was also associated with IL-6 af-
ter a laboratory stressor in women (Treadway et al.,
2017). These latter findings reflect an increasing ap-
preciation of the nuanced effects of inflammation on
reward processing in humans and laboratory animals
(see below) that includes emerging evidence that in-
flammation may have a greater effect on effort-based
motivation for reward, reward anticipation, reinforce-
ment learning (reward prediction errors), and sensi-
tivity to punishment/loss than consummatory reward
processes, although the latter has yet to be fully ex-
plored in this context (Felger et al., 2013b; Nunes et
al., 2014; Vichaya et al., 2014; Vichaya and Dantzer,
2018; Boyle et al., 2019). Moreover, effects on reward
processing may be related to the dose and timing of
the inflammatory challenge and reward processing
task (in addition to the sex of the participant) (Lar-
son, 2002; Lasselin et al., 2016; Lacourt et al., 2018).
In addition to exogenously administered cytokines

and inflammatory challenges, endogenous inflammation
has been associated with motivational deficits and alter-
ations in reward circuitry in association with symptoms
of anhedonia (Fig. 1). For example, in unmedicated,
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medically healthy patients with major depression, ele-
vated plasma CRP concentrations were associated with
decreased functional connectivity between ventral stria-
tum and ventromedial prefrontal cortex (vmPFC), which
in turn correlated with greater severity of anhedonia as
assessed by the Snaith Hamilton Pleasure Scale and an
anhedonia subscale of the Inventory of Depressive Symp-
toms Self-Reported (Felger et al., 2016). Additionally,
plasma CRP also correlated with decreased functional
connectivity between dorsal striatum and vmPFC and
presupplementary motor area, which was associated
with decreased speed on objective psychomotor tasks. De-
creased functional connectivity in reward circuitry in re-
lation to increased CRP has also been described in
women exposed to trauma and in rhesus monkeys ex-
posed to an obesogenic diet (Godfrey et al., 2020; Mehta
et al., 2020). Taken together, these findings suggest that
chronic, low-grade endogenous inflammation impacts
mesolimbic reward circuitry and corticostriatal circuitry,
involving both motivation and motor output, to impair
different aspects of motivated behavior in depression
(Fig. 1).

B. Impact of Inflammation on Neurotransmitter
Systems Relevant to Reward Processing

Given the impact of inflammation on neurocircuitry
relevant to reward processing, there has been interest
in examining inflammation’s effects on the neuro-
transmitter systems that regulate reward circuits in
the brain. Based on the anatomy and neurochemistry
of the striatum, glutamatergic inputs and DA regula-
tion of outputs of median spiny neurons have gar-
nered considerable attention, especially regarding
inflammation effects on motivational deficits and im-
paired reinforcement learning (Fig. 2).

1. Dopamine. The study of humans and nonhu-
man primates administered IFN-a has provided
strong evidence that the impact of inflammation on
reward circuitry and motivational deficits is mediated
in part through reductions in DA signaling in the stri-
atum. A series of studies combining pharmacological,
neurochemical, and PET neuroimaging have demon-
strated that inflammation impairs presynaptic DA
function via multiple mechanisms, including reduced
synthesis and release as well as increased reuptake.
For example, using the radiolabeled DA precursor of
levodopa ([18F]fluorodopa), 4 weeks of administration
of IFN-a was found to increase uptake and decrease
turnover of [18F]fluorodopa in the caudate, putamen,
and ventral striatum of patients with HCV (Capuron
et al., 2012). An increase in [18F]fluorodopa uptake af-
ter IFN-a indicates that inflammation may deplete
DA and/or its precursor availability, whereas de-
creased [18F]fluorodopa turnover suggests impaired
packaging/release of newly synthesized DA and/or in-
creased reuptake.

Similar to findings from humans, rhesus monkeys
chronically exposed to IFN-a reliably show immune
activation and behavioral symptoms such as hud-
dling, a depressive-like equivalent in nonhuman pri-
mates (Felger et al., 2007). Among animals that
displayed depressive-like huddling behavior after
IFN-a, significant reductions in the DA metabolite ho-
movanillic acid (HVA) were found in the CSF, and de-
creased HVA was correlated with increased time
spent huddling (Felger et al., 2007; Felger and Miller,
2012). Moreover, IFN-a led to anhedonia-like behavior
in rhesus monkeys as indicated by decreased con-
sumption of sucrose pellets only when effort was re-
quired (i.e., as assessed using a puzzle feeder task)
but not when the sucrose pellets were freely available
(Felger et al., 2015). These results mirror findings of
intact reward sensitivity but reduced willingness to
expend effort for reward in humans administered in-
fluenza vaccine (Boyle et al., 2019).
In vivo microdialysis in rhesus monkeys adminis-

tered 4 weeks of IFN-a revealed decreased DA release
in the striatum in response to both high K1, which
leads to a voltage-dependent DA release, and amphet-
amine, which leads to stimulated DA release and de-
creased DA reuptake (Felger et al., 2013b). Decreased
DA release during in vivo microdialysis was correlated
with reduced effort-based motivation in the puzzle
feeder task (Felger et al., 2013b). These data are con-
sistent with results from rodents (rats) who also exhib-
it decreased DA in the ventral striatum (specifically
the nucleus accumbens) using in vivo microdialysis af-
ter acute intraperitoneal injection of IL-6 (Yohn et al.,
2016). Like in the monkeys, decreased DA in these ani-
mals was associated with decreased effort-based moti-
vation (in the absence of decreased reward sensitivity),
an effect that could be reversed by the stimulant meth-
ylphenidate (Yohn et al., 2016). In IFN-a–treated ani-
mals, reductions in striatal DA release were restored
by local administration of the DA precursor levodopa
via reverse microdialysis (Felger et al., 2015). Of note,
decreased CSF DA in association with increased CRP
has also been described in female rhesus monkeys ex-
posed to an obesogenic diet, and decreased CSF DA
was in turn associated with decreased functional con-
nectivity between ventral striatum (nucleus accum-
bens) and vmPFC (Godfrey et al., 2020). Taken
together, these data suggest that inflammation effects
on DA availability likely occur via an impact on both
the synthesis and release of DA.
DA synthesis depends on the conversion of the ami-

no acid phenylalanine to tyrosine by phenylalanine
hydroxylase and the subsequent conversion of tyro-
sine to L-DOPA by tyrosine hydroxylase (Fig. 2).
There is strong evidence that inflammation impairs
DA synthesis via decreasing the availability of tetra-
hydrobiopterin (BH4), an enzyme cofactor required
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for the activity of both phenylalanine hydroxylase
and tyrosine hydroxylase. BH4 is sensitive to oxida-
tive stress and also serves as a cofactor for nitric ox-
ide synthase and can be usurped by the generation of
nitric oxide during inflammation (Haroon et al.,
2012). Of relevance to these synthetic pathways, pa-
tients with HCV treated with IFN-a for 4 weeks dis-
played increased plasma phenylalanine/tyrosine
ratios (Zoller et al., 2012; Felger et al., 2013a), which
were in turn associated with greater fatigue severity
and lower concentrations of DA and HVA in CSF
(Felger et al., 2013a). Furthermore, in IFN-a–treated
patients, CSF levels of BH4 negatively correlated
with CSF IL-6, whereas CSF concentrations of BH2, a
breakdown product of BH4, were increased (Felger et
al., 2013a). Low-grade inflammation in a medically

healthy elderly population has also been associated
with increased phenylalanine concentrations at the
expense of tyrosine, and increases in the phenylala-
nine/tyrosine ratio were associated with greater neu-
rovegetative symptoms, including sleep alterations,
sickness, and motor symptoms (Capuron et al., 2011).
Moreover, gene signatures in PBMCs of patients with
depression with increased inflammation and anhedo-
nia exhibited evidence of low tyrosine metabolism
(Bekhbat et al., 2020).
In addition to effects on DA synthesis, inflamma-

tion can also target the packaging of DA into vesicles
and DA reuptake (Felger and Treadway, 2017). Pack-
aging of newly synthesized DA into synaptic vesicles
for release is achieved by the vesicular monoamine
transporter 2 (VMAT2). Of note, both IL-1 and TNF

Fig. 2. Potential mechanisms of inflammation effects on glutamatergic and dopaminergic neurotransmission and synaptic integrity in the microenvi-
ronment of the striatal medium spiny neuron (MSN). Glutamate is released into the synaptic cleft, where it binds to its postsynaptic receptors [e.g.,
NMDAR and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)] on the MSN, as well as presynaptic and astrocytic receptors. Inflamma-
tion and release of cytokines from peripheral immune cells (e.g., macrophages), or those produced in the brain by activated microglia and astrocytes,
lead to elevated concentrations of synaptic glutamate by promoting its release and impairing its removal by reuptake mechanisms. This is in part
achieved by the actions of cytokines to decrease the number and function of EAAT2. Furthermore, increased transport of KYN to the brain via the
LAT-1, subsequent generation of toxic KYNmetabolites (e.g., QUIN) by microglia, and downstream generation of reactive oxygen species (ROS) all con-
tribute to additional glutamate release by activated astrocytes via promoting the activity of the xCT and reverse efflux via EAAT2. Finally, immune-in-
duced astrocytic morphologic changes limit the astrocyte’s ability to sequester glutamate within the synapse, resulting in a spillover of the glutamate
into the extrasynaptic space and diffusion toward extrasynaptic binding sites (e.g., NMDAR). Inflammation-induced glutamate excitotoxicity and oxi-
dative stress may in turn impair the availability of dopamine, which is released by dopaminergic neurons and binds to D2-like postsynaptic receptors
located on the MSN. Cytokine- and QUIN-induced ROS contribute to oxidation of BH4, a cofactor required for the conversion of phenylalanine (PHE)
to tyrosine (TYR) and TYR to L-DOPA, which are necessary precursors for the synthesis of dopamine. Furthermore, inflammatory cytokines may de-
crease the expression or function of the VMAT2 and/or increase the expression or function of the DAT. Finally, inflammatory cytokines may also de-
crease dopamine signaling by reducing D2 receptors. These effects of inflammation in the striatal microenvironment can be exacerbated by reduced
blood-brain barrier integrity due to a loss of claudin (cldn)-5, allowing greater cytokine entry and leukocyte infiltration. GSH, glutathione.
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have been shown to decrease VMAT2 expression in
rat enterochromaffin-like cells (Kazumori et al.,
2004). In addition, similar to the well established im-
pact of inflammatory cytokines and downstream p38
mitogen-activated protein kinase (MAPK) signaling
pathways in increasing the expression and function of
serotonin transporters and mediating, in part, endo-
toxin-induced depressive-like behavior in laboratory
animals (Zhu et al., 2006, 2010), stimulation of
MAPK signaling in a human embryonic kidney cell
line increased DA transporter (DAT) activity, and in-
hibition of MAPK was associated with decreased DAT
transport capacity in striatal synaptosomes (Moron et
al., 2003). Interestingly, neither in vitro activation of
MAPK nor in vivo administration of IFN-a to rhesus
monkeys was associated with reduced DAT expression
(Moron et al., 2003; Felger et al., 2013b), indicating
that observed effects have been on the function but
not the number of DAT. IFN-a administration to rhe-
sus monkeys has also been associated with reduced
D2 receptor binding as measured by PET using the
D2 receptor tracer [11C]raclopride, suggesting that
postsynaptic receptor changes may also contribute to
inflammation effects on DA signaling (Felger et al.,
2013b). Finally, it should be noted that there are in-
consistencies in the literature. For example, peripher-
al administration of LPS in mice decreases DAT
expression in striatal tissue (Lai et al., 2009), and en-
hanced stimulated release of DA in the striatum is
found after acute endotoxin administration to healthy
controls (Petrulli et al., 2017). These data suggest
that there may be differences in the effects of acute
versus chronic exposure to inflammation as well as
differences among species.

2. Glutamate. Alterations in glutamate metabo-
lism have been implicated in mood disorders (Sana-
cora et al., 2012). Indeed, a number of studies using
magnetic resonance spectroscopy have found altera-
tions in glutamate and glutamate metabolite levels in
multiple brain regions of patients with depression (bi-
polar depression in particular) (Castillo et al., 2000;
Frye et al., 2007; Hashimoto et al., 2007; Yoon et al.,
2009; Y€uksel and €Ong€ur, 2010; Xu et al., 2013;
Zwanzger et al., 2013). In addition, loss of glial ele-
ments including astrocytes and oligodendrocytes as
well as excitatory amino acid transporters (EAATs), of
which EAAT2 is responsible for 90% of the reuptake
and ultimate recycling of glutamate (Kim et al.,
2011), is one of the most reliable changes found in
postmortem brain tissue from patients with mood dis-
orders (Ongur et al., 1998; Hamidi et al., 2004; Raj-
kowska and Miguel-Hidalgo, 2007; Sanacora et al.,
2012; Sanacora and Banasr, 2013). Probably the most
dramatic evidence of the role of glutamate in the psy-
chopathology of depression is the profound and rapid
response of treatment-resistant patients with

depression to ketamine, an antagonist of the gluta-
mate N-methyl-D-aspartate (NMDA) receptor (Ber-
man et al., 2000; aan het Rot et al., 2010; Duman et
al., 2012).
Inflammatory cytokines have been shown to inter-

act with glutamate pathways in several important
ways that may contribute to increased extracellular
glutamate and glutamate alterations in patients with
depression (Haroon et al., 2017). Inflammatory cyto-
kines such as TNF and IL-1b have been shown to de-
crease the expression of EAAT2 on relevant glial
elements (astrocytes and oligodendrocytes) and in-
crease the release of glutamate from astrocytes (Ma-
tute et al., 2006; Tilleux and Hermans, 2007; Ida et al.,
2008) (Fig. 2). For example, TNF via NF-kB is associ-
ated with downregulation of EAAT2 expression on as-
trocytes and oligodendrocytes and, in excess, is directly
toxic to these cells, further compromising glutamate
reuptake (Buntinx et al., 2004; Korn et al., 2005; Ma-
tute et al., 2006; Li et al., 2008; Olmos and Llad�o,
2014). In addition, TNF can lead to calcium elevation
and astrocyte glutamate exocytosis through activation
of prostaglandin E2 (Bezzi et al., 2001). Inflammation-
induced increases in prostaglandin E2 as well as cyclo-
oxygenase (COX)-2 can also lead to reverse efflux of
glutamate through EAATs, further increasing synaptic
and ultimately extrasynaptic glutamate (Bezzi et al.,
2001; Petrelli and Bezzi, 2016). Interestingly, selective
inhibition of EAAT2 with dihydrokainate led to re-
duced reward responses in rats, consistent with an an-
hedonic phenotype in these animals (Bechtholt-Gompf
et al., 2010).
Inflammatory cytokines, including TNF, have also

been shown reduce glutamine synthetase, which con-
verts glutamate to glutamine, potentially leading to a
buildup of intracellular and extracellular glutamate
concentrations, which along with cytokine induction of
nitrogen and oxygen free radicals (and oxidative stress),
can lead to astrocyte death (Kazazoglou et al., 1996;
Buntinx et al., 2004; Matute et al., 2006; Li et al.,
2008). Induction of oxidative stress also enhances the
function of xCT transporters. xCT transporters are ex-
pressed on astrocytes, microglia, and macrophages and
exchange intracellular glutamate for extracellular cys-
tine to generate the antioxidant glutathione (Haroon et
al., 2017) (Fig. 2). In the process, glutamate is extruded
into the extracellular space (Lewerenz et al., 2013). In
addition, during immune activation and the release of
ATP, binding of ATP to purinergic P2X7 receptors can
lead to reverse efflux of glutamate from astrocytes (Ha-
roon et al., 2017).
The confluence of the many effects of inflammation

on glutamate can result in increased extrasynaptic
glutamate that binds to extrasynaptic NMDA recep-
tors that have been shown to decrease growth factors
including brain-derived neurotrophic factor and
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increase excitotoxicity (Miller et al., 2009; Hardi-
ngham and Bading, 2010). Extrasynaptic glutamate
also leads to synaptic spillover that can contribute to a
loss of spatial precision of synaptic transmission, lead-
ing to chaotic, incoherent signaling activity (McCul-
lumsmith and Sanacora, 2015). These effects of
inflammatory cytokines on glutamate metabolism, re-
uptake, and release by astrocytes and oligodendrocytes
as well as the fundamental integrity (and survival) of
these glial elements provide an intriguing intersection
of the inflammation and glutamate hypotheses of mood
disorders including depression (Haroon et al., 2017). In-
deed, in an animal model of LPS-induced depression,
pretreatment with the NMDA antagonist ketamine pre-
vented LPS-induced anhedonia as measured by the su-
crose preference test (Walker et al., 2013). Moreover, in
an animal model of treatment-resistant depression in-
duced by chronic treatment with adrenocorticotropin,
ketamine responsiveness was predicted by baseline ele-
vations of peripheral biomarkers of inflammation in-
cluding CRP and TNF (Walker et al., 2015).
Given the many mechanisms by which inflammato-

ry mediators can impact glutamate metabolism, stud-
ies have examined glutamate in vivo in patients with
depression exposed to increased inflammation using
magnetic resonance spectroscopy. For example, pa-
tients with HCV administered IFN-a exhibited signifi-
cant increases in glutamate within left basal ganglia
and dorsal ACC (Haroon et al., 2014). The observed
increases in left basal ganglia glutamate were further
associated with reduced motivation, with the greatest
effect in older individuals (>55 years) (Haroon et al.,
2015). Increased endogenous inflammation (as mea-
sured by CRP) in patients with major depression was
also correlated with increased left basal ganglia gluta-
mate, which in turn was associated with self-reported
symptoms of anhedonia and decreased psychomotor
performance (Haroon et al., 2016). Using hierarchical
clustering to generate groups with and without com-
bined elevations in CRP and left basal ganglia gluta-
mate (high and low CRP-glutamate groups), patients
with high CRP-glutamate were found to exhibit in-
creased anhedonia and psychomotor slowing as well
as reductions in regional homogeneity (ReHo) in the
left basal ganglia (Haroon et al., 2018a). ReHo is
based on the analysis of brain oxygen level–depend-
ent fluctuations in resting-state functional MRI and
is an index of local coherence in neuronal activity
(Haroon et al., 2018a). Thus, decreased ReHo may re-
flect the impact of inflammation on extrasynaptic glu-
tamate and its potential to undermine precision
synaptic transmission. Interestingly, generation of
whole-brain ReHo contrast maps in high versus low
CRP-glutamate groups led to 41 regions of interest
that were decomposed into four subnetworks, one of
which was a predictor of anhedonia and included

several regions of interest within canonical reward
and salience networks, including the vmPFC and
dorsal and ventral striatal regions (Haroon et al.,
2018a). Taken together, these data suggest that in-
flammation-induced changes in glutamate metabo-
lism may have widespread effects on neuronal
network integrity that are relevant to motivational
deficits and, in combination with alterations in DA,
may represent a fundamental mechanism of inflam-
mation-induced behavioral alterations leading to an-
hedonia (Fig. 2).

IV. Metabolism, Inflammation, and Anhedonia

A growing appreciation for the impact of inflammation
on metabolism has contributed to mounting interest in
whether immune cell metabolic reprogramming and its
relationship with altered systemic glucose and lipid me-
tabolism may be linked to motivational deficits and ulti-
mately anhedonia in depression and other psychiatric
and medical disorders. Although the cause-and-effect re-
lationship between cellular and systemic changes in me-
tabolism is complex, it is clear that these processes
engage in a feedforward loop in which immune cell acti-
vation, metabolic reprograming, and inflammatory cyto-
kine production drive systemic metabolic disturbances
including insulin resistance and hyperlipidemia and vice
versa (Hotamisligil, 2017; Lercher et al., 2020).

A. Cellular Immunometabolism

Immune cells produce energy (ATP) to maintain
their basic cellular functions by breaking down nu-
trients such as glucose, glutamine, and fatty acids.
Depending on the type of cell and its activation sta-
tus, immune cells use distinct biochemical cascades to
accommodate their functional and resultant metabolic
demands. Upon activation, innate immune cells such
as macrophages and neutrophils rapidly undergo pro-
found shifts in glucose metabolism. These shifts in-
volve movement away from slow, energy-maximizing
oxidative phosphorylation (OXPHOS) via mitochon-
drial respiration, which yields 34 ATP per molecule of
glucose, to rapid but energetically inefficient glycoly-
sis, which yields 2 ATP per molecule of glucose (Gane-
shan and Chawla, 2014) (Fig. 3). This shift to aerobic
glycolysis, referred to as the Warburg effect (also seen
in cancer cells), allows limited but precipitous energy
production and provides cellular building blocks nec-
essary for rapid cellular proliferation including amino
acids, nucleotides, lipids, and NADPH (Pearce and
Pearce, 2013). Similar, but more nuanced immunometa-
bolic shifts are required for activation and differentia-
tion of lymphocytes (Fig. 3). Upon activation, naıve
lymphocytes display a shift from OXPHOS and fatty
acid oxidation (FAO) to a strategy of primarily glycolysis
and glutaminolysis and, to some extent, OXPHOS to ac-
commodate their effector/cytotoxic functions (Pearce
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and Pearce, 2013). Depending on the T-cell subset, this
immunometabolic shift requires distinct signaling cas-
cades including the mammalian target of rapamycin
(mTOR) and MAPK signaling pathways (Bantug et al.,
2018).
Based on the metabolic reprogramming in activated

immune cells, there is an increased metabolic/energy
demand that may contribute to anhedonia through re-
orientation of reward processes dependent on effort ex-
penditure (see below) (Treadway et al., 2019a).
Consistent with this notion, high anhedonia in patients

with depression with increased inflammation (versus
low anhedonia in patients with depression with in-
creased inflammation) is characterized by glycolysis-
promoting pathways such as phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt) and HIF-1 signaling as
well as insulin signaling and insulin resistance (Bekh-
bat et al., 2020) (Fig. 3). These pathway alterations,
which were specific to patients with depression who ex-
hibited both increased inflammation (CRP > 3 mg/l)
and anhedonia, appeared to be represented primarily
by monocytes in a transcript of origin analysis

Fig. 3. Chronic inflammation and metabolic dysfunction propagate pathologic immunometabolism in activated immune cells, leading to immune and
bioenergetic consequences that may serve as a biomarker and pharmacological target for anhedonia. Excess inflammatory and metabolic load due to
lifestyle and other factors lead to the release of DAMPs and microbe-associated molecular patterns (MAMPs), which bind to various immune receptors
(e.g., cytokine, pattern recognition, and T-cell receptors) on immune cells that in turn activate NFjB and the NLRP3 inflammasome. Activated im-
mune cells subsequently undergo rapid shifts in glucose, lipid, and amino acid metabolism that accommodate their cellular functions, including cyto-
kine production, bactericidal activity, cellular growth, and proliferation. Immune cells primarily derive their energy via a two-step process whereby
glucose is first metabolized into pyruvate via glycolysis, a reaction which yields 2 ATP. In resting leukocytes, most of the resulting pyruvate is then
shuttled into the citric acid cycle (TCA) to enable OXPHOS, which drives the synthesis of up to 34 ATP per glucose molecule. In contrast, activated im-
mune cells shift to aerobic glycolysis, whereby the majority of pyruvate is converted into lactate, thus dramatically reducing ATP generation via OX-
PHOS. Crucial to this proglycolytic shift is activation of the transcription factor HIF-1, which commits the cell to glycolysis, thus allowing limited but
precipitous energy production. HIF-1 activity is driven by both NFjB transcription as well as DAMP/MAMP-induced activation of the PI3K-mTOR
axis. Activated immune cells also rely on an ancillary glycolytic cascade, the pentose phosphate pathway (PPP), glutaminolysis, and the TCA cycle to
produce reactive oxygen species (ROS) and mitochondrial ROS (mROS), necessary for their bactericidal actions. Intermediates from glycolysis and
PPP additionally provide cellular building blocks [amino acid (AA), fatty acid (FA) synthesis] necessary for rapid cell proliferation. DAMPs and
MAMPs also suppress the energy sensor AMP-activated protein kinase (AMPK), which promotes fatty acid (Acyl-CoA) transport into the TCA, thus
limiting FAO, another major source of ATP. Together, reduced energy production resulting from a shift toward glycolysis and away from OXPHOS and
FAO, along with the high energetic cost of chronic low-grade inflammation, creates a bioenergetic demand potentially relevant to anhedonia. This ener-
gy demand can be further exacerbated by concurrent metabolic dysfunction such as increased availability of free fatty acids, as well as insulin resis-
tance due to inflammatory signaling via c-Jun N-terminal kinase (JNK) to inhibit insulin receptor substrate-1 (IRS-1) signaling, thus further limiting
energy obtained through glycolysis.
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(Bekhbat et al., 2020). In addition, gene probes ex-
pressed in peripheral blood immune cells involved in
metabolic networks, and pathways including HIF-1
and Akt negatively correlated with functional connec-
tivity within reward circuitry in association with anhe-
donia (Goldsmith et al., 2020a). Gene expression
analyses of peripheral blood immune cells also revealed
that, in addition to inflammatory pathways, enrich-
ment of genes related to a transcriptional control net-
work involving hepatocyte nuclear factor 4a and other
related networks involving glycolysis, gluconeogenesis,
and lipid metabolism at baseline predicted subsequent
antidepressant response to the TNF antagonist inflixi-
mab (Mehta et al., 2013). Infliximab reduced depressive
symptoms in patients with treatment-resistant major
depression who exhibited high baseline plasma CRP
(CRP > 5 mg/l), and anhedonia was the most improved
symptom (Raison et al., 2013). Taken together, these
data indicate an intriguing relationship between meta-
bolic reprograming toward glycolytic pathways in im-
mune cells and anhedonia in patients with depression,
especially those with increased inflammation.

B. Systemic Glucose and Lipid Metabolism

In conjunction with metabolic changes at the im-
mune cell level, excess adiposity and high BMI pro-
mote inflammation via increased cytokine production
from adipose tissue (Johnson et al., 2012) that in turn
reprograms systemic glucose metabolism, contribut-
ing to insulin resistance (Ganeshan and Chawla,
2014) and leading to a state of hyperglycemia and
dyslipidemia that further fuels inflammation and cy-
tokine release (Shoelson et al., 2006) (Fig. 3). As noted
above, fat-, carbohydrate-, and calorie-dense diets and
sedentary behavior associated with the Western life-
style contribute to both inflammation and metabolic
disturbance and increase risk for inflammatory and
metabolic diseases, cancer, and psychiatric disorders,
all of which are associated with symptoms of anhedo-
nia (Capuron et al., 2008; Shelton and Miller, 2010;
Berk et al., 2013; Liu et al., 2014).
A significant proportion of patients with major de-

pression with increased inflammatory markers exhibit
evidence of metabolic disturbances including dyslipide-
mia and insulin resistance (Pan et al., 2012). Systemic
insulin resistance and impaired glucose metabolism
have been associated with anhedonia in patients with
metabolic disorders and comorbid depression (Nefs et
al., 2012; Hamer et al., 2019; Singh et al., 2019). In ad-
dition, recent work from our group showed that corre-
lations between both inflammatory markers (e.g.,
CRP) and systemic evidence of glucose-related meta-
bolic impairment in patients with depression was asso-
ciated with lower functional connectivity within
reward and motor circuits that were associated with
symptoms of anhedonia and motor slowing (Goldsmith
et al., 2020a). An interaction between CRP and the

metabolic markers revealed that the greatest deficit in
functional connectivity in reward circuits was observed
in patients with both high inflammation and evidence
of systemic metabolic dysfunction (similar to the re-
sults reported above regarding evidence of metabolic
reprograming in immune cells).
Although depressive symptoms related to reduced

motivation and motor activity have been proposed to
drive inflammation through decreased voluntary en-
ergy expenditures (e.g., exercise) and associated
weight gain (Lamers et al., 2018), our recent work in-
volving anti-inflammatory treatment with infliximab
suggests a causal role for inflammation in both symp-
toms of anhedonia (Raison et al., 2013) and metabolic
disturbances in depression (Mehta et al., 2013; Bekh-
bat et al., 2018b). For example, both inflammatory
and metabolic biomarkers in plasma were lower 2
weeks postinfliximab in patients with high inflamma-
tion at baseline in responders versus nonresponders
(Mehta et al., 2013; Bekhbat et al., 2018b), consistent
with changes in the inflammatory and metabolic-re-
lated genes. These findings suggest that inflammation
(especially TNF signaling) and its associated shifts in
metabolism within immune cells may synergize with
systemic metabolic disturbances to contribute to
symptoms of anhedonia. In the context of chronic low-
grade inflammation, the energy demands resulting
from this glycolytic shift are exacerbated by the ac-
tions of inflammatory cytokines, which promote insu-
lin resistance and impaired glucose tolerance, thus
additionally limiting energy obtained through glycoly-
sis (Shoelson et al., 2006). Furthermore, as inflamma-
tion is an energetically costly process (Straub, 2017),
chronic low-grade inflammation seen in depression
may represent not only a state of great metabolic
need but also a limited energy supply, which may con-
tribute to impaired bioenergetic homeostasis (Tread-
way et al., 2019a).
In addition to an association between inflammation

and both systemic and immunometabolic shifts related
to glucose metabolism, altered systemic lipid metabo-
lism may contribute to behavioral symptoms such as
anhedonia. Although lipidomic studies in major de-
pression have revealed changes in a wide range of lipid
types, such as sphingolipids and phosphatidylcholines
(Walther et al., 2018), studies examining both metabol-
ic profiles and inflammation in patients with behavior-
al disturbances have been scarce. One targeted
metabolomics study of IFN-a–treated patients with
HCV found no changes in lipids including acylcarni-
tines, glycerophospholipids, sphingolipids, or sugars
but a greater decrease in the branched-chain amino
acid isoleucine in patients who developed depression
compared with those who did not (Baranyi et al.,
2018). With respect to symptoms of anhedonia, higher
levels of triglycerides and total and low-density
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lipoprotein (LDL) cholesterol and lower levels of high-
density lipoprotein cholesterol were observed in young
adults with versus without anhedonia (Moreira et al.,
2019). Moreover, the response to infliximab in patients
with treatment-resistant depression (which was char-
acterized by a reduction in anhedonia) was associated
with higher baseline lipid biomarkers including total
cholesterol, LDL cholesterol, non–high-density lipopro-
tein cholesterol, triglycerides, and nonesterified fatty
acids, and infliximab significantly decreased these lipid
markers in patients with a CRP > 5 mg/l (Bekhbat et
al., 2018a). Of note, in contrast to these findings, asso-
ciations between anhedonia and low levels of triglycer-
ides and total or LDL cholesterol have also been
reported (Loas et al., 2016; Su et al., 2019b).
Omega-3 polyunsaturated fatty acids (PUFAs) are

thought to benefit both behavior and overall health in
part through anti-inflammatory actions and are fre-
quently found to be low in patients with major depres-
sion and other neuropsychiatric conditions. Evidence
suggests that omega-3 PUFA deficiency may specifi-
cally be associated with reward deficits such as nega-
tive symptoms in schizophrenia (Sethom et al., 2010).
Omega-3 PUFA deficiency during development in mice
also led to impaired effort expenditure in adulthood,
along with alterations in DA-relevant neural circuitry
(Ducrocq et al., 2020). Related to immunometabolism,
fatty acid oxidation is a primary metabolic strategy in
some T-cell subsets (particularly Th17 and memory T
cells) that dictates their transformation and activity
(Bantug et al., 2018) (Fig. 3). As such, reduced fatty
acid oxidation in diabetes has been shown to promote
Th17-driven inflammation (Nicholas et al., 2019). Pa-
tients with major depression also have been shown to
have reduced levels of acetyl L-carnitine, which plays a
crucial role in transporting long-chain fatty acids for b
oxidation in mitochondria (Nasca et al., 2018). Al-
though these findings collectively suggest that system-
ic and immune cell changes in lipid metabolism may
also contribute to the effects of inflammation on the
brain and symptoms of anhedonia, future studies are
needed to clarify the extent of this relationship.

C. Kynurenine Pathway Activation

Another metabolic pathway that may mediate the
effects of inflammation on the brain and the develop-
ment of anhedonia is the KP (Schwarcz, 2004; Haroon
et al., 2012; Savitz, 2020). Inflammatory cytokines in-
cluding IFN-c and TNF as well as peripherally ad-
ministered inflammatory stimuli including LPS and
the bacillus Calmette-Gu�erin vaccine can activate the
enzyme indoleamine 2,3-dioxygenase (IDO), which is
expressed primarily in antigen-presenting cells such as
macrophages and dendritic cells (O’Connor et al.,
2009a; Dai and Zhu, 2010). Activation of IDO in turn
leads to the breakdown of tryptophan into kynurenine
(KYN), which is transported to the brain through the

large neutral amino acid transporter (LAT)-2, where it
is converted into neuroactive metabolites including ky-
nurenic acid (KYNA) by astrocytes, oligodendrocytes,
and neurons and quinolinic acid (QUIN) by microglia,
tissue macrophages, and perivascular monocytes (Walk-
er et al., 2019; Haroon et al., 2020). Although KYNA is
an allosteric modulator of the NMDA receptor and can
have neuroprotective effects as well as inhibitory effects
on DA release (Wu et al., 2007), QUIN is an agonist at
the NMDA receptor and can contribute to excitotoxicity,
especially if interacting with the extrasynaptic NMDA
receptor noted above (Savitz, 2020). QUIN also has
been found to stimulate release and decrease reuptake
of glutamate from astrocytes (Fig. 2). Based on studies
in laboratory animals and humans, peripheral inflam-
matory mediators drive peripheral blood production of
KP metabolites, including KYN, which are then trans-
ported to the brain (Raison et al., 2010; Walker et al.,
2019; Haroon et al., 2020). A number of studies in pa-
tients with cancer or individuals administered IFN-a or
endotoxin have demonstrated a relationship between
evidence of IDO activation (e.g., Trp or KYN/Trp) and
depressive symptoms, especially neurovegetative symp-
toms (Bonaccorso et al., 2002; Capuron et al., 2002b,
2003; Kruse et al., 2019).
Blockade of IDO in laboratory animals can reverse de-

pressive-like symptoms including anhedonia after admin-
istration of LPS or bacillus Calmette-Gu�erin (O’Connor et
al., 2009b; Salazar et al., 2012), and blockade of the trans-
port of KYN into the brain by treatment with leucine,
which competes with KYN for LAT-1, can abrogate LPS-
induced depressive symptoms (Walker et al., 2019).
QUIN plays an important role in these effects. For exam-
ple, in animals in which the enzymes involved in QUIN
synthesis have been knocked out (including kynurenine
3-monooxygenase and 3-hydroxyanthranilic acid dioxyge-
nase knockout mice), reduced depressive symptoms are
found after LPS administration (Parrott et al., 2016). In
addition, in patients with depression, combined activation
of both inflammation (as reflected by TNF) and the KP
(as reflected by increased KYN/Trp) was associated with
greater symptoms of anhedonia as well as greater depres-
sive symptom severity and evidence of antidepressant
treatment resistance (Haroon et al., 2020). Moreover, in-
creased QUIN/KYNA has been associated with volume
loss in the striatum and a trend association with anhedo-
nia (Savitz et al., 2015; Savitz, 2020).

V. Access of Inflammatory Molecules to
Reward-Related Brain Regions

Previous studies in laboratory animals have de-
scribed a number of mechanisms by which peripheral
inflammatory signals can access the brain (Miller et
al., 2009). These mechanisms include 1) saturable
transporters for a number of cytokines including TNF
and IL-1 (Quan and Banks, 2007); 2) peripheral
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cytokine stimulation of visceral sensory afferent
nerves, which via the nucleus of the solitary tract can
activate catecholaminergic projections to brain regions
including the hypothalamus and paraventricular nu-
cleus, leading to activation of the hypothalamic-pitui-
tary adrenal axis (Ericsson et al., 1994; Fleshner et al.,
1998); 3) access to the brain via fenestrated capillaries
in circumventricular organs including the median emi-
nence, where they play a role in fever induction as
well as activation of the hypothalamic-pituitary-adre-
nal axis (Quan and Banks, 2007); 4) release of cyto-
kines by myeloid and lymphoid cells present in the
brain meninges into the CSF, where they can then be
transported into brain parenchyma via the glymphatic
system (Da Mesquita et al., 2018); and 5) trafficking of
immune cells to the brain, where they can interact
with brain endothelial cells, leading to the release of
cytokines and other inflammatory mediators in brain
parenchyma (McKim et al., 2018).
Another pathway by which cytokines may access the

brain is through disruption of the blood-brain barrier
(BBB) as a function of stress and inflammation (Menard
et al., 2017). This pathway is of particular relevance to
anhedonia in that differential disruption of the BBB ap-
pears to be exclusive to brain regions related to motiva-
tion, including the nucleus accumbens. In a study using
chronic social defeat stress (which also involves wound-
ing and associated inflammation), male mice who were
stress-sensitive, as reflected by decreased social interac-
tions post–stress exposure, exhibited significant disrup-
tion of the BBB compared with stress-resilient and
control mice (Menard et al., 2017). BBB disruption was
mediated by a decrease in the expression of claudin 5, a
key molecule involved in BBB integrity. As noted above,
this effect in stress-sensitive versus stress-resilient and
control animals was exclusive in the area of the nucleus
accumbens and was associated with increased BBB per-
meability to IL-6 and was mediated by activation of
TNF/NF-kB signaling pathways in endothelial cells (Du-
dek et al., 2020). Interestingly, similar decreases in clau-
din 5 expression were also demonstrated in the nucleus
accumbens of postmortem brain samples of patients
with depression versus control patients, with some evi-
dence that antidepressants may mitigate this effect (Me-
nard et al., 2017; Dudek et al., 2020). These data
support a specific association between access of peripher-
al inflammatory mediators and key brain regions that
are involved in motivational processing and anhedonia.

VI. Evolutionary Concepts Related to
Anhedonia and the Immune System

A. Conservation of Internal Resources

The relationship between inflammation and anhe-
donia, especially as it relates to the willingness to ex-
pend effort, may be rooted in evolutionary survival

priorities involving the conservation of energy resour-
ces for fighting infection and healing wounds in an
ancestral environment that was rife with pathogens
and predators (Raison and Miller, 2013). During infec-
tion or wounding, energy expenditures of the immune
system can increase up to 30%–60% of the total daily
amount (Straub, 2017). This energy demand is neces-
sary to support a robust defensive response to exter-
nal and/or internal threats and requires a shift away
from growth and reproduction as well as metabolical-
ly intensive activities associated with goal pursuit,
such as foraging, hunting, or physical aggression
(Treadway et al., 2019a; Wang et al., 2019). Although
modern day threats are not as dramatic or life threat-
ening as those in ancestral times, the chronic inflam-
matory states driven by obesity, metabolic syndrome,
dysbiosis, aging, psychologic stressors, and medical
illnesses are equally relevant and can require energy
expenditures of 10%–30% of the daily allotment
(Straub, 2017). It has been suggested that the energy
demands of chronic immune activation secondary to
the shift in immunometabolism from oxidative phos-
phorylation to the relatively inefficient glycolysis
(O’Neill et al., 2016) (described above) in conjunction
with the inflammation-related systemic metabolic dis-
turbances can in turn have an impact on valuations
of future actions (Straub, 2017; Treadway et al.,
2019a). Indeed, decision-making processes may incor-
porate peripheral estimates of the body’s current met-
abolic capacity to determine what is worth the effort.
The metabolic demands of low-grade inflammation
and associated alterations in systemic immunometab-
olism may thus lead to a reduced perceived ability to
pursue a reward versus preference for reward (Tread-
way et al., 2019a).
Consistent with this framework, the mesolimbic DA

system is well positioned to act as a central integrator
of peripheral signals—including markers of increased
inflammatory activity—to guide motivated behavior
(Treadway et al., 2019b). The mesolimbic DA system
comprises DA neurons located primarily in the ven-
tral tegmental area of the midbrain (Haber, 2003; Ha-
ber and Knutson, 2010) that send dense afferents to
the ventral striatum, where they can alter the sensi-
tivity of striatal medium spiny neurons to cortical
and subcortical glutamatergic afferents (Haber and
Knutson, 2010; Berke, 2018) (Fig. 2). Robust evidence
in laboratory animals and humans suggests that po-
tentiation or attenuation of ventral striatal DA sig-
naling can dramatically increase or decrease an
individual’s willingness to work for rewards (Ber-
ridge, 2007; Salamone and Correa, 2012; Berke, 2018;
Soder et al., 2020; Westbrook et al., 2020). Critically,
midbrain DA neurons express a wide range of recep-
tors for peripheral signaling molecules that convey
messages about energy availability and body
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metabolism, including insulin (Stouffer et al., 2015;
Ter Horst et al., 2018), leptin (Kr€ugel et al., 2003; Ful-
ton et al., 2006; Hommel et al., 2006), ghrelin (Sym-
monds et al., 2010; Sztainert et al., 2018), fatty acids,
and steroid hormones (Shafiei et al., 2012), and manip-
ulations of these signals have been found to alter
effortful behavior. As such, shifts in cellular immuno-
metabolism and inflammatory mediators, as well as as-
sociated disruptions in systemic glucose and lipid
metabolism, can impact DA and glutamate signaling
within the ventral striatum and reorganize behavioral
priorities, especially as it relates to motivation and mo-
tor activity, to suit the demands of an activated im-
mune system responding to external and/or internal
environmental threats (Treadway et al., 2019a).

VII. Translational Implications: Treatment
Targets

Based on the multiple mechanisms that are in-
volved in inflammation and its many downstream ef-
fects on the brain, there is a target-rich environment
for pharmacological interventions to address the im-
pact of inflammation on anhedonia. Treatments rele-
vant to these targets range from the immune system
itself to the neurotransmitter systems affected and
the metabolic pathways that may contribute (Table
1). It should be noted that targeting of neurotransmit-
ter systems including DA and glutamate that directly
mediate reward processing are more closely linked
with the components of anhedonia described above.
Nevertheless, given the apparent preferential effects
of inflammation on these neurotransmitter systems

and related reward circuitry, targeting inflammation
more generally as a strategy to treat anhedonia is of
utmost relevance to pharmacologic management of mo-
tivational deficits in clinical populations (albeit less
specific than targeting the neurotransmitters and neu-
rocircuits themselves). In this section, we will there-
fore first describe treatment considerations that
address anhedonia via targeting inflammation itself
followed by treatments that target the downstream
neurotransmitter system pathways that ultimately
mediate inflammation’s effects on reward processing
and anhedonia. Finally, we will address the cellular
and systemic metabolic pathways that are a cause and
consequence of inflammation and may also contribute
to inflammation-induced effects on motivation.

A. Immune

Unfortunately, there are limited data on the exact
immune pathways and cell types that drive inflamma-
tion and resultant symptoms such as anhedonia in
psychiatric disorders. Indeed, as noted previously,
clustering of patients into inflammatory subgroups
yielded distinct populations of inflammation associat-
ed with myeloid cells in one case and lymphoid popu-
lations in the other (Lynall et al., 2020). Thus, much
work needs to be done to further characterize the in-
flammatory substrate of behavioral changes, and un-
til then, we will focus on the obvious immune targets
and drugs associated with those targets.

1. Cytokine Inhibitors/Targeted Therapies. Cyto-
kine inhibitors have provided proof of concept regard-
ing the cytokine hypothesis of depression. As noted, a
host of cytokine inhibitors have demonstrated efficacy

TABLE 1
Pharmacological strategies to mitigate the impact of inflammation on anhedonia

Immunotherapeutic Strategies

mAbs to cytokines, cytokine receptors, cellular adhesion molecules, and chemokine receptors
Inflammatory signaling pathway inhibitors (e.g., TLR4 inhibitors, JAK inhibitors—baricitinib, p38 MAPK inhibitors)
Inflammasome blockade (e.g., P2X7 receptor antagonists)
COX-2/prostaglandin inhibitors (e.g., celecoxib, aspirin)
Inhibitors of microglial activation (e.g., minocycline)
Neuroimmunomodulation [e.g., efferent vagal nerve stimulation; c frequency light (flicker) exposure]

Neurotransmitter Strategies

Dopamine
Synthesis (e.g., sapropterin, folic acid, L-methylfolate, SAMe, levodopa)
Release (e.g., amphetamine, methamphetamine, lisdexamfetamine)
Reuptake (e.g., bupropion, methylphenidate, modafinil)
Agonists (e.g., aripiprazole, brexpiprazole, pramipexole)

Glutamate
Receptor antagonists (e.g., memantine, ketamine, esketamine, AXS-05)
Reuptake enhancers/glutamate stabilizers (e.g., riluzole)

Immunometabolic Strategies (Systemic and Cellular)

Glycolysis inhibitors (e.g., imatinib, lonidamine, rapamycin, dimethyl fumarate)
Antioxidants (e.g., N-acetyl cysteine)
Insulin sensitizers (e.g., pioglitazone, metformin)
Fatty acid metabolism (e.g., eicosapentaenoic acid, acetyl-L-carnitine)

Kynurenine Pathway Strategies

IDO inhibitors (e.g., indoximod)
Blockade of KYN transport into brain (e.g., leucine)

mAb, monoclonal antibody.
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regarding depressive symptoms in patients with autoim-
mune and inflammatory disorders (Kappelmann et al.,
2018), and at least three studies have suggested some
efficacy of anticytokine treatment in patients with de-
pression who were otherwise medically healthy—in par-
ticular, those with evidence of increased inflammation at
baseline (Raison et al., 2013; Salvadore, 2018; McIntyre
et al., 2019).
Much of the data comes from patients treated with

anti-TNF drugs (especially infliximab), consistent
with the repeated demonstration of activation of TNF
and its signaling pathways as a substrate for inflam-
mation and its effects on the brain in psychiatric dis-
orders. Anti–IL-1 and anti–IL-6 drugs have also
shown efficacy in reducing depressive symptom sever-
ity in patients with autoimmune and inflammatory
disorders (Kappelmann et al., 2018), and the anti–IL-
6 drug sirukumab led to improvement in symptoms of
anhedonia in otherwise healthy individuals with de-
pression with increased inflammation (CRP > 3 mg/l)
(Salvadore, 2018). Of note, studies in laboratory ani-
mals have indicated that cytokine antagonists, which
are relatively large molecules, do not have to cross
the BBB to be effective. Indeed, administration of in-
fliximab to rats exposed to chronic mild stress blocked
the development of depressive and anxiety-like behav-
ior including anhedonia (Karson et al., 2013).
Also relevant to their efficacy in reducing depres-

sive symptoms in autoimmune and inflammatory dis-
orders, there is a vast array of other anticytokine
therapies that selectively target T-cell cytokines in-
cluding anti–IL-17 and anti–IL-12/23, which drives
TH1 polarization (Griffiths et al., 2017; Wittenberg et
al., 2020), as well as drugs that target downstream
cytokine signaling pathways, such as baricitinib,
which inhibits Janus kinase (JAK) 1 and JAK2 (Szol-
losi et al., 2018), and multiple drugs that inhibit p38
MAPK (Lee and Kim, 2017). Other relevant drugs in
development include those that inhibit TLR-4 signal-
ing and inhibitors of cell adhesion molecules and che-
mokine receptors, of which two drugs are Federal
Drug Administration (FDA)-approved, including mar-
aviroc, which inhibits C-C chemokine receptor 5 for
prevention of human immunodeficiency virus, and
plerixafor, an antagonist to C-X-C chemokine receptor
4 used to mobilize stem cells (Szollosi et al., 2018). In
addition, drugs that can inhibit inflammasome activa-
tion via the P2X7 receptor are also being explored. In-
deed, a P2X7 receptor antagonist is currently being
tested in patients with depression with an incomplete
response to a monoaminergic antidepressant and a
CRP $ 1 mg/l (NCT04116606).

2. Cyclooxygenase Inhibitors. Significant attention
has been paid to the selective COX-2 inhibitor cele-
coxib. The COX isozymes play integral roles in a
number of physiologic functions, although the

inducible COX-2 is most closely tied to inflammation
and the immune response. Based on meta-analyses of
the literature, celecoxib as either an add-on or mono-
therapy in individuals with depression/depressive
symptoms has demonstrated an overall beneficial ef-
fect versus placebo for symptom reduction (K€ohler et
al., 2014; K€ohler-Forsberg et al., 2019). Aspirin has
shown similar efficacy, but for both drugs, sample
sizes in studies have been relatively small, results
have not been consistent, and the largest study to date
found no efficacy for celecoxib versus placebo in pa-
tients with depression (Husain et al., 2020). Moreover,
in several large population-based studies, including a
double-blind, randomized, placebo-controlled trial in
older adults, no protective effect against incident de-
pression was found for aspirin (including low dose) or
other COX inhibitors (Glaus et al., 2015; Veronese et
al., 2018; Molero et al., 2019; Berk et al., 2020), al-
though there is evidence in patients with cancer for
some protection against depression with long-term,
low-dose use of aspirin but not other COX inhibitors
(Hu et al., 2020). Nevertheless, as discussed below,
there are concerns regarding the design of these stud-
ies and the off-target effects of these drugs, including
effects on the cadherin superfamily, a group of cell sur-
face receptors that play a role in neuronal connections
and interactions (Manabe et al., 2000). In addition,
there is evidence in laboratory animals and humans
that anti-inflammatory drugs including the COX inhib-
itors aspirin, ibuprofen, and naproxen can inhibit anti-
depressant responses to SSRIs, whose efficacy may be
dependent in part on the local release of inflammatory
cytokines (Warner-Schmidt et al., 2011; Raison et al.,
2013). These data suggest that administration of anti-
inflammatory drugs to patients with depression with-
out inflammation may undermine response. Of note,
one promising recent study with celecoxib identified
responders post hoc as those who had increased TSPO
binding at baseline, possibly suggestive of microglial
activation (Attwells et al., 2020). Although interesting,
however, this trial was open-label, and increased
TSPO binding may reflect central nervous system
(CNS) activation aside from neuroinflammation that
could predispose to placebo responsiveness.

3. Minocycline. Minocycline, the second-genera-
tion tetracycline antibiotic, has also received consider-
able attention. Beyond its antimicrobial capabilities,
numerous preclinical studies have demonstrated that
minocycline possesses anti-inflammatory, antiapop-
totic, neuroprotective, and anticancer effects (Soczyn-
ska et al., 2012; Garrido-Mesa et al., 2013). More
specifically, preclinical studies have shown that mino-
cycline selectively inhibits microglial activation (Ko-
bayashi et al., 2013), with subsequent reduction in
inflammatory biomarkers/cytokines including IL-1b,
IL-6, TNF, and DAMPs (i.e., high-mobility group box
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1 and netrin-1) (Du et al., 2019). It is purported that,
through reductions in high-mobility group box 1 re-
lease, this microglial inhibition results in inhibition of
KP activation and subsequent reduction in depres-
sive-like behaviors in mouse chronic-stress models
(Wang et al., 2018; Wang et al., 2020). Clinically,
minocycline has generated mixed results in treatment
of patients with depression, and a recent meta-analy-
sis of the limited controlled trials available suggested
benefit over placebo (Rosenblat and McIntyre, 2018).
Nevertheless, the largest trial to date, failed to find
that minocycline separated from placebo (Husain et
al., 2020). Of note, however, one trial reported that
higher blood IL-6 concentrations prior to treatment
were predictive of a response to minocycline (Savitz et
al., 2018). Unfortunately, without a reliable neuroim-
aging biomarker of microglial activation, it will re-
main difficult to interpret any effects of minocycline,
especially given its effects on the microbiome.

4. Electroceuticals and Other Novel Neuroimmunomo-
dulation Strategies. One innovative area of increas-
ing interest is the use of neuromodulation strategies,
such as targeting/stimulating the vagus nerve (vagal
efferents) to reduce peripheral inflammation (Pavlov
et al., 2020). For example, an elegant series of studies
demonstrated that acetylcholine released after stimu-
lation of vagal efferents can bind to the a7 subunit of
nicotinic acetylcholine receptors to inhibit NF-kB and
inflammatory signaling including the release of TNF
from relevant immune cells such as macrophages
(Tracey, 2002). Vagal nerve stimulation also leads to
the generation of T cells that are capable of producing
acetylcholine (Rosas-Ballina et al., 2011). This anti-in-
flammatory cholinergic reflex can be activated by elec-
trically stimulating the vagus nerve, a treatment
whose novel bioelectric platform has recently received
designation as an FDA breakthrough device for the
treatment of rheumatoid arthritis in patients nonres-
ponsive to biologic drugs (Pavlov et al., 2020). Note
that, although vagal nerve stimulation as currently
used for depression has been reported to have im-
mune effects (Perrin and Pariante, 2020), it is not de-
signed to provide stimulation of efferent vagal nerve
fibers, as in the device developed by Tracey and col-
leagues (Pavlov et al., 2020). Nevertheless, transcuta-
neous vagal nerve stimulation may increase efferent
vagal output and has been shown to exhibit anti-in-
flammatory effects (Bremner et al., 2020). Other non-
convulsive neurostimulation used for depression (e.g.,
repetitive transcranial magnetic stimulation, trans-
cranial direct current stimulation, and deep brain
stimulation) have also been shown to have immuno-
logic effects; however, there have been few studies,
and sham-controlled comparator designs are required
(Perrin and Pariante, 2020).

Another novel neuroimmunomodulation strategy is
exposure to flickering lights, which in turn drive neu-
ral activity that can influence microglial activity. For
example, exposure of mice to lights flickering at 40
Hz drives c-frequency neural activity that in turn is
associated with activation of NF-kB and MAPK path-
ways, as well as cytokine production (Garza et al.,
2020). By adjusting the frequency of the flicker, the
relative impact on microglial responses can be manip-
ulated, leading to potential regulation of neuroinflam-
matory responses.

5. Other Agents. There are other drugs targeting
the immune system in clinical trials, including phospho-
diesterase inhibitors (pentoxifylline, NCT01625845) as
well as various supplements, but these do not hold much
promise to change the landscape of the other more excit-
ing immunotherapies available or in development.

B. Neurotransmitter

Based on the studies described above, there is
sound rationale for targeting the downstream effects
of inflammation on relevant neurotransmitter sys-
tems, including DA and glutamate, which regulate
fundamental gating processes in the ventral striatum
that ultimately play pivotal roles in reward process-
ing and motivation (Fig. 2).

1. Dopamine. Inflammation appears to affect all as-
pects of DA signaling, including DA synthesis, packaging
and release, and reuptake, as well as postsynaptic modi-
fications in DA receptor binding and expression.

a. Dopamine synthesis. BH4 is a pivotal cofactor
for the enzymes that synthesize DA, and inflammation
reduces BH4 availability through oxidation and exces-
sive conversion to BH2 during generation of nitric oxide
by nitric oxide synthase. Therefore, support of BH4 di-
rectly by sapropterin, a synthetic form of BH4, or
through supplementation with folic acid, L-methyl folate,
or S-adenosylmethionine (SAMe), which support the
conversion of BH2 to BH4, are relevant strategies to re-
verse the effects of inflammation on DA synthesis (Stahl,
2007). Both L-methylfolate and SAMe have been studied
in depression with limited efficacy, but the confounds in
clinical trial designs described below make interpreta-
tion of the results difficult (Papakostas et al., 2010,
2012, 2014; Mischoulon et al., 2014; Sarris et al., 2018).
However, in one study, post hoc analysis revealed that
elevated baseline CRP, TNF, IL-6, and IL-8 along with
BMI predicted improved responses to L-methylfolate in
patients with depression with an inadequate response to
conventional antidepressant treatment (Shelton et al.,
2015).
Another strategy to address impaired DA synthesis

is to provide the immediate precursor to DA, levodo-
pa, as was done successfully in nonhuman primates
to reverse IFN-a–induced impairments in DA release
(Felger et al., 2015). Levodopa (in combination with car-
bidopa) is currently being examined in this regard
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(examining reward circuitry in patients with depression
with low and high levels of peripheral inflammation be-
fore and after levodopa/carbidopa; NCT02513485). Of
note, data from an aged and frail population with de-
pression, which might be expected to exhibit increased
inflammation, have shown a positive antidepressant re-
sponse to levodopa/carbidopa administration (Ruther-
ford et al., 2019).

b. Dopamine release. There are a number of med-
ications that induce DA release, including amphet-
amine, methamphetamine, and lisdexamfetamine.
Although there may be nuance in the specificity and
exact mechanism of these drugs [including the addi-
tional release of norepinephrine (NE)], in general
these monoamine releasing agents are substrates for
VMAT2, causing inhibition of vesicular monoamine
uptake and release of prestored vesicular mono-
amines (Partilla et al., 2006; Lizarraga et al., 2015),
as well as inhibiting synaptic transporter function
through trace amine-associated receptor 1-mediated
mechanism (Xie et al., 2008; Xie and Miller, 2009; Ru-
tigliano et al., 2018).
There is currently not convincing evidence to rec-

ommend these medications as an augmentation strat-
egy or monotherapy for treatment of major depression
(Pary et al., 2015; Giacobbe et al., 2018). However,
their efficacy in depression has not been examined
within the context of inflammation, and given impair-
ment in DA release, these drugs should be a consider-
ation. Indeed, it is worthwhile to note that despite
several failed trials in depression (Richards et al.,
2016), there have been positive trials that demon-
strate efficacy for use of lisdexamfetamine as an SSRI
augmentation strategy in mild depression with persis-
tent cognitive dysfunction (Madhoo et al., 2014) and
residual symptoms in moderate depression (Trivedi et
al., 2013).

c. Dopamine reuptake. DAergic synaptic trans-
mission can be enhanced through inhibition or rever-
sal of synaptic reuptake. The DAT plays a key role in
synaptic clearance of DA for purposes of vesicular se-
questration/repackaging through VMAT2 in neurons
or degradation via monoamine oxidase activity in gli-
al cells (Meiser et al., 2013). Evidence also suggests
that, particularly in the prefrontal cortex, the NE
transporter (NET) may play a role in DA reuptake
(Carboni et al., 1990). Targeting DAT (and to some ex-
tent NET) would thus putatively function to increase
synaptic availability of DA for postsynaptic action.
A number of available medications, including bu-

propion and several members of the psychostimulant
class, demonstrate DA reuptake inhibition. Bupro-
pion, an FDA-approved medication for treatment of
unipolar depression, functions primarily as a DAT
and NET inhibitor. Bupropion has been shown to in-
crease high-effort activity in rats (Randall et al.,

2014), and clinical trials have demonstrated its effica-
cy as monotherapy for depression on par with other
standard monotherapies such as SSRIs and SNRIs
(Clayton et al., 2006), as well as an augmentation
strategy for residual symptoms (Patel et al., 2016). Al-
though evidence is limited, small trials have sug-
gested a preferential response of symptoms of
anhedonia to bupropion treatment (Tomarken et al.,
2004; Thase et al., 2006). Moreover, as noted above,
addition of bupropion to an SSRI led to an increased
antidepressant response in patients with increased
inflammation (CRP $ 1 mg/l), and a prospective clini-
cal trial is underway comparing bupropion to escitalo-
pram in patients with depression with CRP $ 2 mg/l
(NCT04352101, see below).
In addition to bupropion, several psychostimulants

with mechanistic DAT inhibition are available includ-
ing methylphenidate and modafinil. As noted above,
methylphenidate has been shown to abrogate the ef-
fects of IL-6 on effort-based motivation (Yohn et al.,
2016). However, in randomized trials in depression,
augmentation with methylphenidate has not demon-
strated a statistical benefit over standard therapy
alone (Patkar et al., 2006; Michelson et al., 2007; Rav-
indran et al., 2008; Pary et al., 2015). Methylpheni-
date has demonstrated some efficacy in treating
cancer-related fatigue, which has been associated
with increased inflammatory markers in multiple
studies (Xiao et al., 2016, 2017; Roj�ı and Centeno,
2017; Bower, 2019). Clinical trials of modafinil have
also demonstrated reduction in fatigue (Fava et al.,
2005), although there is no clear consensus regarding
relief of depression (Dunlop et al., 2007).

d. Dopamine agonists. DAergic receptors are
treatment targets for numerous conditions including
schizophrenia and Parkinson disease, in which DAer-
gic signaling is pathologically disrupted. In this con-
text, utilization of direct DA receptor agonists as
augmenting strategies for management of depression
have received attention. Included among these medi-
cations are several of the atypical antipsychotics as
well as antiparkinsonian drugs that act as DA recep-
tor agonists.
The body of evidence in support of atypical antipsy-

chotics is larger than that for any other augmentation
strategy in major depression. Meta-analyses of per-
formed trials have identified that these agents are
more effective than placebo for both response and re-
mission (Nelson and Papakostas, 2009; Zhou et al.,
2015), and two agents with DA receptor agonist activ-
ity—aripiprazole (Berman et al., 2007, 2009; Marcus
et al., 2008; Fava et al., 2012) and brexpiprazole (Al
Shirawi et al., 2017)—have received FDA approval for
this indication. Although the typical antipsychotics
are recognized as exerting their effect primarily
through antagonism of the D2 receptor, newer-
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generation antipsychotics appear to have activity at
multiple receptor sites. Both aripiprazole and brexpi-
prazole, for example, function as D2/3 partial agonists.
As partial agonists, these medications can submaxi-
mally enhance DAergic signaling when inadequate
amounts of endogenous ligand are present or alterna-
tively prevent overstimulation when excess amounts of
endogenous ligand are present. In the context of inflam-
mation, in which presynaptic dopamine synthesis and
release are impaired, the former function may be most
relevant, although studies have yet to examine this
possibility.
The antiparkinsonian agents, including pramipexole

(nonergoline D2/3/4 agonist), ropinirole (D3 agonist),
and bromocriptine (ergoline D2 agonist, serotonin recep-
tor agonist), have also received attention in the litera-
ture for augmentation/treatment of treatment-resistant
depression. Several studies have demonstrated efficacy
for pramipexole in reducing depressive symptoms in pa-
tients with Parkinson disease (Lemke et al., 2006) and
patients with major depression, with noted differential
benefit for anhedonia and motor functioning (Corrigan
et al., 2000; Cusin et al., 2013; Franco-Chaves et al.,
2013). Pramipexole has also shown efficacy at higher
doses (up to 4 mg/day) in patients with treatment resis-
tance (Fawcett et al., 2016), an effect that has been hy-
pothesized to be related to the increased inflammation
in this population in conjunction with inflammation ef-
fects on DA (Escalona and Fawcett, 2017). Ropinirole,
however, failed to separate from placebo in the treat-
ment of patients with unipolar and bipolar depression
(Gershon et al., 2019), despite prior studies indicating
positive effects on depressive symptoms when comorbid
with restless leg syndrome (Benes et al., 2011). Older
studies reported some efficacy of bromocriptine equiva-
lent to the antidepressant imipramine for treatment of
depression (Bouras and Bridges, 1982); however, there
is limited support for its use currently (Hori and Kunu-
gi, 2013).
It should be noted that DA also has direct effects on

immune responses, the nature of which is beyond the
scope of this review. DA receptors are expressed on
virtually every immune cell subpopulation, and DA
has effects on multiple immune cell functions, includ-
ing activation, proliferation, cellular adhesion, chemo-
taxis, and cytokine production, both centrally and
peripherally (Sarkar et al., 2010; Matt and Gaskill,
2020). Immune cells such as T cells and myeloid cells
also express all of the enzymatic machinery to pro-
duce and secrete DA (Matt and Gaskill, 2020). DA via
the D2 receptor and its downstream signaling path-
ways has anti-inflammatory effects (Shao et al.,
2013), and DA via D1 receptor signaling has been
shown to reduce systemic and local inflammation
through inhibition of the NLRP3 inflammasome and
the release of nitric oxide (F€arber et al., 2005; Yan et

al., 2015). Thus, any drug that increases the availabil-
ity of DA, including all of the DA-active agents de-
scribed above, has the potential to affect the impact of
inflammation on the brain through direct effects on
the immune system. It should be noted, however, that
many of the findings noted above have been generat-
ed in laboratory animal models, and the impact of
DAergic agents at the doses used in clinical practice
remains unclear. For example, although levodopa ad-
ministration inhibited ex vivo mitogen-induced prolif-
eration and dose-dependent stimulation of TNF in
PBMCs (Bessler et al., 1999), peripheral indicators of
systemic inflammation appeared to have no relation-
ship to levodopa dose (Hassin-Baer et al., 2011; Andi-
can et al., 2012). Moreover, bupropion augmentation
for treatment nonresponders was not accompanied by
changes in peripheral blood cytokine concentrations
(i.e., soluble IL-2 receptor, IL-8, and TNF), despite im-
provement in depressive symptoms (Eller et al., 2009).

2. Glutamate. Given the potential role of gluta-
mate in mood disorders, especially as reflected by the
dramatic effects of the NMDA receptor antagonist ke-
tamine on depressive symptoms (McGirr et al., 2015),
there have been a number of drugs developed and in
development for depression that target glutamate re-
ceptors, including not only NMDA receptors but also
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptors and metabotropic glutamate receptors (Wil-
kinson and Sanacora, 2019). Aside from ketamine,
the best studied and most efficacious of these is the
recently FDA-approved intranasal esketamine for
augmentation of standard oral antidepressant thera-
py in management of major depression and depres-
sion with suicidal ideation/behavior (Fu et al., 2020;
Ionescu et al., 2020). Esketamine, the (S)-enantiomer
of ketamine, functions as an NMDA receptor antago-
nist and DAT inhibitor. Like its racemic mixture, and
unlike standard antidepressant treatments, the anti-
depressant effect observed is rapid and robust in res-
ponders, with measurable responses within 24 hours
of administration. Although limited work has been
done regarding the immune system with esketamine,
the response to ketamine has been tied to increased
inflammatory markers prior to treatment in humans
and in a laboratory animal model of antidepressant
treatment resistance (Walker et al., 2015; Yang et al.,
2015). These data support the notion that blockade of
NMDA receptors might be a mechanism to reverse in-
flammation-induced increases in glutamate. In con-
trast to the success of ketamine and esketamine,
other glutamate receptor modulators have not per-
formed well in depression. For example, memantine,
an NMDA antagonist that reduces cognitive decline
in elderly patients with Alzheimer disease, has failed
to show efficacy in depression in multiple studies
(Kishi et al., 2017). In addition, adjunctive lanicemine
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(an NMDA channel blocker) did not separate from
placebo in patients with depression over 12 weeks
(Sanacora et al., 2017), and despite initial promise,
the glutamate modulating agent GLYX-13 (rapasti-
nel), which also acts as an NMDA receptor modulator,
failed to separate from placebo in phase 3 trials in de-
pression. There are a multitude of other drugs that
modulate glutamate receptors in development, the re-
view of which is beyond the scope of this manuscript
[see (Wilkinson and Sanacora 2019)]. One compound
of interest, however, is AXS-05, which is a combina-
tion of the NMDA receptor antagonists dextromethor-
phan and bupropion. Although bupropion is primarily
being used to increase dextromethorphan blood levels
through cytochrome P450 2D6 inhibition, bupropion
nevertheless can inhibit the DAT, leading to an in-
triguing medication that can address both glutamate
and DA pathologies seen in the context of inflamma-
tion. Phase 2 results appeared promising, with signifi-
cant improvements in response and remission in
depression at 6 weeks compared with bupropion
alone, leading to FDA Breakthrough Therapy desig-
nation (Anderson et al., 2019). Nevertheless, as noted
below, whether AXS-05 or other glutamate receptor
modulators have special activity in patients with in-
creased inflammation has not been tested.
Stabilization of glutamate is another mechanism of ac-

tion that can mitigate the impact of inflammation on
glutamate metabolism. Especially relevant in this re-
gard is riluzole, which has been shown to decrease pre-
synaptic glutamate release and enhance EAAT activity,
thereby facilitating astrocytic glutamate reuptake and
ultimately preventing extracellular accumulation and
extrasynaptic spillover (Fumagalli et al., 2008; Banasr
et al., 2010). Riluzole has also been shown to reverse an-
hedonia-like behavior in rats exposed to chronic, unpre-
dictable stress (Banasr et al., 2010). Given these
findings, a number of studies have sought to investigate
riluzole in patients with depression. One small, open-la-
bel study found benefit in treatment-resistant patients
with depression over the course of 6 weeks with riluzole
monotherapy (Zarate et al., 2004), and another small tri-
al similarly showed benefit with riluzole as an augment-
ing agent (Sanacora et al., 2007). In a study of
maintenance treatment after ketamine infusion, riluzole
demonstrated no statistically significant benefit over pla-
cebo, although the riluzole group did appear to have a
longer time to relapse (17.2 days versus 9.8 days) (Ibra-
him et al., 2012). Given the small size of these studies, it
is difficult to draw conclusions; however, the results war-
rant further investigation for the utility of this medica-
tion class, especially in the context of inflammation.

C. Glucose and Lipid Metabolism

1. Glucose Metabolism. As the metabolic shift to
aerobic glycolysis is a hallmark of cancer and a criti-
cal step for inflammatory activation of immune cells,

opportunities to divert cellular metabolism from gly-
colysis and its end products, such as lactate, back to
mitochondrial oxidation have been extensively ex-
plored. Components of the glycolytic cascade that
have been frequently targeted are glucose transport-
ers, as well as the glycolytic enzymes hexokinase
(HK), 6-phosphofructokinase, pyruvate kinase, lactate
dehydrogenase, and monocarboxylate transporters
(Fortunato et al., 2018). The majority of compounds
that inhibit glycolysis have been tested in cell lines or
animal models, with the exception of a few agents
currently approved for use in humans (Pelicano et al.,
2006; Zhao et al., 2013).
Several clinically approved medications for cancer

and autoimmune disorders are demonstrated to have
antiglycolytic and/or pro-OXPHOS properties, which
may primarily contribute to their therapeutic actions.
For example, imatinib is an approved treatment of
cancer that specifically inhibits tyrosine kinases, in-
cluding the oncogene BCR-ABL, subsequently causing
a decrease in activity of HK and glucose-6-phosphate
dehydrogenase, enzymes that promote glycolysis and
its ancillary pentose phosphate pathway. These ac-
tions decrease glycolytic activity and promote mito-
chondrial respiration (Gottschalk et al., 2004) while
also decreasing inflammatory gene expression, includ-
ing TNF, in a mouse model of nonalcoholic fatty liver
disease (AlAsfoor et al., 2018). Other drugs such as lo-
nidamine, which inhibits mitochondrially bound HK;
AZD3965, a monocarboxylate transporter inhibitor;
and several Akt inhibitors targeting the PI3K-Akt-
mTOR pathway are currently in various stages of
clinical trials for cancer and are being considered for
the treatment of autoimmune disorders including
rheumatoid arthritis (de Lartigue, 2017; Song et al.,
2019). Of note, the mTORC1 inhibitor rapamycin has
recently shown the capacity to prolong the effects of
ketamine, which as noted previously, targets gluta-
mate pathways, and its efficacy is greater in individu-
als with increased inflammation as well as its
downstream effects on KP metabolites (Moaddel et
al., 2018; Abdallah et al., 2020). First-line treatment
with dimethyl fumarate in patients with multiple
sclerosis has been shown to inhibit Warburg-like me-
tabolism in immune cells via inhibiting the enzyme
glyceraldehyde 3-phosphate dehydrogenase, which oc-
cupies a central position in the glycolytic pathway
(Kornberg et al., 2018). Consistent with known differ-
ential reliance of immune cell subsets on aerobic gly-
colysis, dimethyl fumarate inhibited production of
inflammatory cytokines and lactate in activated mac-
rophages, Th1 and Th17 cells, while sparing the func-
tion of resting macrophages or regulatory T cells,
suggesting that nuanced immunomodulation via met-
abolic targets may be possible in vivo. With respect to
behavioral symptoms and anhedonia, promotion of
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OXPHOS and mitochondrial antioxidant defense sys-
tems is believed to contribute to ketamine’s antide-
pressant effect (Weckmann et al., 2014, 2017), and
gene expression signatures related to mitochondrial
respiration have been associated with long-term re-
sponse to lithium in patients with bipolar disorder
(Stacey et al., 2018).
Another agent that has received attention is N-ace-

tyl cysteine (NAC). NAC as a precursor to the antioxi-
dant glutathione reduces oxidative stress (reactive
oxygen species) that can result from cellular immuno-
metabolic shifts and inflammation and can improve
mitochondrial function (Wright et al., 2015; Mocelin
et al., 2019). NAC also has antidepressant effects on
glutamate signaling through effects on a-amino-3-hy-
droxy-5-methyl-4-isoxazolepropionic acid receptors
and the astroglial glutamate exchanger xCT (Linck et
al., 2012; Nasca et al., 2017). Thus, NAC has been
tested in depression with evidence of some benefit in
a meta-analysis that includes a relatively small num-
ber of studies (five) and 291 subjects who received
NAC. Clinical trials to treat depression using NAC
are ongoing, including one trial with an inclusion cri-
terion of a CRP > 0.85 mg/l (NCT02972398).
Insulin-sensitizing diabetes treatments that address

systemic alterations in glucose metabolism and have
been tested for antidepressant effects include thia-
zolidinediones (e.g., pioglitazone), which stimulate
peroxisome proliferator–activated receptor-c, and met-
formin, which promotes 50-adenosine monophospha-
te–activated protein kinase, to lower circulating
glucose and fatty acids. A meta-analysis in depression
found that although metformin did not improve de-
pressive symptoms, thiazolidinediones exerted an an-
tidepressant effect in female patients only (Moulton et
al., 2018).

2. Fatty Acids. Promotion of cellular fatty acid oxi-
dation is another mechanism to address alterations in
cellular immunometabolism to alleviate depressive
symptoms. For example, blockade of carnitine palmi-
toyl transferase 1, which promotes the transport of
acyl-carnitine for mitochondrial b oxidation, with eto-
moxir substantially reduced stress-induced anhedo-
nia-like behavior in rats (Morkholt et al., 2017). In
addition, systemic dietary supplementation with ace-
tyl-L-carnitine induced both a rapid and enduring an-
tidepressant effect in a rodent model of depressive
behavior (Nasca et al., 2018), and supplementation
with omega-3 PUFAs, particularly eicosapentaenoic
acid (EPA), has demonstrated antidepressant efficacy,
as indicated by several meta-analyses in major de-
pression (Mocking et al., 2016; Liao et al., 2019). The
antidepressant effects of PUFAs are thought to be me-
diated, at least in part, by effects on immune cells
and reduced inflammation (Rapaport et al., 2016). As
such, whereas patients with HCV who developed

depression after IFN-a treatment had an “at risk” ge-
notype for the phospholipase A2 gene in association
with lower circulating EPA levels (Su et al., 2010),
treatment with EPA prevented IFN-a–induced depres-
sion (Su et al., 2014). The enzyme phospholipase A2
regulates the balance between metabolism of fatty
acid precursors into arachidonic acid, which promotes
inflammation, or the anti-inflammatory omega-3 fatty
acids. Elevated ratios of arachidonic acid to EPA and
DHA have also been found to predict IFN-a–induced
depression (Lotrich et al., 2013). Furthermore, among
patients with depression who received 8 weeks of
treatment with EPA, those with high CRP and IL-1ra
at baseline displayed a greater antidepressant re-
sponse (Rapaport et al., 2016).
These studies suggest that promoting fatty acid oxi-

dation and increasing the availability of PUFAs as
well as acetyl-L-carnitine may be fruitful strategies
for targeting the immunometabolic mechanisms that
sustain inflammation and contribute to anhedonia.

D. Kynurenine Metabolism

1. Indoleamine 2,3-Dioxygenase Inhibitors. IDO
converts Trp, the primary precursor for serotonin, to
KYN. Given the importance of serotonin in T-cell acti-
vation, there has been considerable interest in devel-
oping IDO inhibitors as a pharmacologic strategy to
enhance T-cell function as a component of chemother-
apeutic and other approaches to treating cancer (Pre-
ndergast et al., 2017). Several IDO inhibitors,
including indoximod (1-methyl-D-tryptophan), have
been developed for this purpose and are in clinical tri-
als (Vacchelli et al., 2014). With the focus on oncology,
there are currently no trials of an IDO inhibitor in
any psychiatric disorder. In addition to IDO, other en-
zymes, including kynurenine monooxygenase and ky-
nurenine aminotransferase, which maintain the
relative balance between QUIN and KYNA, can be
considered targets of treatment. Relative to this strat-
egy, however, administration of a KYNA analog pro-
drug 4-Cl-kynurenine (4-Cl-KYN), which converts to
the NMDAR glycine site antagonist 7-Cl-KYNA,
failed to show efficacy in treatment-resistant depres-
sion (Park et al., 2020). Challenges in this area in-
clude defining the relevant target populations, related
in part to which KP metabolite markers and their cut-
off values and which inflammatory markers might
help enrich future studies with subjects who are like-
ly to respond, while also providing opportunities to es-
tablish target engagement (see below). Combinations
of the peripheral blood KYN/Trp ratio and TNF have
been used in this fashion, yielding a population of pa-
tients with depression with increased anhedonia and
treatment resistance (Haroon et al., 2020).

2. Leucine. Leucine competes with KYN for LAT-1
and thus can inhibit transport of KYN into the brain,
where it is converted into the neuroactive metabolites
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KYNA and QUIN (Haroon et al., 2020). Based on pre-
clinical studies in laboratory animals (Walker et al.,
2019), treatment with high-dose leucine (8 mg/d) for 2
weeks is currently being tested in patients with major
depression, although inflammatory markers that have
been associated with KP metabolites in the periphery
and CNS will be examined only in post hoc analyses
(with no a priori enrichment of the sample for periph-
eral blood inflammatory markers and/or KP metabolite
concentrations) (NCT03079297).

E. Gut Microbiome

Although the majority of therapeutic focus remains
on small-molecule and biologic drugs, the past several
years have seen increased interest in evaluating the
gut-brain axis as a mediator of psychiatric pathophys-
iology. The native microbiome and issues related to
microbial dysbiosis have been implicated in a variety
of salient neuropsychiatric conditions (Barbosa and
Vieira-Coelho, 2020); however, the exact mecha-
nism(s) by which the microbiome may impact brain
function is unclear. Studies have repeatedly demon-
strated the importance of microbiota in neurodevelop-
ment (Warner, 2019) and have linked microbiome-
produced bioactive metabolites to epigenetic changes
and the host immune response/inflammatory state
(Rooks and Garrett, 2016), each of which may have a
putative role in mediating inflammation-induced be-
havioral changes. The relation to psychiatric illness
has been underscored by a number of studies, such as
the induction of depressive-like behavior in mice after
fecal microbiota transplant (FMT) from donors with
major depression (Zheng et al., 2016) and the signifi-
cant improvements in reported depressive and anx-
ious symptoms after FMT among patients with
functional gastrointestinal disorders, with the related
finding of a negative correlation between microbiota
diversity and depression severity (Kurokawa et al.,
2018). These findings have led to a number of trials
examining prebiotics (dietary fibers that promote the
health of the native microbiota) and probiotics (which
are live microorganisms cultured for dietary supple-
mentation) as interventions, although results have
been modest, showing a small but significant im-
provement of symptoms with use of probiotics (Liu et
al., 2019; Sanada et al., 2020). Given the relative im-
portance of the gut-brain axis and the evidence sug-
gesting its role in inflammation, continued research
for more directed therapies such as FMT or predevel-
oped microbial ecosystems is warranted.

F. Future Drug Development

Although clinical neuroimaging, postmortem tissue
analysis, and preclinical animal models provide in-
sight into the impact of inflammation on the brain,
there are limits inherent to these approaches. For
example, there are human-specific aspects of

neurodevelopment (Letinic and Rakic, 2001; Rakic,
2009; Clowry et al., 2010; Zeng et al., 2012; Hansen et
al., 2013; Paredes et al., 2016; Hodge et al., 2019) that
limit the generalizability and/or scope of studies under-
taken with animal model systems and the feasibility of
studying direct cellular and molecular correlates of im-
aging findings, making the approach to understanding
pathophysiology necessarily coarse-grained. In recent
years, however, induced pluripotent stem cell technolo-
gy has emerged as a promising solution for preclinical
neuropsychiatric disease modeling. Rapid progression
in the field has led to development of methods for gen-
erating specific CNS cell types, including DAergic neu-
rons (Swistowski et al., 2010), excitatory glutamatergic
neurons (Li et al., 2009; Mariani et al., 2012), micro-
glia (Abud et al., 2017), oligodendrocytes (Wang et al.,
2013), and astrocytes (Santos et al., 2017). In addition,
these approaches have been used to produce three-di-
mensional model systems that resemble subregions of
the human brain (Eiraku et al., 2008; Mariani et al.,
2015; Muguruma et al., 2015; Qian et al., 2016) and
are capable of recapitulating features of human corti-
cal development (Lancaster et al., 2013), providing pre-
viously inaccessible opportunities to model brain
development/brain function in vitro. This method has
already been applied to the study of schizophrenia
(Stachowiak et al., 2017; Kathuria et al., 2020), and ac-
tive research is expanding to conditions with more
neurodiversity, including depression (Grossert et al.,
2019) and anxiety (Soliman et al., 2017). Relevant to
inflammation, studies in induced pluripotent stem
cell–derived astrocytes have demonstrated a robust in-
flammatory response to IL-1b (Thelin et al., 2020), sug-
gesting that these in vitro model systems can reveal
how individual cell types respond to a neuroinflamma-
tory milieu and how these responses may differ across
patient populations. Thus, such a platform may be es-
pecially informative in isolating the various influences
of specific inflammatory molecules and their down-
stream effects on cellular metabolism on relevant neu-
rotransmitter systems including DA and glutamate.

VIII. Anti-Inflammatory Trial Failures

A. Shortcomings of Clinical Trials Using Anti-
Inflammatory Drugs to Treat Depression

There are multiple targets and treatments that are
relevant to pharmacological strategies to mitigate the
impact of inflammation on the brain. A number of
clinical trials have been conducted using drugs with
putative anti-inflammatory properties to treat pa-
tients with psychiatric disorders or symptoms, many
of which have been described above. These studies
have primarily focused on patients with depression
and schizophrenia (Xiang et al., 2017; Zheng et al.,
2017; Deakin et al., 2018). Meta-analyses of this
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literature, including anticytokine therapies, COX-2
inhibitors, minocycline, statins, pioglitazone, and
omega 3 PUFAs, have reported modest efficacy with
some of these agents (Xiang et al., 2017; Zheng et al.,
2017; Kohler-Forsberg et al., 2019; Liao et al., 2019;
Cai et al., 2020), although the results of this litera-
ture is difficult, if not impossible, to interpret for rea-
sons including the drugs used, the study designs, and
the outcome variables (Table 2). Disregarding the nu-
merous trials that have been conducted on patients
with autoimmune and inflammatory disorders, in
which results are confounded by the impact of anti-in-
flammatory treatment on the underlying disease pro-
cess, there are relatively few interpretable studies,
leaving the field bereft of data upon which to build
the foundation for the ultimate translational and clin-
ical impact of therapies that target inflammation and/
or its downstream effects on the brain. In the case of
COX-2 inhibitors and minocycline, for example, by far
the largest trial to date failed to show any separation
between patients with depression who received cele-
coxib or minocycline versus those who received place-
bo (Husain et al., 2020). This trial exemplifies all of
the complications that have plagued clinical trials in
the field, and if not addressed, there is significant
risk that a potential therapeutic strategy for a dis-
abling symptom (anhedonia) may be lost.

1. Drugs. Aside from anticytokine treatments,
which have selective effects on specific cytokines, all
of the drugs that have been examined to date have an
array of off-target effects. For example, celecoxib has
effects on glucocorticoid receptor function and cadher-
in 11, an adhesion molecule involved in anxiety and
fear-related responses as well as synaptic plasticity
(Manabe et al., 2000; Hu et al., 2005). Minocycline is
an antibiotic and therefore has a significant impact
on the gut microbiome, which has been associated
with depression and other behavioral states (Jiang et
al., 2015; Dinan and Cryan, 2019). Statins and anti-
diabetic drugs have significant effects on metabolism

of lipids and glucose, including insulin sensitivity,
which can interact directly with neurons irrespective
of any effects of inflammation (Stouffer et al., 2015;
Ter Horst et al., 2018). Thus, although all of the drugs
used in previous trials have putative anti-inflammato-
ry effects, they also have multiple off-target effects,
and based on current study designs, it is impossible
to know which mechanism of action is leading to be-
havioral change.

2. Study Designs. Given that only a small percent-
age of depressed or other psychiatric patients in any
given sample exhibit increased inflammation (Osimo
et al., 2019), it makes little sense to conduct a trial of
an anti-inflammatory drug in a heterogeneous popu-
lation of psychiatric patients. Any drug response
should be highly suspect because of off-target effects
and the limited number of patients that are available
to respond. Of note, only two published studies have
enriched for increased inflammation (both using anticy-
tokine therapies) (McIntyre et al., 2019; Salvadore,
2018). Most studies have used baseline inflammatory
markers to predict treatment response in post hoc fash-
ion. Even if post hoc, proof of concept has been estab-
lished by mapping baseline inflammatory measures
with subsequent treatment response. This has been
successfully achieved in several studies in depression
in which, for example, higher baseline plasma IL-6 con-
centrations predicted response to minocycline, higher
baseline plasma CRP predicted response to infliximab
and omega 3 PUFAs, and higher baseline microglial ac-
tivation (as measured by PET using a TSPO ligand)
predicted response to celecoxib (Rapaport et al., 2016;
Savitz et al., 2018; Attwells et al., 2020). Multiple stud-
ies have also examined baseline inflammatory markers
in a post hoc manner to predict response to convention-
al antidepressant therapies (targeting monoamines).
For example, increased peripheral blood inflammatory
markers such as CRP and mRNA for IL-1b, TNF, and
migration inhibitory factor predicted treatment nonres-
ponse to SSRIs and SNRIs, and in two studies,

TABLE 2
Problems and solutions for clinical trial failures of therapies targeting the impact of inflammation on the brain

Methodologic Issues

Sample
Problem Heterogenous populations with a limited percentage of patients with high inflammation
Solution Enrich populations for high and/or low inflammation with a priori defined inflammation status at baseline

Design
Problem Randomized, double-blind, placebo-controlled clinical trial with no stratification
Solution Match/mismatch design with patients stratified by inflammation status—drug targeting inflammation should only show

efficacy in high-inflammation group Randomized, double-blind, placebo-controlled trial with stratification on
inflammation or conducted solely on patients with high inflammation

Target engagement
Problem No measure of inflammatory or brain endpoint to establish drug effect on the target
Solution Predetermined inflammatory markers in brain or periphery that establish that the drug has engaged the target

Outcome variables
Problem Overall symptom severity
Solution Outcome variables tied to the known biologic effects of inflammation on behavior (e.g., anhedonia, psychomotor slowing,

anxiety)
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peripheral blood CRP predicted a differential response
to the SSRI escitalopram versus bupropion and nortrip-
tyline (Cattaneo et al., 2013; Uher et al., 2014; Straw-
bridge et al., 2015; Cattaneo et al., 2016; Jha et al.,
2017; Liu et al., 2020). In these latter two studies, in-
creased inflammation predicted a poor response to esci-
talopram and a better response to the these DAergic
and NEergic drugs (Uher et al., 2014; Jha et al., 2017).
Nevertheless, no trial to date has stratified patients as
a function of baseline inflammatory status and deter-
mined whether those with high inflammation respond
and those without do not. This match/mismatch design
is the preferred design strategy for trials testing the ef-
ficacy of anti-inflammatory drugs, with enriching for
high inflammation being a reasonable alternative. For
example, an ongoing trial comparing bupropion versus
escitalopram is underway in patients with high inflam-
mation only, with the hypothesis that the DAergic drug
bupropion will increase functional connectivity in re-
ward circuitry along with improving motivational defi-
cits compared with escitalopram (NCT04352101).
Given the opportunity to measure inflammatory mar-

kers as a function of treatment, it is also surprising
that few studies have measured whether in fact the
anti-inflammatory drug being tested is impacting in-
flammation. Indeed, in the failed celecoxib/minocycline
trial noted above, no effect of celecoxib or minocycline
was found on peripheral measures of inflammation,
which does not instill confidence in the interpretation of
a negative result (Husain et al., 2020). Peripheral and/
or central markers (e.g., TSPO binding) of inflammation
are an essential element of an interpretable trial. If
there is no evidence that there is inflammatory target
engagement (or engagement of downstream targets),
the trial should be considered a failed trial.

3. Outcomes. Aside from measuring the impact of
the selected drug on the pathway of interest (e.g., in-
flammation), outcome variables should be derived
from what is known about the circuits and behaviors
that are reproducibly affected by inflammation. In
terms of behaviors, as indicated in this review, anhe-
donia as well as psychomotor retardation have been
reliably associated with inflammation in terms of
both the response to pro- and anti-inflammatory stim-
uli. In addition, reward circuitry has been identified
as the mediator between endogenous inflammatory
markers such as CRP and anhedonia and psychomo-
tor speed (Felger et al., 2016). Thus, neuroimaging bi-
omarkers such as functional connectivity within
reward or motor circuitry can serve as relevant tar-
gets in the brain. A similar case can be made for
threat circuitry as it relates to symptoms of anxiety,
which have also been associated with inflammation
(Davies et al., 2020). The challenge, however, is that
the FDA and other regulatory bodies do not currently
recognize individual symptom domains as appropriate

for drug development, making the pharmaceutical ap-
proval process challenging if not impossible. Current-
ly, only the major psychiatric disorders as defined in
the DSM are recognized with some appreciation for
treatment resistance in this context. Indeed, “the en-
tire biomedical machinery for mental disorders (is) or-
ganized around DSM categories” (Cuthbert, 2015).
Future efforts will clearly require advocacy for a
broader appreciation of the subdomains of symptoms
that cut across disorders and have a similar, well de-
fined pathophysiological basis. This strategy has
achieved great success in oncology, in which the FDA
recognizes drugs for multiple cancer types that are la-
beled as “targeted therapies,” defined as drugs that
target specific genes and proteins that are involved in
the growth and survival of cancer cells (Baudino,
2015). Such an agnostic approach to diagnosis along
with a greater appreciation of the emerging under-
standing of the genes and proteins that underlie the
biologic bases of behaviors is what is needed in psy-
chiatry and the approval of drugs that treat psychiat-
ric disorders.

IX. Summary

An extensive amount of data has been amassed on
the effects of inflammation on the brain. Attempts to
curate, integrate and synthesize the extant literature
in this review has required selecting and choosing
data that build hypotheses that can be tested and
hopefully translated to clinical practice. As noted, giv-
en the many mechanisms identified, there is a vast
array of opportunities for drug development. Never-
theless, the current approach to drug approval in psy-
chiatry by the various regulatory agencies including
the FDA have yet to recognize and embrace patients
who experience symptoms clusters that are the conse-
quence of specific pathophysiologic processes. Only
DSM diagnoses are recognized as relevant targets for
approved treatments. This situation is despite the
fact that treatment with anticytokine therapy for ex-
ample, has shown efficacy for anhedonia in patients
with evidence of increased inflammation, with a much
lesser effect on overall depression severity. Neverthe-
less, the future of drug development in psychiatry lies
with the identification of biologically defined sub-
groups with specific pathophysiologies and related
symptoms that warrant targeted treatments. Until
that time comes, we must understand that treatment
trials targeting inflammation and/or its downstream
targets on the brain in heterogeneous populations of
patients with depression or other psychiatric diagno-
ses will generate data that will be difficult if not im-
possible to interpret.
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