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Abstract——G protein–coupled receptors (GPCRs)
constitute the largest family of membrane proteins in
the human genome and are important therapeutic tar-
gets. During the last decade, the number of atomic-reso-
lution structures of GPCRs has increased rapidly,
providing insights into drug binding at the molecular
level. These breakthroughs have created excitement
regarding the potential of using structural information
in ligand design and initiated a new era of rational
drug discovery for GPCRs. The molecular docking
method is now widely applied to model the three-
dimensional structures of GPCR-ligand complexes and
screen for chemical probes in large compound librar-
ies. In this review article, we first summarize the cur-
rent structural coverage of the GPCR superfamily and
the understanding of receptor-ligand interactions at
atomic resolution. We then present the general work-
flow of structure-based virtual screening and strategies
to discover GPCR ligands in chemical libraries. We

assess the state of the art of this research field by sum-
marizing prospective applications of virtual screening
based on experimental structures. Strategies to iden-
tify compounds with specific efficacy and selectivity
profiles are discussed, illustrating the opportunities
and limitations of the molecular docking method. Our
overview shows that structure-based virtual screening
can discover novel leads and will be essential in pursu-
ing the next generation of GPCRdrugs.

Significance Statement——Extraordinary advances
in the structural biology of G protein–coupled recep-
tors have revealed the molecular details of ligand rec-
ognition by this large family of therapeutic targets,
providing novel avenues for rational drug design.
Structure-based docking is an efficient computational
approach to identify novel chemical probes from large
compound libraries, which has the potential to accel-
erate the development of drug candidates.

I. Introduction to G Protein–Coupled
Receptors: Pharmacology and Structural

Biology

A. G Protein–Coupled Receptor Pharmacology and
Therapeutic Relevance

G protein–coupled receptors (GPCRs) constitute the
largest family of membrane proteins and transduce
signals from the extracellular matrix into the cell (Fig.
1). About 350 of the 800 GPCRs encoded by the human
genome are nonsensory receptors (http://www.guide
topharmacology.org/GRAC/FamilyDisplayForward?family
Id=694) that are activated by diffusible ligands, and this

group is the main focus of this review. GPCRs are

activated by remarkably diverse ligand types, ranging

from small molecules to peptides and proteins (Alexander

et al., 2019). The binding of the endogenous ligand to the

orthosteric site triggers a conformational change in the

receptor (Fig. 2), which leads to activation of intracellular

proteins (e.g., heterotrimeric G proteins or b-arrestins)
that regulate multiple signaling pathways (Hilger et al.,

2018). GPCRs are widely expressed in the body and play

important roles in cellular communication. The GPCR sig-

naling machinery is involved in numerous physiologic pro-

cesses, which stimulated the development of chemical

probes to study receptor function and numerous drug can-

didates (Vass et al., 2018). Currently, 475 drugs are

ABBREVIATIONS: 2D, two-dimensional; A1R, A1, adenosine receptor; A2AR, A2A, adenosine receptor; BLT1, leukotriene B4 receptor 1;
CCR, chemokine (C-C motif) receptor; cryo-EM, cryo-electron microscopy; CXCR4, chemokine (C-X-C motif) receptor 4; CysLT1R, cysteinyl
leukotriene receptor 1; CysLT2R, cysteinyl leukotriene receptor 2; DOR, d-opioid receptor; D2R, D2 dopamine receptor; D3R, D3 dopamine
receptor; D4R, D4 dopamine receptor; ECD, extracellular domain; ECL, extracellular loop; ECV, extracellular vestibule; Emax, maximal
effect; EP, prostaglandin E receptor; FFA1R, free fatty acid receptor 1; GLP, glucagon-like peptide receptor; GPCR, G protein–coupled
receptor; GPR, G protein-coupled receptor; H8, C-terminal helix 8; H1R, H1 histamine receptor; H4R, H4 histamine receptor; 5-HT2AR, 5-
hydroxytryptamine receptor 2A; 5-HT1BR, 5-hydroxytryptamine receptor 1B; 5-HT2BR, 5-hydroxytryptamine receptor 2B; HTS, high-
throughput screening; KOR, j-opioid receptor; LSD, lysergic acid diethylamide; LT, leukotriene; MAO-B, monoamine oxidase B; MD,
molecular dynamics; mGlu1, metabotropic glutamate receptor 1; mGlu5, metabotropic glutamate receptor 5; MOR, l-opioid receptor; M2R,
M2 muscarinic (acetylcholine) receptor; M3R, M3 muscarinic (acetylcholine) receptor; MR, muscarinic (acetylcholine) receptor; MT1R, MT1

melatonin receptor; MT2R, MT2 melatonin receptor; NAM, negative allosteric modulator; NOP, Nociceptin/Orphanin FQ receptor; NTS1R,
neurotensin receptor 1; OX1R, OX1 orexin receptor; OX2R, OX2 orexin receptor; PAM, positive allosteric modulator; PAR2, proteinase-acti-
vated receptor 2; P2Y1, P2Y1 receptor; b1R, b1 adrenergic receptor; b2R, b2 adrenergic receptor; RMSD, root-mean-square deviation; SAR,
structure-activity relationship; SMO, smoothened; SPR, surface plasmon resonance; TM, transmembrane (helix); ZINC, ZINC is not
commercial.
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known to target �100 of the nonsensory GPCRs, which
modulate cellular signaling pathways associated with a
large number of therapeutic indications (Hauser et al.,
2017). In fact, 34% of marketed drugs bind to GPCRs.
Over 142 agents targeting another 19 members of the
GPCR family are currently in clinical development (Con-
greve et al., 2020). The importance of GPCRs as drug tar-
gets is the result of the diversity of cellular processes that
are mediated by receptor signaling and of the many types
of ligands that can interact with different druggable bind-
ing sites. GPCRs can adopt a spectrum of states, ranging
from inactive conformations that are not compatible with
coupling to intracellular G proteins or b-arrestins to
active conformations that trigger one or both of these
effectors. Ligands can stabilize GPCR conformations by
interacting with the orthosteric binding site or by target-
ing allosteric sites that influence the effect of orthosteric
ligands or G protein/b-arrestin coupling (Wingler and Lef-
kowitz, 2020). Orthosteric ligands have traditionally been
classified as agonists, inverse agonists, or antagonists
(Fig. 2). Full agonists activate a GPCR to the same extent

as the endogenous agonist. Partial agonists also activate
a GPCR, but they only have partial efficacy at the
receptor compared with the endogenous agonist.
Inverse agonists block the basal activity that a GPCR
has in the absence of an agonist, whereas neutral
antagonists compete with the endogenous ligands but
do not affect basal signaling. Biased ligands can have
different effects on signaling pathways, e.g., activate G
protein or G protein–independent signaling pathways
(Wingler and Lefkowitz, 2020). Allosteric ligands modu-
late receptors by targeting other pockets than the
orthosteric site. Allosteric agonists can stabilize an
active receptor conformation even in the absence of an
orthosteric agonist, and allosteric antagonists block the
activation by an orthosteric agonist (Schwartz and
Holst, 2007). Positive allosteric modulators (PAMs)
enhance the effect (affinity and/or efficacy) of the
orthosteric ligand, whereas negative allosteric modula-
tors (NAMs) have the opposite effect. Unlike PAMs and
NAMs, neutral allosteric ligands bind to an allosteric
site without affecting the effect of the orthosteric ligand.

Fig. 1. (A) Structure of a class A GPCR embedded in a lipid bilayer. The crystal structure of the b2 adrenergic receptor (Protein Data Bank code: 4LDO)
is shown as a cartoon with different colors for the seven helices. The atoms of the orthosteric ligand are shown as spheres. (B) Schematic structure of a
class A GPCR.

Fig. 2.Overview of the effect of GPCR ligands on receptor response and structural aspects thereof. (A) Effect of GPCR ligands with different modalities
on receptor response. Adapted from Ferguson and Feldman (2014). (B) Structures of the b1 adrenergic receptor (b1R, gray cartoon) capturing different
states and ligand modalities. From left to right: b1R in complex with the inverse agonist (of the G protein pathway) carvedilol in red (Warne et al.,
2012), the agonist isoprenaline (green) and G protein (orange surface) (Su et al., 2020), and the arrestin-biased agonist timolol (light green) and
b-arrestin (purple surface) (Lee et al., 2020). The inlays highlight changes in TM5 and TM6 in response to agonist binding and receptor activation.
Max, maximum.
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An ago-allosteric modulator both acts as an agonist and
modulates the effect of the orthosteric ligand (Christo-
poulos et al., 2014; Changeux and Christopoulos, 2016).
GPCRs are divided into six classes based on sequence

similarity, of which class A, B, C, and F receptors are
found in humans (Fredriksson et al., 2003; Munk et al.,
2016). GPCRs consist of seven transmembrane helices
(TM1–7) connected by three extracellular loops (ECLs)
and three intracellular loops and an intracellular
C-terminal helix 8 (H8). The �300 nonsensory class
A receptors (http://www.guidetopharmacology.org/GRAC/
FamilyDisplayForward?familyId=694) typically have a
relatively short and disordered N-terminal region.
The orthosteric agonist binding sites of class A
GPCRs are located in an extracellularly accessible
binding pocket formed by the TM region, N termi-
nus, and extracellular loops (Fig. 1). For class
A GPCRs, the Ballesteros-Weinstein numbering
scheme for the TM helices facilitates the comparison
of different family members (Ballesteros and Weinstein,
1995). Residues in a TM helix (X) are numbered relative
to the most conserved amino acid, which is defined as
�.50. In this review, the Ballesteros-Weinstein number of
a residue is shown in superscript for class A GPCRs. Class
B receptors are divided into secretin (B1) and adhesion
(B2) subclasses. The 15 secretin receptors (http://www.
guidetopharmacology.org/GRAC/FamilyDisplayForward?
familyId=694) contain a large structured extracellu-
lar domain (ECD) that binds the largest portion of
their peptide ligands, whereas the N-terminal portion
of these ligands interacts with the TM region. The 33
adhesion (B2) GPCRs contain a variety of different
large N-terminal domains that are involved in recep-
tor signaling. The 22 class C GPCRs also bind endog-
enous agonists in large N-terminal domains and
form hetero- or homodimers that are required for
receptor signaling. Class F has 11 members (10 friz-
zled receptors and smoothened) that also contain a
large N-terminal domain, and activation is controlled by
other proteins as well as small-molecule ligands such as
cholesterol (Kolakowski, 1994; Lagerstrom and Schioth,
2008; Munk et al., 2016; P�andy-Szekeres et al., 2018).

B. Structural Coverage of the G Protein–Coupled
Receptor Superfamily

The first atomic-resolution GPCR structure was the
crystal structure of bovine rhodopsin, which was solved
in 2000 (Palczewski et al., 2000). It took almost another
decade until the first diffusible ligand-bound structures
were published: the b2 adrenergic (Cherezov et al., 2007),
b1 adrenergic (Warne et al., 2008), and A2A adenosine
(Jaakola et al., 2008) receptors. GPCR structure determi-
nation was enabled by the development of complemen-
tary approaches to stabilize receptors in detergent
solution during purification, including receptor ther-
mostabilization by site-directed mutagenesis, the
introduction of fusion proteins to facilitate crystal

packing during crystallization in lipidic cubic phase,
and the use of high-affinity ligands ranging from small
molecules to antibodies (Piscitelli et al., 2015; Erland-
son et al., 2018). These approaches have revolutionized
GPCR structural biology and resulted in the determi-
nation of >500 receptor crystal structures. Since 2017,
cryo-electron microscopy (cryo-EM) is a complementary
technique to solve GPCR structures. Cryo-EM has pro-
vided access to active-state conformations coupled to G
proteins and large multidomain GPCRs such as class
B and C receptors (Garcia-Nafria and Tate, 2020),
resulting in 119 structures of 42 different receptors. At
the end of March 2021, crystal or cryo-EM structures
were available for 93 GPCRs (Fig. 3). The structures
cover receptors from all human GPCR classes (A, B1,
B2, C, and F) bound to a wide range of compounds
(e.g., small molecules, peptides, and proteins) with dif-
ferent pharmacological modes of action, in active and
inactive conformational states, and in complex with G
proteins or arrestins. This increase of structural infor-
mation has greatly enhanced the understanding of
ligand binding and receptor signaling. Active and inac-
tive structures have shown that agonists induce con-
served conformational changes in the intracellular
region, which is mainly characterized by an outward
movement of TM6. The extracellular region shows
more sequence variation, which allows recognition of
different molecules. The structural changes in the
orthosteric binding site upon activation are surpris-
ingly subtle in most cases (Fig. 2) (Venkatakrishnan
et al., 2016; Weis and Kobilka, 2018).

C. The Atlas of G Protein–Coupled Receptor Binding
Sites

The 338 determined structures of unique GPCR-
ligand complexes reveal distinct binding pockets, rang-
ing from cavities in the ECDs and TM region to pockets
at the receptor-membrane interface and in the intracel-
lular G protein binding site. Figures 4 and 5 summarize
the different ligand binding sites observed in experi-
mentally determined GPCR structures. The structures
and relevant references used in the analysis of GPCR
binding sites are summarized in Supplemental Table 1.
Most of the ligands identified in experimental struc-

tures bind to a common extracellular binding cavity,
which comprises residues from the TM helices and the
three ECLs (Figs. 4 and 5). This site is the orthosteric
pocket of class A and B1 GPCRs and an allosteric pocket
in class C and F receptors. The extracellular binding site
can be divided into a major pocket (between TM3 and 7),
a minor pocket (between TM1 and 3, and TM7), and an
extracellular vestibule (ECV; between the N terminus,
the ECLs, and the ends of TM1–7). Most of the small-
molecule ligands occupying this site are primarily
anchored in the major pocket. For example, this type of
binding site has been observed in structures of adrener-
gic (a2A, a2B, a2c, b1, and b2), dopamine (D1, D2, and D3),
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histamine (H1), muscarinic (M1, M2, M3, M4, and M5),
serotonin (5-HT1B, 5-HT2A, and 5-HT2B), adenosine (A1

and A2A), neuropeptide Y (NPY1), neurotensin (NTS1),
opioid (DOR and MOR), neurokinin (NK1), chemokine
(CXCR4), free fatty acid (FFA1), leukotriene (CysLT1 and
CysLT2), prostanoid (DP2), P2Y (P2Y1 and P2Y12), opsin
(Rho), melatonin (MT1 and MT2), metabotropic gluta-
mate (mGlu1 and mGlu5), and the frizzled (SMO) recep-
tors. In a few GPCR structures, the minor pocket is
primarily involved in ligand recognition, which has been
observed in structures of proteinase-activated (PAR1
and PAR2), chemokine (CCR2, CCR6, CXCR2, and
CXCR4), leukotriene (BLT1), prostanoid (EP3, EP4, and
thromboxane A2), succinate (SUCNR1), GPR52 (a class
A orphan), and glucagon (GLP-1) receptors. In many
GPCR crystal structures, receptor-ligand contacts
involve the major binding pocket in combination with
the minor binding pocket. The binding modes of such
bitopic compounds have been observed in structures of
several GPCRs, e.g., adrenergic (b1 and b2), dopamine
(D2 and D4), serotonin (5-HT1B, 5-HT2A, 5-HT2B, and 5-
HT2C), melanocortin (MC4), oxytocin (OT), adenosine
(A1 and A2A), angiotensin (AT1 and AT2), apelin (APJ),
complement peptide (C5a1), endothelin (ETB), formyl

peptide (FPR2), opioid (KOR, MOR, and NOP), orexin
(OX1 and OX2), lysophospholipid (LPA1 and S1P1), can-
nabinoid (CB1 and CB2), platelet-activating factor, bile
acid (GPBAR), corticotropin-releasing factor (CRF1

and CRF2), glucagon (GLP-1R, GCGR, SCTR, and
GHRH), adhesion (ADGRG), and frizzled (SMO)
receptors. The major and minor pockets are typi-
cally accessible from the extracellular side of the
membrane, but some ligands of the free fatty acid
receptor (FFA1) access the site from the membrane
bilayer (Supplemental Table 1).
Several GPCR ligands interact with binding sites out-

side the minor and major pockets (Figs. 4 and 5). In
structures of class B, C, and F receptors, binding sites
in the ECDs have been observed in calcitonin (CTR,
CGRP, AM1, and AM2), metabotropic c-aminobutyric
acid (GABAB1 and GABAB2), metabotropic glutamate
(mGlu5), and frizzled (SMO) receptors. A few small-mole-
cule ligands were found to target only the ECV, including
PAM-bound muscarinic receptors (M1 and M2). Recently,
structures of nonpeptide agonists targeting the interface
of the TM domain and the ECV of the glucagon-like pep-
tide-1 receptor have been determined. In the corticotro-
pin-releasing factor receptor 1 (CRF1), a NAM locks the

Fig. 3. Structural coverage of the GPCR
family and successful applications of these
structures in molecular docking screens.
All receptors with at least one experimental
structure are shown on the phylogenetic
tree as either circles or stars. Stars indicate
receptors for which a successful structure-
based virtual screen has been published.
The stars and circles are colored according
to the modality of the ligand present in the
experimental structure (red, agonist or
PAM; blue, antagonist or NAM; gold, both
modality types). The GPCR tree was pro-
duced with the GPCR tree mapper (Koois-
tra and de Graaf, unpublished) and is
based on Fredriksson et al. (2003).
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receptor into an inactive conformation by targeting a dis-
tinct ligand binding pocket that is deeply buried in the
core of the TM region and formed by TM3, TM5, and
TM6. NAMs binding to a different deep buried pocket
formed by TM2–3 and TM5–7 have been identified in
metabotropic glutamate receptors (mGlu5). Similarly, a
few compounds are anchored in the major/minor binding
sites and extend deeply into the TM region in class A, C,
and F receptors. The most prominent example among
class A GPCRs is the leukotriene (BLT1) receptor

structure, in which the ligand extends into a buried
pocket and interacts with conserved residue Asp2.50. In
class C and F receptors, compounds with such binding
modes have been observed for metabotropic c-aminobuty-
ric acid (GABAB1 and GABAB2), metabotropic glutamate
(mGlu5), and Frizzled (SMO) receptors (Supplemental
Table 1).
In recent years, binding sites located in the extra-

helical TM interface with the membrane bilayer have
been identified in structures of class A, B, and C

Fig. 4. Summary of experimental structures of (unique) GPCR-ligand complexes. aAllosteric agonist. bPositive allosteric modulator. cAllosteric antagonist. dNe-
gative allosteric modulator. eMajor pocket. fMinor pocket. gExtracellular vestibule. hIntracellular pocket. iExtracellular domain. jDeep transmembrane pocket.
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receptors (Figs. 4 and 5). For class A GPCRs, an
extrahelical binding pocket located in the intracellular
half of TM3–5 accommodates agonists/PAMs of the
free fatty acid FFA1, b2 adrenergic, and D1 dopamine
receptors as well as antagonists/NAMs of the comple-
ment peptide C5a1 receptor, demonstrating that this
region is an allosteric hub that can be targeted to sta-
bilize either active and inactive receptor conforma-
tions. Additional extrahelical binding sites of NAMs/
antagonists involve TM1–3 in the P2Y1 receptor,
TM2–4 in the cannabinoid CB1 receptor, and TM2–4 in
PAR2. Several extrahelical binding sites have also
been observed in class B and C receptors. In a gluca-
gon receptor GLP-1 structure, a PAM bound at the
TM1–2 interface was observed to interact directly with
the orthosteric peptide agonist. The intracellular half
of TM5–7 in glucagon receptor GCGR and GLP-1
structures accommodates allosteric antagonists/NAMs
locking TM6 in an inactive conformation. In metabo-
tropic c-aminobutyric acid (GABAB2) receptor struc-
tures, PAMs bind to an extrahelical pocket at the
intracellular tip of TM6, which stabilizes the hetero-
dimer interface that is necessary for signaling in class
C GPCRs (Supplemental Table 1).
Ligands that bind in the G protein binding site have

been identified in class A GPCRs (Figs. 4 and 5). The
allosteric antagonist observed in the intracellular bind-
ing pockets of b2 adrenergic and chemokine (CCR2,
CCR7, CCR9, and CXCR2) receptor structures partially
overlap with the G protein binding pocket formed by
TM1–3, TM6–7, and H8 (Supplemental Table 1).

II. Molecular Docking: Methodology and Virtual
Screening Workflow

The potential of structure-based design was recog-
nized early (Beddell et al., 1976). Rational ligand design
using atomic-resolution protein structures has become
an important component of the drug discovery process
(Sledz and Caflisch, 2018). Molecular docking is a cen-
tral method in structure-based ligand design and is
used both to screen for ligands in chemical libraries and
to model protein-ligand interactions in lead optimiza-
tion (Kitchen et al., 2004; Shoichet, 2004). Based on a
protein structure, molecular docking algorithms aim to
predict both the binding mode of a ligand and the affin-
ity of the complex. If this would be possible, the tech-
nique would revolutionize target-based drug discovery.
Instead of screening chemical libraries experimentally
by high-throughput screening (HTS), the compounds
with the highest affinities would be rapidly identified.
Virtual screening can also score compounds that have
not yet been synthesized, which makes it possible to
consider orders-of-magnitude-larger libraries than
empirical screening and reduce synthesis costs (Shoi-
chet et al., 2002). However, docking methods need to
sacrifice accuracy for speed to screen large chemical
libraries. Currently, docking scoring functions are
unable to predict ligand affinities with high accuracy
(Warren et al., 2006). Docking should be viewed as a
method to filter out unlikely ligands from libraries and
thereby enrich active compounds among the top ranked.
A vast majority of the predicted ligands should be

Fig. 5. Binding mode diversity in the TM domain of GPCRs. The binding sites are broadly categorized into the major and minor pockets, main pockets,
deep pockets, extrahelical pockets, and the ECV. For each receptor class, all the small-molecule ligands are shown as colored sticks, and a representa-
tive receptor structure is shown as a transparent gray cartoon. Only the TM domain and H8 are shown (extracellular domains are not shown). The Pro-
tein Data Bank codes for the representative structures are 4BVN, 6X18, 7C7S, and 6O3C for class A, B1, C, and F, respectively.
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expected to be inactive, and a hit rate of 5%–10% (i.e.,
the percentage of active compounds among those evalu-
ated experimentally) is a successful result. Despite the
high false-positive rate, molecular docking screening has
proven able to identify novel ligands of important targets
and is now an established tool that is complementary to
other lead discovery methods such as HTS (Irwin and
Shoichet, 2016). In this section, we introduce the molecu-
lar docking method and describe the practical steps of a
structure-based virtual screen.

A. The Molecular Docking Method

Molecular docking predicts the orientation and con-
formation of a ligand in a receptor binding site and
can be divided into two steps: sampling and scoring.
In the sampling step, a large number of ligand poses
are generated on the receptor surface, resulting in
thousands of possible complexes. The most probable
structures of the complex, as well as ligand affinity,
are predicted in the scoring step. The binding affinity
is approximated using simplified scoring functions
that are either physics-based or calibrated on experi-
mental data (Kitchen et al., 2004). One of the first
docking programs enabling computational prediction
of protein-ligand complexes was DOCK, which was
developed in the eighties (Kuntz et al., 1982). Today,
there are a large number of docking programs with
different sampling algorithms and scoring functions.
Several widely used docking programs are listed in
Table 1.
To enable screens of large chemical libraries, docking

programs make many approximations in both the sam-
pling and scoring steps. Protein flexibility is generally
disregarded completely. The ligand is treated as flexible,
but only a limited conformational ensemble can be
explored and search space is constrained to a predefined
binding site volume. The docking scoring function
predicts ligand affinity from a single structure of the
complex, and the description of the energy terms contrib-
uting to ligand binding are only approximate. Terms

capturing receptor-ligand interactions (e.g., hydrogen
bonding and van der Waals interactions) are the main
components of all scoring functions. Several solvent (e.g.,
binding site desolvation) and entropic (e.g., from restrict-
ing ligand and binding site flexibility in the complex)
contributions to ligand binding are not accurately
described or neglected. The development of methods to
overcome the weaknesses of the docking method remains
an active research field, which has been reviewed else-
where (Leach et al., 2006; Pantsar and Poso, 2018; Sal-
maso and Moro, 2018; Zhenin et al., 2018). For example,
predictions can be improved by using consensus techni-
ques (Feher, 2006), by applying more rigorous scoring
methods to a subset of the screened library (Zhong et al.,
2010), or through filters such as interaction fingerprints
(Deng et al., 2004; Marcou and Rognan, 2007). Binding
site plasticity can at least be partially considered by
treating side chains as flexible (Ravindranath et al.,
2015) or by docking to an ensemble of receptor conforma-
tions (Totrov and Abagyan, 2008). Major efforts have
also been made to capture contributions from binding
site waters. Water molecules identified as important for
ligand recognition can be treated as part of the binding
site (Verdonk et al., 2005; Huang and Shoichet, 2008),
and accounting for energy contribution from water dis-
placement can improve predictions (Abel et al., 2008;
Balius et al., 2017).

B. Structure-Based Virtual Screening Workflow

The key steps of a molecular docking screen are 1)
design of a chemical library, 2) selection and prepara-
tion of the receptor structure, 3) assessment of dock-
ing performance, 4) docking screen and compound
selection, 5) experimental evaluation, and 6) hit-to-
lead optimization. In this section, we describe how to
perform a prospective virtual screen and important
considerations in each step (Fig. 6).

1. Design of a Chemical Library. The screening
library defines the region of chemical space that will be
explored by the docking screen. Typical sources of

TABLE 1
List of commonly used docking programs

Docking Software Website

AutoDock (Morris et al., 2009) http://autodock.scripps.edu
AutoDock Vina (Trott and Olson, 2010) http://vina.scripps.edu
DOCK (Coleman et al., 2013) http://dock.compbio.ucsf.edu
FlexX (Rarey et al., 1996) https://www.biosolveit.de/FlexX
FRED (McGann, 2011) https://www.eyesopen.com/oedocking
Glide (Friesner et al., 2004) https://www.schrodinger.com/glide
GOLD (Jones et al., 1997) https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold
ICM (Abagyan et al., 1994) http://www.molsoft.com/docking.html
MOE [Molecular Operating Environment (MOE), 2020] https://www.chemcomp.com
PLANTS (Korb et al., 2009) https://uni-tuebingen.de/fakultaeten/

mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/
pharmazie-und-biochemie/pharmazie/pharmazeutische-chemie/

pd-dr-t-exner/research/plants
Surflex-Dock (Jain, 2003) https://www.biopharmics.com

FRED, Fast Rigid Exhaustive Docking; GOLD, Genetic Optimization for Ligand Docking; ICM, Internal Coordinate Mechanics; MOE, Molecular Operating Environ-
ment; PLANTS, Protein-Ligand ANTSystem.
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screening libraries are in-house collections and commer-
cially available compounds. Examples of online resources
for commercial chemical libraries are shown in Table 2.
Several million compounds are currently available in-
stock, e.g., in the ZINC database (Irwin et al., 2020), and
can be delivered immediately by chemical suppliers.
Make-on-demand libraries with readily synthesizable
molecules provide additional coverage of chemical space.
Alternatively, virtual libraries can be generated in-house
based on available building blocks. Commercial make-
on-demand libraries from chemical suppliers currently

reach >20 billion compounds, which can be custom-syn-
thesized and delivered within 1 month, e.g., the
Enamine REAL Space database (Hoffmann and Gas-
treich, 2019; Grygorenko et al., 2020).
The design of a chemical library depends on several

factors. The ultimate goal of many virtual screening
campaigns is to identify a high-affinity compound with
drug-like properties, e.g., as defined by Lipinski’s rule
of 5 (Lipinski et al., 2001). The choice of chemical
library determines the path to identify the ligand.
Screening libraries are typically generated based on a
set of physicochemical properties, e.g., the calculated
octanol/water partition coefficient (log P) and molecular
weight. Subsets of chemical libraries with fragment-
and lead-like properties are common starting points for
ligand discovery (Hann and Oprea, 2004; Keser}u et al.,
2016). Fragment-based drug discovery initially focuses
on compounds that are approximately half the size of a
drug (mol. wt. <250 Da). Screens of fragment libraries
result in higher hit rates (�2%–8%) than HTS, but the

Fig. 6. Workflow of a prospective molecular docking screen. In the first step (1), relevant receptor structures are identified. If experimental structures
are not available, computationally derived models can be explored. Retrospective docking screens based on available structures of complexes and
known ligands (redocking and ligand enrichment calculations) are used to optimize virtual screening performance. In the second step (2), a chemical
library is selected, and the compounds are screened by docking. In the third step (3), top-ranked compounds from the docking screen are analyzed
based on the predicted binding modes, novelty, and diversity. A set of compounds are then selected for experimental evaluation. In the fourth step (4),
compounds are evaluated in experimental assays. The hit-to-lead optimization step (5) is often iterative and involves testing of several compound sets
guided by SAR.

TABLE 2
Compound databases for virtual screening and hit-to-lead optimization

Database Website

Chemspace https://chem-space.com
Enamine REAL https://www.enaminestore.com/search#real
eMolecules https://www.emolecules.com
MolPort https://www.molport.com/shop/find-chemicals
ZINC https://zinc20.docking.org
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identified ligands will usually have weak affinities, and
optimization is required to obtain a potent lead (Erlan-
son et al., 2016; Keser}u et al., 2016). Libraries with
lead-like compounds (mol. wt. �250–350 Da) are closer
to the final drug-like molecule (mol. wt. <500 Da) in
property space, and high-affinity ligands can emerge
directly from a screen, but at the expense of hit rate
and chemical space coverage (Teague et al., 1999). In
addition to physicochemical property filters, the library
can be tailored for a specific target by using information
about known ligands and the binding site. This can be
accomplished using ligand-based virtual screening
methods (e.g., pharmacophore, quantitative structure-
activity relationship, or chemical similarity methods),
which have been reviewed elsewhere (Cherkasov et al.,
2014; Muratov et al., 2020). Target-focused libraries
(Harris et al., 2011) can increase screening hit rates
and reduce the computational cost of the docking screen
but may reduce the chances of identifying novel chemo-
types. Another important step in library design is the
removal of molecules that are likely to cause experimen-
tal artifacts. Chemotypes that lead to false positives
because of assay interference or colloidal aggregation
(McGovern et al., 2002; Baell and Holloway, 2010) have
been identified and can to some extent be filtered out
using cheminformatics tools. Useful webservers for
identifying such compounds are listed in Table 3. The
ZINC database provides pregenerated fragment and
lead-like chemical libraries from several suppliers
(Irwin et al., 2020).

2. Selection and Preparation of the Receptor Structure.
The receptor structure must be carefully prepared for a
docking screen based on the goal of the study (e.g.,
ligand mode of action and selectivity profile). The quality
of the receptor structure (e.g., resolution), the conforma-
tional state (active or inactive), and pharmacological
properties of bound ligands should be considered. In
some cases, the receptor structure needs to be refined by
adding missing atoms (e.g., unresolved side chains, loop
regions, and hydrogens) and reverting sequence modifi-
cations made to facilitate structure determination (e.g.,
mutations). If crystallographic waters are present in the
receptor structure, the roles of these in ligand recogni-
tion should be analyzed in detail. In high-resolution
structures, an average of four to five ordered water mole-
cules interact with the ligand (Lu et al., 2007), and

particular attention should be given to those that bridge
receptor-ligand interactions. Prior to the virtual screen,
docking performance of structures prepared in the pres-
ence and absence of binding site waters can be compared
in retrospective tests (Huang and Shoichet, 2008). Pro-
tonation states of ionizable side chains (e.g., histidines),
which can substantially affect the docking results, need
to be assigned carefully. Assignment of protonation states
can be guided by computational prediction of side chain
pKa values (Bas et al., 2008). In some cases, energy mini-
mization or sampling of low-energy conformations of the
receptor with molecular dynamics (MD) or Monte Carlo
simulations may also be relevant. The binding site is
typically defined based on the ligand present in the
experimental structure, but any surface on the protein
can in principle be screened. If experimental structures
are not available, computational methods can be
used to create a binding site model. As a large num-
ber of GPCR structures are now available, receptor
models can be created based on these as templates using
homology modeling, e.g., with the program MODELLER
(Webb and Sali, 2016). Several online resources for
GPCR homology modeling are shown in Table 4. The
GPCR database (https://www.gpcrdb.org) provides precal-
culated models of receptors in different activation states
(P�andy-Szekeres et al., 2018).

3. Assessment of Docking Performance. The perfor-
mance of the docking protocol should be evaluated in
several retrospective tests to minimize the number of
false positives from the prospective virtual screening
campaign. In a redocking calculation, the ability of the
docking algorithm to reproduce the experimental binding
mode of a ligand is evaluated, which can be quantified
based on the root-mean-square deviation (RMSD). A
redocking RMSD of <2 Å that captures key polar inter-
actions is considered successful (Vieth et al., 1998).
Another important test is to evaluate if actives are likely
to be enriched among the top-ranked compounds from

TABLE 3
Web-based services that predict frequent hitters

Tool Website

Pattern Identifier
(Irwin et al., 2020)

http://zinc20.docking.org/patterns/home

Aggregator Advisor
(Irwin et al., 2015)

http://advisor.bkslab.org

FAF-Drugs4 (Lagorce
et al., 2017)

https://fafdrugs4.rpbs.univ-paris-diderot.fr

PAINS-Remover https://www.cbligand.org/PAINS

FAF, Free ADME-Tox Filtering Tool; PAINS, Pan-Assay Interference Compounds.

TABLE 4
Webservers for homology modeling of GPCRs

Webserver Website

GPCRdb (P�andy-Szekeres et al.,
2018)

https://www.gpcrdb.org

GPCR-I-TASSER (Zhang et al.,
2015b)

https://zhanglab.ccmb.med.
umich.edu/GPCR-I-TASSER

GPCRM (Miszta et al., 2018) https://gpcrm.biomodellab.eu
GPCR-ModSim (Esguerra et al.,

2016)
http://open.gpcr-modsim.org

GOMoDo (Sandal et al., 2013) http://molsim.sci.univr.it/cgi-bin/
cona/begin.php

GPCR-SSFE (Worth et al., 2017) http://www.ssfa-7tmr.de/ssfe2
ModWeb (Pieper et al., 2014) https://modbase.compbio.ucsf.

edu/modweb
RosettaGPCR (Bender et al.,

2020)
http://meilerlab.org/gpcrmodeldb

SWISS-MODEL (Waterhouse
et al., 2018)

https://swissmodel.expasy.org

GPCRdb, GPCR database; GPCRM, GPCR Models; GOMoDo, GPCR Online
MOdeling and DOcking server; GPCR-SSFE, GPCR-Sequence Structure Feature
Extractor.
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the docking screen (Huang et al., 2006). Such retrospec-
tive evaluations can be performed if there is a set of
known ligands of the target. Sets of experimentally veri-
fied actives and nonbinders (decoys) of many GPCRs can
be collected from the ChEMBL (Mendez et al., 2019) or
the PubChem BioAssay databases (Wang et al., 2012).
As there are generally too few experimentally confirmed
nonbinders, presumed decoys from the Directory of Use-
ful Decoys-Enhanced (DUD-E) database (http://dude.
docking.org/generate) can be used (Mysinger et al.,
2012a). By retrospectively evaluating different receptor
structures and parameters, the docking protocol with the
greatest ability to enrich ligands can be identified.

4. Docking Screen and Compound Selection. The
speed of docking algorithms makes it possible to screen
large chemical libraries efficiently. Even if several hun-
dred million compounds are considered, which would
take years to complete on a desktop computer, a screen
can be performed in a few days on a high-performance
computing cluster, which is available at most research
institutions today (Lyu et al., 2019; Gorgulla et al.,
2020). The result of a docking screen is a list of com-
pounds ranked by score and their predicted binding
modes. The next step is to select the best candidates for
experimental evaluation from a top-ranked set of com-
pounds. As one of the main objectives of structure-based
virtual screens is to discover novel chemotypes, com-
pounds that are too similar to known ligands can be
excluded based on 2D similarity. The top-ranked com-
pounds can also be clustered to facilitate the selection of
a diverse set to test experimentally. The final set of com-
pounds is rarely selected solely based on computational
scoring. Instead, the binding modes for the set of top-
ranked compounds remaining after the filtering steps
are visually inspected (Fischer et al., 2021). The binding
mode and interactions with the receptor are analyzed in
detail, allowing the scientist to exclude compounds that
are top-ranked because of weaknesses of the docking
method or errors in library preparation. Common prob-
lems in the preparation of chemical libraries are the
assignment of unlikely tautomerization and protonation
states. Weaknesses in the scoring function can involve
the balance between different binding energy contribu-
tions. The impact of certain interactions (e.g., hydrogen
bonds) may be exaggerated, and several important
energy terms contributing to binding are neglected, e.g.,
ligand strain energy (Tirado-Rives and Jorgensen, 2006).
The number of compounds to select for experimental
evaluation depends on the expected hit rate. If the target
is expected to be challenging, it may be necessary to test
a large number of compounds to find a ligand. For
GPCRs, high hit rates of >25% have been achieved for
several targets (de Graaf et al., 2011). In such cases, rela-
tively small sets of only 10–20 compounds will result in
the discovery of several ligands.

5. Experimental Evaluation of Predicted Ligands.
The therapeutic relevance of GPCRs has led to the
development of a large number of screening assays to
identify ligands, which have been reviewed elsewhere
(Zhang and Xie, 2012; Jacobson, 2015). Binding
assays (e.g., using radiolabeled ligands) are common
to evaluate the affinity of a compound for the orthos-
teric site and identify ligands with different efficacy
profiles (e.g., agonists, antagonists, and inverse ago-
nists) in a single experiment. If weak ligands are
expected (e.g., in fragment screens), a sensitive bio-
physical screening method such as surface plasmon
resonance (SPR) or nuclear magnetic resonance
(NMR) can be advantageous (Congreve et al., 2011;
Aristotelous et al., 2013; Shepherd et al., 2014). Com-
pounds are initially tested at a single concentration to
identify the most active, which is followed by full
dose-response curves for the best hits to determine
affinities. To assess the pharmacological properties of
discovered ligands, binding assays can be comple-
mented by functional experiments measuring activa-
tion of G protein–dependent and –independent
signaling pathways. As compounds may not have the
same activity in different pathways, investigation of
effects in multiple assays is necessary to fully under-
stand their properties (Smith et al., 2018). Finally,
controls should be made to exclude false positives in
the assays (McGovern et al., 2002; Baell and Hollo-
way, 2010) and to verify compound identity and
purity.

6. Hit-to-Lead Optimization. Hit-to-lead optimiza-
tion will not be described in detail, as it is a complex
phase of ligand discovery that aims to identify com-
pounds with improved target affinity, efficacy, and selec-
tivity, as well as absorption, distribution, metabolism,
excretion, and toxicity properties (Hughes et al., 2011).
The first step after discovering ligands from a virtual
screen is to obtain structure-activity relationships (SAR).
Analogs with a similar chemical structure as the hits
can be identified in commercial chemical libraries or be
synthesized in-house. Examples of online resources for
identifying analogs are shown in Table 2.

III. Success Stories: Discovery of G
Protein–Coupled Receptor Ligands by

Molecular Docking Screening

In this section, structure-based docking screens using
experimental GPCR structures are summarized, and we
also highlight representative studies based on homology
models. GPCRs targeted in structure-based virtual
screens using experimental structures are shown in
Figures 3 and 7. Statistics from these virtual screens are
presented in Table 5. We identified 62 successful virtual
screens for 22 unique targets belonging to 14 different
receptor families (Fig. 3; Table 5). In all of these studies,
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at least one receptor crystal structure was used in the
screen. The targets were class A GPCRs, except in the
case of SMO, which belongs to class F. Commercially
available chemical libraries with lead-like compounds
were primarily used. The sizes of these libraries were
typically in the order of a few million molecules, but
they also reached >100 million in three cases targeting
melatonin, dopamine, and cysteinyl leukotriene receptors.
Several studies focused on docking of fragment libraries
to adenosine, dopamine, histamine, melatonin, chemokine,

and neurotensin receptor structures. Docking was primar-
ily performed to the orthosteric site with the goal to find
ligands, i.e., there was generally no clearly defined goal
regarding the efficacy or selectivity of the compounds.
However, in a few studies on the adenosine, adrenergic,
and muscarinic receptors, attempts were made to bias the
screening results toward the discovery of agonists. Several
strategies to identify subtype-selective ligands were also
explored (adenosine, chemokine, dopamine, muscarinic,
opioid, and serotonin receptors), and docking to several

Fig. 7. GPCR structures that have been used in prospective molecular docking screens. Each receptor is shown in surface representation with the tar-
get pocket colored orange (orthosteric) or green (allosteric), respectively. The co-crystallized ligands are shown as sticks.
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structures allowed the identification of multitarget ligands
(adenosine, dopamine, and chemokine receptors). Four
screens focused on docking to allosteric binding pockets
(adrenergic, dopamine, free fatty acid, and muscarinic
receptors). All these virtual screens successfully identified
ligands, but there was a large variation in hit rate and
size of the screened libraries (Fig. 8).

A. Adenosine Receptors

There are four adenosine receptor subtypes (A1,
A2A, A2B, and A3), which are activated in response to
organ or tissue stress. These GPCRs have been
explored as therapeutic targets for a wide range of
conditions, e.g., cancer, cardiovascular, and neurode-
generative diseases (Chen et al., 2013b). The first
crystal structure of the A2A adenosine receptor (A2AR)
was determined in 2008 (Jaakola et al., 2008) and
revealed the binding mode of an antagonist in the
major pocket. Subsequently, a large number of struc-
tures of the A2A (Jacobson et al., 2020) and A1 sub-
types (Cheng et al., 2017; Glukhova et al., 2017;
Draper-Joyce et al., 2018) in complex with agonists
and antagonists were determined (Figs. 3 and 4;
Supplemental Table 1). Several structure-based ligand
design studies have been performed, and these primar-
ily focused on the A2AR (Table 5).
Shortly after the release of the first A2AR crystal struc-

ture, two research groups screened commercial chemical
libraries against the orthosteric binding site (Carlsson
et al., 2010; Katritch et al., 2010). Katritch et al. (2010)
optimized the docking performance by refining side

chains and inclusion of crystal waters, followed by a vir-
tual screen of 4.3 million drug-like compounds. Com-
pound selection was guided by clustering of a top-ranked
subset using 2D similarity. From the set of 56 selected
compounds, 23 had Ki values ranging from 32 nM to
2.9 mM (hit rate 5 41%). Carlsson et al. (2010) screened
1.4 million commercially available compounds using
molecular docking. From the top-ranked 500 compounds,
a set of 20 were selected and evaluated in binding
assays. Seven of the predicted ligands were experimen-
tally confirmed (hit rate 5 35%). The most potent com-
pound was an antagonist and had a Ki value of 200 nM.
Subsequently, virtual screens have been carried out by
other research groups, leading to the discovery of addi-
tional antagonist scaffolds (Table 5) (Lenselink et al.,
2016a; Tian et al., 2017; Ballante et al., 2020). In all
these studies, the ligands were predicted to primarily
occupy the major binding pocket and form hydrogen
bonds to Asn2536.55.
Wei et al. (2020) screened 1.5 million commercially

available compounds to identify A1R antagonists by com-
bining ligand-based methods with molecular docking.
Ligand-based techniques (i.e., random forest classifica-
tion and pharmacophore models) were initially used to
identify compounds similar to A1R antagonists, which
reduced the database from 1.5 million to 19,000 com-
pounds. This set was then docked to an A1R structure in
an inactive conformation and evaluated using three dif-
ferent scoring methods. The 1139 top-ranked compounds
were clustered and visually inspected, which led to the
selection of 22 compounds. In total, 18 of these were con-
firmed to be A1R ligands in binding assays (hit rate 5
82%). Compound 15 showed the highest affinity (pKi 5
7.13) and was >1000-fold selective for the A1R over the
A2A subtype. This ligand was predicted to form key inter-
actions with Asn2546.55 and Phe171EL2. Six compounds
were evaluated in functional assays, and all of these
were A1R antagonists. Compound 15 was similar to a
known antagonist scaffold, but several other ligands rep-
resented novel chemotypes.
All hits from the first docking screens targeting the

A2AR that were tested for functional activity were
antagonists, which agreed with the fact that the crystal
structure had been determined in an inactive conforma-
tion. When structures of complexes with agonists were
determined, Rodriguez et al. (2015) performed a docking
screen of 6.7 million compounds to investigate whether
novel agonists could be identified. A set of compounds
that formed interactions similar to agonists (e.g., with
Ser2777.42 or His2787.43) and had a better ranking in
active than inactive structures was prioritized for exper-
imental testing. Of the 20 tested compounds, nine were
ligands and the best compound (17) had an affinity of
16 nM (hit rate 5 45%). However, functional assays
showed that none of the discovered compounds acti-
vated G protein signaling via the A2AR.

Fig. 8. Hit rates from molecular docking screens of chemical libraries
using crystal structures of GPCRs. Docking was primarily performed to
the orthosteric site with the goal to find ligands, i.e., there was generally
no clearly defined goal regarding the properties of the compounds
(circles). A few studies explored strategies to identify agonists (squares),
allosteric modulators (triangles), multitarget ligands (diamonds), and
selective ligands (crosses). Hit rates are based on the definition of actives
in each individual study.
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Chen et al. (2013a) explored fragment libraries to
identify A2AR ligands. A library with 328,000 commer-
cially available compounds was docked to the orthos-
teric site of the A2AR in an inactive conformation. In
total, 22 fragments were evaluated in binding assays,
and 14 showed activity with Ki values between 2 and
240 mM. The fragment hit rate of 64% was substantially
higher than that obtained using traditional fragment
screening approaches for the same target (Chen et al.,
2012). Fragment-to-lead optimization was focused on
two of the discovered ligands and was based on the
identification of similar compounds from commercial
libraries in combination with docking and MD simula-
tions, leading to a 3-fold improvement of affinity (com-
pound 12c, Ki 5 2.1 mM).
Two studies explored target-focused virtual libraries

to design A2AR agonists. In contrast to the docking
screens described above, commercial chemical libraries
were not used. Instead, commercial building blocks that
could be used to synthesize compounds were first identi-
fied. A virtual library of the products that could be
obtained based on these building blocks was then gener-
ated and screened by molecular docking. Rodriguez
et al. (2016) designed a virtual library with 6784 com-
pounds to identify adenosine-based agonists scaffolds
with novel bases. This library was docked to an A2AR
crystal structure and homology models of the A1 and A3

subtypes. Thirteen compounds were synthesized, and
two of these were ligands with submicromolar affinities
for the A2AR, which were similar to adenosine. Among
the hits for the other two subtypes, there were several
atypical adenosine receptor agonist scaffolds (e.g., com-
pound 14, Ki 5 359 nM for A1R). In the second study,
Tosh et al. (2012) focused on the design of 50-substituted
adenosine-based agonists. A computationally generated
library based on 2000 building blocks was docked to an
A2AR crystal structure to guide the identification of new
substituents. In total, 16 predicted analogs were then
synthesized and evaluated experimentally, leading to
the identification of several high-affinity agonists.
Jaiteh et al. (2018) and Kampen et al. (2021) inves-

tigated whether multitarget compounds could be pre-
dicted by molecular docking screening. In the first
study, the A2AR and monoamine oxidase B (MAO-B),
which are relevant for the development of drugs
against Parkinson’s disease (Meissner et al., 2011),
were selected as targets. Docking screens of frag-
ments (0.8 million compounds) and lead-like mole-
cules (4.6 million compounds) to crystal structures of
both targets were carried out, and a consensus score
was used to predict 24 dual-target ligands. Experi-
mental evaluation of these identified four compounds
with activity at both targets (dual-target hit rate 5
17%). Structure-guided optimization based on com-
mercial chemical libraries resulted in two dual-target
scaffolds, which antagonized the A2AR and inhibited

MAO-B with submicromolar activities. The best com-
pound (3) had a Ki value of 19 nM for the A2AR and
inhibited MAO-B with an IC50 of 100 nM. In the sec-
ond study, Kampen et al. (2021) used crystal struc-
tures of the A2AR and a homology model of the D2R to
design dual-target ligands relevant for the develop-
ment of antiparkinson drugs. A focused virtual
library (10,535 compounds) was designed based on a
dopamine receptor agonist and the binding site struc-
tures of both targets. Docking screens guided selec-
tion of 10 compounds binding to the orthosteric and
secondary binding pockets, which were synthesized
and tested experimentally. Three compounds with
affinity for both the A2AR and D2R were identified
(dual-target hit rate 5 30%). Structure-guided optimi-
zation of affinity and efficacy led to the discovery of a
series of potent dual-target compounds that antago-
nized the A2AR and activated the D2R. The best com-
pound (Ki values of 160 and 370 nM at the A2AR and
D2R, respectively) was also demonstrated to exert a
therapeutic effect in a rat model of Parkinson’s
disease.

Fig. 9. Comparison of models and crystal structures of GPCR-ligand com-
plexes. Top-scoring models from the GPCR Dock assessments, which
challenged researchers to predict both the receptor structure and ligand
binding mode, are shown. The receptor is shown as a cartoon, and the
ligand is shown as sticks. The predicted and experimentally determined
structures are colored green and gray, respectively. Each model was
aligned to the relevant crystal structure (Protein Data Bank codes: D3R/
eticlopride: 3PBL; 5-HT1BR/ergotamine: 4IAR, 5-HT2BR/ergotamine:
4IB4, A2AR/ZM241385: 3EML, SMO/SANT-1: 4N4W, SMO/LY-2940680:
4JKV, CXCR4/IT1t: 3ODU). The coordinates of the models were either
obtained from the GPCR Dock assessment or directly from the participat-
ing researchers.
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Prior to the release of the first A2AR crystal structure,
the modeling community was challenged to predict the
receptor structure and binding mode of the antagonist
ZM241385 (Michino et al., 2009). The goal of the GPCR
Dock assessment was to evaluate whether structures of
receptors and complexes with drugs could be modeled
accurately. Analysis of the results of GPCR Dock
showed that prediction of drug binding using homology
models was very challenging, but a few groups were
able to generate good models (Fig. 9). The ligand RMSD
of the best model was 2.8 Å, and 45% of the receptor-
ligand contacts were captured. After the A2AR crystal
structure was published, several virtual screening stud-
ies have used homology models of other adenosine
receptor subtypes to identify ligands in chemical librar-
ies (Kolb et al., 2012; Ranganathan et al., 2015). As
there is strong conservation of residues in the binding
site, good models of the A1 and A3 subtypes based on
the A2AR structure could be obtained. In a docking
screen performed by Kolb et al. (2012), a model of the
A1R was used to identify several ligands (hit rate 5
21%). Ranganathan et al. (2015) used models of both
the A1R and A3 adenosine receptor to identify A3-selec-
tive ligands using virtual screening of a fragment
library (hit rate 5 38%), followed by optimization of
these to potent antagonists.
The development of the A2AR antagonist HTL-1071

illustrates how GPCR structures can guide drug dis-
covery. Structure-based virtual screening using A2AR
homology models led to the discovery of starting
points for the design of potent antagonists (Langmead
et al., 2012). The development of thermostabilized

mutants of the A2AR enabled mapping of ligand bind-
ing modes by combining molecular modeling, muta-
genesis, and biophysical screening (Zhukov et al.,
2011). The predicted binding mode of one of the chro-
mone-based ligands was later confirmed by crystallog-
raphy (Fig. 10A) (Langmead et al., 2012; Mason et al.,
2013; Jespers et al., 2020). A discovered 1,2,4-triazine
antagonist scaffold was further optimized, leading to
the identification of HTL-1071, which is being
explored for the treatment of cancer in clinical trials
by AstraZeneca (Congreve et al., 2012).

B. Adrenergic Receptors (Adrenoceptors)

The adrenoceptors are classified into a and b adrener-
gic receptors, which consist of six and three subtypes,
respectively. Experimental structures (Figs. 3 and 4;
Supplemental Table 1) are currently available for five of
the adrenergic receptors (a2A, a2B, a2C, b1, and b2). Sev-
eral structure-based virtual screens focusing on the b2
adrenergic receptor (b2R) have been carried out, which
illustrate strategies to identify agonists and antagonists
from different types of chemical libraries (Table 5).
The b2R is a key target for drugs used in the treat-

ment of asthma and cardiovascular diseases (Wang
et al., 2018; Wendell et al., 2020). This receptor was also
the focus of the first successful docking screen against a
GPCR crystal structure. Currently, there are >60 deter-
mined structures of the adrenergic receptors, including
structures in complex with different ligand types (ago-
nists, inverse agonists, antagonists, and allosteric modu-
lators) and with both G protein and b-arrestin (Figs. 3
and 4; Supplemental Table 1). Shortly after the release

Fig. 10. Experimentally confirmed binding models of ligands discovered from prospective molecular docking screens. (A) A2AR in complex with a com-
pound discovered by Langmead et al. (2012) (Mason et al., 2013). Protein Data Bank (PDB) code of crystal structure: 6ZDR (Jespers et al., 2020). (B)
b2R in complex with compound identified by Kolb et al. (2009). PDB code of crystal structure: 3NY9 (Wacker et al., 2010). The receptor is shown as a
cartoon. The ligand and selected amino acid side chains are shown as sticks. The predicted and experimental binding mode of the ligand is colored
green and gray, respectively.
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of the first structure of the receptor in an inactive confor-
mation with an inverse agonist bound to the major
pocket (Cherezov et al., 2007), two research groups
docked chemical libraries to the orthosteric site and pri-
oritized 150 (Sabio et al., 2008) and 25 (Kolb et al., 2009)
of the top-ranked compounds for experimental testing,
respectively. Both screens resulted in high hit rates of
21% (31 ligands) and 24% (six ligands), respectively.
These results can be compared with a random selection
from a chemical library, which was evaluated by Sabio
et al. (2008) and resulted in a hit rate of only 0.3% (one
hit out of 320 tested compounds). Several compounds dis-
covered from the virtual screens had submicromolar
affinities and represented novel chemotypes. The most
potent compound (1) identified by Kolb et al. (2009) had
a Ki value of 9 nM, and the predicted binding mode was
also confirmed by a high-resolution crystal structure
(Fig. 10B) (Wacker et al., 2010). Similar to many other
b2R ligands, this compound formed a salt bridge with
Asp1133.32 and extended toward TM5 with an aromatic
moiety. In a follow-up study, similarity and substructure
searches in combination with docking were used to iden-
tify analogs, which provided SAR and identified several
additional high-affinity ligands (Schmidt et al., 2017). A
large number of crystal structures of the b2R in inactive
conformations are now available, and docking screens of
lead-like libraries using alternative binding site con-
formations identified additional antagonist scaffolds
(Table 5). For example, Scharf et al. (2020) predicted
27 ligands, and one of these showed activity, corre-
sponding to a hit rate of 4%.
An interesting observation from the first docking

screens was that the hits were inverse agonists,
which was proposed to be a result of the fact that the
used structure was determined in an inactive confor-
mation (Kolb et al., 2009). The determination of b2R
structures in active conformations (Rasmussen et al.,
2011) allowed the investigation of whether agonists
could be identified from docking screens. Several
docking campaigns with the aim to identify b2R ago-
nists were performed. Weiss et al. (2013) demon-
strated that the active receptor structure, in contrast
to the inactive, enriched agonists well and could dis-
tinguish agonists from inverse agonists. A library of
3.1 million compounds was docked to b2R structures
determined in active and inactive states. Two criteria
were used to select agonists among the top-ranked
compounds from the docking to the active conforma-
tion. Compounds had to be predicted to bind stronger
to the active state and form polar interactions similar
to agonists (e.g., with serine residues in TM5). Out
of the 22 compounds that were predicted to be ago-
nists, six activated the b2R, corresponding to a
hit rate of 27%. The four most potent ligands resem-
bled catechol-based b2R agonists, whereas the two
remaining compounds represented novel scaffolds. An

alternative approach to identify b2R agonists was
used by Kooistra et al. (2016). In this study, an
energy-based docking scoring function was combined
with a structural interaction fingerprint similarity
scoring method to selectively identify agonists. Retro-
spective virtual screens based on multiple crystal
structures allowed for the selection of optimal combi-
nations of receptor-agonists interaction fingerprints,
receptor conformations, and scoring cutoffs for the
identification of b2R agonists. A prospective screen of
�0.1 million compounds led to experimental testing of
63 compounds, and 41% of these showed activity. The
most potent compound (48) was a partial agonist
(Emax 5 60%) with an EC50 of 37 nM and was similar
to known b2R agonists. Most of the other hits were
novel partial agonists with micromolar activity. More
recently, Scharf et al. (2019) docked 3.8 million com-
pounds to two active b2R conformations. Compounds
were primarily selected based on high ranking in one
or both screens. Of the 19 compounds that were eval-
uated experimentally, eight (42%) were b2R agonists.
All the discovered agonists were based on an N-meth-
ylphenylethanolamine (halostachine) scaffold, which
is a substructure of adrenaline.
One of the first applications of fragment-based drug

discovery to GPCRs was a screen of a fragment library
against a thermostabilized form of the b1 adrenergic
receptor (b1R) (Christopher et al., 2013). The starting
point was an experimental screen of a fragment library
with 650 compounds using SPR, which yielded two
promising hits with affinities of 5.6 and 16 mM. Analysis
of b1R crystal structures and docking guided the selec-
tion of analogs, and several of these were experimentally
validated as high-affinity ligands. Crystal structures
were solved for complexes with two optimized ligands.
The compound with the highest affinity (19, Ki 5 67 nM)
formed a salt bridge with Asp1213.32 and had an indole
moiety interacting with Ser2115.42.
Chevillard et al. (2018) developed a computational

fragment-growing approach to optimize b2R ligands
based on the design of focused virtual libraries. The
study was initiated from five fragments that were
predicted to bind to the major binding site of the b2R
and form salt-bridge interactions with key residue
Asp1133.32. Guided by the models of these complexes,
the authors identified a secondary pocket where the
fragments could be grown into by reacting them with
commercial building blocks. The set of building blocks
was then docked to the secondary binding pocket to
identify those that could be connected to the fragment
ligands. The most promising products were then docked
to the binding site to guide the selection of compounds.
This protocol identified eight synthetically accessible
products, leading to four ligands with up to 40-fold
improved experimental affinities compared with the ini-
tial fragments (compound 11, Ki 5 520 nM).

1716 Ballante et al.

at A
SPE

T
 Journals on A

pril 4, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


Chevillard et al. (2019) developed a computational
protocol to identify ligands in a virtual library by dock-
ing to b2R crystal structures determined in active and
inactive conformations. The docking was carried out in
several steps and included �77,000 compounds that
could be synthesized from commercial building blocks
using two different reactions. A set of 240 compounds
were selected for synthesis, and 127 of these were suc-
cessfully obtained. Binding affinities for the b2R stabi-
lized in active and inactive conformations by nanobodies
were determined for 15 compounds. Of these, 12 dis-
played KD values <200 mM (hit rate 5 9%). Additional
docking and synthesis resulted in a second set of 30
compounds, which led to a 40-fold improvement of affin-
ity (0.5 mM, compound redA05B51) for the b2R stabi-
lized in an active state.
One structure-based screen focusing on the identifi-

cation of allosteric modulators of the b2R was carried
out (Liu et al., 2020). A commercial chemical library
was docked to a pocket in the extracellular vestibule
that is occupied by part of the agonist salmeterol. One
of the hits from the screen acted as a weak NAM and
was further optimized for activity. However, the
determination of a crystal structure with one of the
optimized NAMs revealed that the compound did not
bind to the pocket predicted by the docking screen.
Instead, the compound was found to occupy a
completely novel site in the TM region that faces the
membrane (Fig. 11).
Docking screens using homology models of adrener-

gic receptors have also been carried out. Sz}oll}osi et al.
(2015) performed a parallel computational and experi-
mental fragment screen of a library with 3071 com-
pounds. The binding site structure of the a2C
adrenergic receptor was modeled based on a b2R crys-
tal structure. Docking to the homology model was
able to identify five of the 16 experimentally

confirmed ligands in the library among the 30 top-
ranked compounds, corresponding to a 13-fold better
result than expected from random selection.

C. Chemokine Receptors

Chemokine receptors are important regulators of
inflammation and immune cell behavior. This group is
composed of 23 GPCRs, which represent promising drug
targets for immune-related pathologies, e.g., multiple
sclerosis, rheumatoid arthritis, human immunodeficiency
virus-1 infection, and cancer (Zhao et al., 2019). In 2010,
the first crystal structure of a chemokine receptor was
determined, revealing a peptide and small molecule
bound to the orthosteric site (Wu et al., 2010). Recently,
several additional chemokine receptor structures have
been solved in complex with both orthosteric and alloste-
ric ligands (Figs. 3 and 4; Supplemental Table 1). Struc-
ture-based virtual screens have primarily focused on the
chemokine receptor CXCR4 using fragment and lead-like
libraries, and explored the prediction of ligand selectivity
and polypharmacology (Table 5).
Mysinger et al. (2012b) docked a library of 4.2 million

lead-like compounds to the orthosteric site of a CXCR4
crystal structure in an inactive conformation. The top-
ranked compounds were visually inspected, and mole-
cules that interacted with Glu2887.39 were prioritized
for experimental evaluation. In total, 23 top-ranked
compounds were selected and assayed. Of these, four
were antagonists in functional assays with IC50 values
ranging from 55 to 77 mM (hit rate 5 17%). The perfor-
mance of docking to the CXCR4 crystal structure was
compared with that of a virtual screen against a homol-
ogy model, which was performed prior to the release of
the experimental structure. A set of 24 compounds was
selected based on a docking screen of 3.3 million com-
pounds. Of these, one compound was active and had an
IC50 value of 107 mM, corresponding to a hit rate of 4%.

Fig. 11. Targets of molecular docking screens for allosteric modulators. Receptors are shown in surface representation with orthosteric and allosteric
sites colored orange and green, respectively. Structure-based docking screens successfully discovered ligands of allosteric pockets identified in crystal
structures of the D3R, M2R, and FFA1R (pockets shown in green). Screens for allosteric modulators of the b2R unexpectedly identified a NAM binding
to an extrahelical pocket, but the docking was carried out to a pocket located in the ECV (Fig. 7).
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Adlere et al. (2019) used a structure-based virtual
screening approach to identify fragment-like molecules
forming ionic interactions with Asp972.63 and Glu2887.39

in the minor binding pocket of CXCR4. A focused frag-
ment library composed of 52,500 compounds that ful-
filled a pharmacophore based on two known CXCR4
antagonists was screened using docking and structural
interaction fingerprints. The top-ranked 200 compounds
were visually inspected, and 23 fragments with low
chemical similarity to known CXCR4 ligands were pur-
chased and tested in binding experiments. Four hits
showed >50% inhibition of endogenous chemokine bind-
ing at 63 mM (hit rate 5 17%). One hit was used as a
starting point for ligand optimization and SAR explora-
tion, resulting in CXCR4 antagonists (compounds 13,
22, and 28) with submicromolar affinities (IC50) and
micromolar functional potencies. Structural information
and three-dimensional quantitative structure-activity
relationship studies enabled the identification of impor-
tant interactions and ligand binding mode features that
could explain affinity and antagonist efficacy.
Mishra et al. (2016) screened a commercial GPCR-

focused library (13,000 compounds) using both ligand-
and structure-based approaches to search for CXCR4
ligands. The structure-based screen was performed
using two different docking programs. Based on dock-
ing scores and favorable ligand-protein interactions,
nine diverse compounds were evaluated experimen-
tally. In addition to the structure-based predictions,
six compounds were selected from the ligand-based
screen. Two antagonists and one agonist were identi-
fied from the structure-based screen (hit rate 5 33%),
whereas one antagonist and one agonist were con-
firmed from the ligand-based screen. The antagonists
showed IC50 values ranging from 0.3 to 3 mM. Explo-
ration of chemical space around one discovered agonist
(NUCC-390) allowed to identify additional CXCR4
ligands and rationalize differences between agonist and
antagonist ligands.
Schmidt et al. (2015) performed docking screens to

identify dual binders of CXCR3 and CXCR4 as well as
subtype-selective ligands for each target. Simulta-
neous modulation of CXCR3 and CXCR4 represents a
promising strategy to maximize the pharmacological
effect. A commercial chemical library with 2.4 million
lead-like molecules was screened against a homology
model of CXCR3 and a crystal structure of CXCR4.
The top-ranked 500 compounds were visually
inspected, and a dual-target ranking protocol was
applied to identify scaffolds with the potential to
interact with both targets. In total, 17 compounds
were selected for experimental evaluation. Of these,
seven and six were predicted to be CXCR3- and
CXCR4-selective, respectively, and the remaining four
were predicted to be dual-target modulators. Four out
of seven compounds were confirmed as CXCR3-

selective ligands (hit rate 5 57%) that inhibited G
protein activation (KB 5 12 nM for the most potent
compound, 3) with no detectable activity at CXCR4.
Three out of six compounds were confirmed selective
for CXCR4 (hit rate 5 50%, KB 5 66 nM for the most
potent compound, 9). Out of the four compounds pre-
dicted as dual binders, two modulated both receptors
(hit rate 5 50%). Six additional compounds were eval-
uated to explore the SAR of a dual-target scaffold. All
six analogs were confirmed to be dual binders, with
KB values ranging from 2 to 300 nM.
In the GPCR Dock 2010 assessment, the modeling

community was challenged to blindly predict the
structure of CXCR4 in complex with a small-molecule
ligand and a peptide (Kufareva et al., 2011). At this
time, the best available templates had 25% sequence
identity to CXCR4, making the homology modeling
process challenging. Only a few research groups were
able to identify the right binding site of the small-
molecule ligand. The best model only captured 36% of
the receptor-ligand contacts with a ligand RMSD of
4.88 Å (Fig. 9).

D. Dopamine Receptors

Dopamine receptors are drug targets for the treat-
ment of neuropsychiatric and neurodegenerative dis-
orders, e.g., schizophrenia and Parkinson’s disease
(Missale et al., 1998). There are five receptor subtypes
and experimental structures of both D1-like (D1R)
and D2-like receptors (D2-, D3-, and D4R) (Figs. 3 and
4; Supplemental Table 1). Docking screens against
three receptor subtypes illustrate different strategies
to identify orthosteric and allosteric GPCR ligands by
virtual screening of chemical libraries of varying size
and composition (Table 5).
Carlsson et al. (2011) docked a library with 3.6 mil-

lion commercially available lead-like compounds to
the orthosteric site of the D3R crystal structure deter-
mined in an inactive conformation. Among the top-
ranked compounds, 25 ligands were predicted and
experimentally evaluated in binding assays. Five
compounds had binding affinities better than 10 mM
(hit rate 5 20%), and all of these were confirmed to
be antagonists. The discovered ligands were predicted
to bind in the same pocket as the cocrystallized ligand
and to establish a salt bridge with Asp1103.32. The
compound with the highest affinity had a Ki of 300
nM (compound 28). A major finding of this study was
the comparison of these results to a screen against a
D3R homology model based on adrenergic receptor
crystal structures. As this screen was carried out
prior to the release of the D3R crystal structure, the
study could compare the ability of GPCR homology
models and crystal structures to identify ligands. The
homology model screen resulted in a comparable hit
rate (23%) and yielded ligands with affinities similar
to those discovered using the crystal structure.
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Lane et al. (2013) used docking screens of commercial
chemical libraries to discover orthosteric and allosteric
ligands of the D3R. The receptor structure was first
optimized for virtual screening guided by docking of
actives and decoys. In this step, small variations of
backbone and side chain rotamers were considered,
leading to improved enrichment of actives in retrospec-
tive screens. A library with 4.1 million drug-like com-
pounds was first docked to the orthosteric site.
Experimental validation studies identified 14 ligands
(hit rate 5 56%) with binding affinities ranging from
76 nM to 3.8 mM. Most of these compounds were antag-
onists and predicted to be bitopic ligands, i.e., targeted
both the major and minor pockets. The second screen
was focused on identifying allosteric ligands binding
primarily to the minor pocket (Fig. 11). The screening
library was docked to a structural model of the D3R in
complex with dopamine, which had been modeled in the
orthosteric site. In this case, eight novel ligands were
discovered (hit rate 5 32%). The ligands displayed a
variety of functional activity profiles, including noncom-
petitive allosteric modulation.
Several studies have explored fragment-based

approaches to identify D3R ligands based on docking
to crystal structures (Vass et al., 2014a,b; Egyed
et al., 2021). In the first study, a D3R crystal structure
and a homology model of the D2R subtype were used
to design selective ligands. Fragment libraries were
docked to the major and minor pockets to identify frag-
ment-sized compounds that could be linked to create a
drug-like ligand. Three linked compounds were synthe-
sized and evaluated experimentally in binding assays.
One of these bitopic ligands had subnanomolar affinity
for the D3R (Ki 5 0.67 nM, compound 3) and 55-fold D2/
D3 selectivity. Selectivity was predicted to be achieved
by targeting the D3R-specific residue Tyr361.49

(Leu411.39 in the D2R) with a sulfonylurea moiety (Vass
et al., 2014a). In the second study, a fragment library
with �13,000 compounds was docked to the orthosteric
site of a D3R crystal structure and to an ensemble of 27
MD simulation snapshots generated using the same
structure. Ligands were predicted separately from the
crystal structure (50 compounds) and MD ensemble (56
compounds) screens. In total, 25 compounds showed sig-
nificant binding, and Ki values were determined for
eight hits from the screen (0.17–2.8 mM). The hit rate
from the screen using MD snapshots (32%) was higher
than that from the screen against the crystal struc-
ture (18%). Encouragingly, the sets of hits from the
two screens were only partially overlapping, suggest-
ing that using ensembles of receptor structures can
increase the diversity of hits from virtual screening
(Vass et al., 2014b).
Three docking screens for D4R ligands have been

carried out using crystal structures, which illustrate
different approaches to design the screening library

(Wang et al., 2017; Lyu et al., 2019; Ballante et al.,
2020). In the first study, Wang et al. (2017) docked a
library containing 0.6 million cationic lead-like com-
pounds, which hence was a target-focused library
based on the observations that the vast majority of
dopamine receptor ligands are positively charged.
Top-ranked compounds that occupied the major
pocket and extended into a minor binding pocket
formed by TM1 and TM2, which was not present in
the closely related D3R crystal structure, were
selected to identify subtype-selective ligands. In total,
10 top-ranked compounds were experimentally evalu-
ated, and two of these were confirmed to be submicro-
molar ligands (hit rate 5 20%). Despite the fact that
the docking was carried out using a structure deter-
mined in an inactive conformation, the two hits
showed agonist activity. In a second step, one scaffold
was optimized for selectivity by identifying 102 ana-
logs in commercial chemical libraries. This led to the
discovery of a compound with a Ki of 3 nM, which was
strongly selective for D4 over the D2 subtype and had
an unusual arrestin-biased signaling profile. In a sec-
ond study on the D4R, Ballante et al. (2020) carried
out structure-based virtual screens with the aim to
identify ligands with target selectivity, but a different
approach to design the chemical library was used.
Publicly available HTS bioactivity data were first
analyzed to identify compounds that had been
screened extensively (in >100 HTS assays) but had
never shown biological activity. The idea was that if
active compounds could be identified in this set of
“dark chemical matter” (Wassermann et al., 2015),
these ligands would have excellent selectivity profiles.
The dark chemical matter was docked to a D4R crystal
structure. Among the 18 top-ranked compounds that
were tested experimentally, two had submicromolar
affinities (hit rate 5 11%). Both discovered ligands
showed some selectivity for the D4R over the D3 sub-
type (4, Ki 5 0.42 mM for D4R, 26-fold selective). More
importantly, these D4R ligands were experimentally
confirmed to lack activity at hundreds of off-targets by
HTS and hence represent favorable starting points for
the development of drugs with improved safety pro-
files. In the third study using D4R crystal structures,
Lyu et al. (2019) performed a structure-based virtual
screen of 138 million compounds, a library that was
orders of magnitude larger than those carried out pre-
viously. This advance was enabled by access to a
make-on-demand library enumerated from available
building blocks by the chemical supplier Enamine
(Grygorenko et al., 2020). To compare the results of
selecting compounds automatically (by docking score)
and manually (by visual inspection), 114 (docking
score) and 124 (visual inspection) compounds were
selected for experimental testing from the top 1000
ranking compound clusters. From these sets, 23% and
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26% were confirmed to be ligands with Ki values better
than 10 mM. The hit rates were hence similar for auto-
mated and manual compound selection, but there was
a shift toward higher ligand affinity in the set selected
by visual inspection. To assess whether docking
enriched active compounds, the activities of 549 com-
pounds with scores ranging from high to low were
measured. Hit rates varied from 22%–26% among the
highest-ranking molecules to 0% for the set of com-
pounds with the worst scores, indicating a good dock-
ing performance for this target. Notably, the most
potent discovered agonist was a diastereomeric mix-
ture (compound ZINC621433144). All four individual
diastereomers were synthesized, which uncovered that
one of the pure stereoisomers had a very potent EC50

of 180 pM. The best hits from the three studies focus-
ing on the D4R contained a positively charged amine
moiety and were predicted to form a salt bridge to
Asp1153.32, which is conserved in all dopamine
receptors.
Several studies used homology models in structure-

based virtual screening and modeling of receptor-drug
complexes. As in the case of the A2AR and CXCR4,
the modeling community was challenged in the GPCR
Dock assessment to predict the structure of the D3R
(Kufareva et al., 2011). Several research groups were
able to predict the binding mode of the cocrystallized
ligand eticlopride with high accuracy (Fig. 9). The
best model had a ligand RMSD of only 0.96 Å and
captured 58% of the receptor-ligand contacts. Three
studies used homology models of the D2R subtype to
identify ligands. Kaczor et al. (2016) used a D2R
homology model based on a crystal structure of the D3

subtype in a virtual screen of a library with 6.5 mil-
lion compounds. Of the 21 selected compounds, 10
showed activity (hit rate 5 48%) in a binding assay
(58 nM to 24 mM), and seven high-affinity compounds
were confirmed to be antagonists. The second and
third virtual screens focused on the discovery of D2R
agonists using homology models. Weiss et al. (2013)
docked commercially available fragment and lead-like
libraries (3.1 million compounds) to a homology model
of the D2R based on an active conformation of the
b2R. In total, 15 compounds were selected for experi-
mental testing using similar criteria as used in the
docking screen for b2R agonists in the same study
(formation of key interactions and better ranking for
the active compared with an inactive model of the
receptor). Two of the active compounds were agonists,
and the remaining one was an inverse agonist of the
G protein pathway, corresponding to a ligand hit rate
of 20%. In the third study, M€annel et al. (2017) con-
structed a focused virtual library based on a known
D2R ligand scaffold (phenylpiperazine) linked to a
moiety that could extend into secondary binding pock-
ets. Molecular docking of the 13,000 virtual products

to a D2R homology model based on a D3R crystal
structure identified 18 compounds, which were subse-
quently synthesized. Of these, 16 displayed activity in
functional assays measuring either G protein or b
arrestin–mediated signaling, and a few ligands showed
some preference for one of these pathways. Such a
biased signaling profile could have advantages in drug
development for neurodegenerative and neuropsychiat-
ric diseases, as one pathway could be responsible for
the therapeutic effect, whereas others can be associated
with adverse effects.

E. Free Fatty Acid Receptors

Free fatty acid receptors are activated by short- to
long-chain fatty acids, and these GPCRs have received
attention for their involvement in inflammation and dia-
betes (Stoddart et al., 2008). The free fatty acid receptor
1 (FFA1R) plays a key role in glucose homeostasis and
mediates insulin secretion. Receptor activation by long-
chain free fatty acids enhances insulin secretion, and
FFA1R is a target for the treatment of type 2 diabetes.
Crystal structures of FFA1R (Figs. 3 and 4; Supplemen-
tal Table 1) in complex with different ligands (Srivastava
et al., 2014; Lu et al., 2017) revealed two different bind-
ing sites: a hydrophobic interhelical site between TM3
and TM4 and an extrahelical site between TM3, TM4,
and TM5. A third possible binding pocket between the
extracellular poles of TM1, TM2, and TM7 was also pre-
dicted, but no ligand was bound to this site in the experi-
mental structures. L€uckmann et al. (2019) carried out
MD simulations of the FFA1R, which suggested that sta-
bilizing the solvent-exposed extracellular pocket (Fig. 11)
could influence receptor signaling. A database with 13
million commercially available compounds (Table 5) was
then docked to this site in a stepwise fashion. After an
initial screen against a single FFA1R structure, the
100,000 top-scored compounds were docked to four simu-
lation snapshots. Docking scores combined with physico-
chemical property filters for drug-like compounds guided
the selection of 99 compounds for experimental evalua-
tion. One screening hit (compound 1) displayed a similar
potency and efficacy as the endogenous ligand (oleic
acid) but was unable to displace TAK-875 from the recep-
tor (Fig. 11). As predicted, these results supported that
the ligand was able to bind to a different site than TAK-
875. Additional experiments showed that the compound
acted as an agonist and PAM of oleic acid. Site-directed
mutagenesis indicated that the ligand interacted with
Lys2597.36, Ala662.64, and Tyr121.39 in the predicted
extracellular pocket. These results suggested that the
compound stabilizes the extracellular site and thereby
promotes an active-like conformation of the receptor.
Further studies were performed on 96 commercially
available analogs, and two of these had a pharmacologi-
cal profile similar to the screening hit. Custom-made
synthesis led to the discovery of two compounds (4 and
5) with improved potency and efficacy (EC50 � 1 mM).
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F. Histamine Receptors

The histamine receptor family comprises four recep-
tors (H1–H4R) and is implicated in allergic inflammation,
gastric acid secretion, neurotransmission, and immuno-
modulation (Tiligada and Ennis, 2020). In 2011, the first
crystal structure of a histamine GPCR was published
(Figs. 3 and 4; Supplemental Table 1), and several dock-
ing screens were subsequently carried out (Table 5). The
crystal structure showed the inverse agonist doxepin
binding deep in the major pocket (Shimamura et al.,
2011). A docking screen using this crystal structure was
first published by de Graaf et al. (2011). A protocol com-
bining protein-ligand interaction fingerprint scoring and
a conventional energy-based scoring function was first
developed by docking of known H1R ligands and decoy
molecules. A focused library with �0.1 million commer-
cially available fragments was then docked to the orthos-
teric site. The results were filtered to identify compounds
forming a salt bridge with Asp1073.32 and scored using
the developed screening protocol. The remaining com-
pounds were clustered and visually inspected, resulting
in the selection of 26 molecules for experimental valida-
tion. Remarkably, 19 of the compounds were found to be
H1R antagonists or inverse agonists (hit rate 5 73%)
with affinities ranging from 6 nM to 11 mM. In a follow-
up study, Kooistra et al. (2016) revisited the previous
docking study and further evaluated their approach. In
addition to the combined approach, two sets of com-
pounds were selected using either the energy-based scor-
ing method or the protein-ligand interaction fingerprint
scoring while maintaining all other steps of the virtual
screening approach. The energy-based approach identi-
fied 15 new H1R ligands out of a set of 33 compounds
(hit rate 5 45%). For the fingerprint approach, 20 new
H1R ligands were identified in a set of 33 compounds
(hit rate 5 61%). The combined scoring approach hence
resulted in the highest hit rate (73%). One of the hits
from these screens was used as a starting point for eval-
uating the SAR for binding to the H1R using analysis of
water networks in the binding site and mutagenesis
(Kuhne et al., 2016). By synthesizing 23 analogs of the
hit and experimentally evaluating their affinity to the
H1R, the contribution to ligand binding from three differ-
ent regions of the major pocket were systematically
explored (the amine binding region near Asp1073.32 and
two aromatic regions). Displacement of ordered water
molecules from the amine binding region was found to
explain the SAR for closely related compounds. Egyed
et al. (2021) developed a fragment-based approach to
optimize the selectivity profile of an H1R antagonist by
identifying compounds binding to a secondary binding
pocket using molecular docking. By covalently linking
the orthosteric antagonist to fragments predicted to bind
in the secondary pocket, ligands with selectivity for the
H1R over the M1R were identified.

Virtual screens have also been carried out using homol-
ogy models of the other histamine receptor subtypes (Kiss
et al., 2014; Vass et al., 2014b; Istyastono et al., 2015; Kiss
and Keser}u, 2016; Schaller et al., 2019). Both Vass et al.
(2014b) and Istyastono et al. (2015) used homology models
of the H4R in virtual screening of fragment libraries. Vass
et al. (2014b) performed docking of a library with �13,000
fragments to an H4R homology model (based on the H1R
crystal structure) and MD-refined structures. Out of the
85 compounds that were tested experimentally, 15 showed
significant binding (hit rate 5 18%). Istyastono et al.
(2015) used H4R homology models based on b2R and H1R
crystal structures, resulting in the discovery of nine
ligands (hit rate 5 24%).

G. Leukotriene Receptors

Leukotriene receptors are GPCRs involved in inflamma-
tion (Back et al., 2011), which are classified into two main
types based on their recognition of either leukotriene B4 or
the cysteinyl leukotrienes. The two cysteinyl leukotriene
receptors (CysLT1R and CysLT2R) are activated by a set of
leukotrienes (LTC4, LTD4, and LTE4) (Back et al., 2011),
which are lipid mediators that are released through the 5-
lipoxygenase pathway during allergy-induced inflamma-
tion (White, 1999). These GPCRs are also involved in path-
ways mediating allergic asthma (Athari, 2019), and
antagonists were identified as a promising therapy for this
condition (Trinh et al., 2019). Experimental structures
(Hori et al., 2018; Gusach et al., 2019; Luginina et al.,
2019) are available of both receptor types (Figs. 3 and 4;
Supplemental Table 1), and a virtual screening was per-
formed for the CysLT1R and CysLT2R (Table 5). The
first crystal structures of CysLTRs were determined in
2019 and revealed a unique binding mode of antagonists
(Gusach et al., 2019; Luginina et al., 2019). The ligands
are deeply buried in the TM region and stabilize a gap
between TM4 and TM5 facing the lipid membrane. This
gap may serve as an entry point to the orthosteric bind-
ing site.
Sadybekov et al. (2020) performed a prospective dock-

ing screen against both CysLT1R and CysLT2R. Confor-
mational ensembles of the receptors were first prepared
starting from the crystal structures, and the predictive
abilities of these models were benchmarked by measur-
ing the enrichment of antagonists over decoys. Binding
site water molecules were considered, and these were
found to improve the discrimination between actives
and decoys. A total of 115 million drug- and lead-like
compounds were docked to the crystal structures and
the optimized models using a flexible receptor docking
algorithm. The top-ranked 20,000 molecules from this
screen were then docked again using more extensive
conformational sampling. Subsequently, the 2000 best-
ranked compounds from the crystal structures and the
two optimized models were merged, filtered based on
their interaction patterns in the binding site, and clus-
tered by chemical similarity. Based on structural
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novelty and diversity, 155 compounds were selected,
and 139 of these were successfully synthesized by a
chemical supplier. None of these compounds activated
the receptors in a functional assay measuring inositol-1-
phosphate (IP1) production. Five compounds acted as
antagonists of CysLT1R signaling induced by LTD4 in a
dose-dependent manner, and two of these yielded full
inhibition of the agonist-mediated response (Ki 5
0.22–1.03 mM). One compound fully inhibited the ago-
nist effect at CysLT2R (Ki 5 6.46 mM). Functional poten-
cies were determined for the best compound (BRI-
12359), resulting in affinities (KB) of 0.34 mM and 105
mM at CysLT1R and CysLT2R, respectively. BRI-12359
also displayed inverse agonism at the CysLT2R mutant
L129Q, which is constitutively active and linked to
uveal melanoma (Nell et al., 2021). Analysis of the dock-
ing pose in the CysLT1R pocket showed that BRI-12359
occupied the upper part of the binding site and estab-
lished a hydrogen bond with Y832.64.

H. Melatonin Receptors

The two melatonin receptors (MT1R and MT2R) reg-
ulate the circadian rhythms and are drug targets for
the treatment of insomnia, depression, and cancer
(Liu et al., 2016). The first crystal structures of the
MT1 and MT2 receptors in complex with agonists
(Figs. 3 and 4; Supplemental Table 1) were published
in 2019 (Johansson et al., 2019; Stauch et al., 2019)
and have been used in two virtual screens (Table 5).
Stein et al. (2020) performed a virtual screening

campaign by docking of >150 million commercially
available make-on-demand compounds to the orthos-
teric site of an MT1R structure. The top-scoring
300,000 compounds were clustered by topological sim-
ilarity, and 10,000 clusters were visually inspected. In
compound selection, molecules that were able to inter-
act with the key residues Asn1624.60 and Gln181EL2

were favored. In total, 38 compounds were selected
and tested experimentally; 15 molecules (hit rate 5
39%) were active in functional assays at MT1R, and
four of these were MT1 selective agonists. There were
both agonists and inverse agonists among the hits
with activities of 1 nM and 1.2 mM, respectively, for
the best compounds. In total, 12 ligands were selected
for further optimization by searching for analogs in
the make-on-demand library. Several thousand com-
mercially available analogs were docked into the
MT1R structure, followed by the synthesis and testing
of 131 compounds. Of these, 94 compounds were
active at one or both the MT receptors. Three sub-
type-selective compounds (two MT1 selective inverse
agonists and one selective MT2 agonist, respectively)
were further evaluated in vivo. Phase-shift experi-
ments showed that the two MT1 selective inverse ago-
nists advanced the mouse circadian clock by 1.3–1.5
hours (a typical effect of the endogenous agonist mel-
atonin) when administrated to mice at dusk. This

agonist-like effect was absent in MT1- but not in MT2-
knockout mice, thus revealing an unknown role of the
MT1R.
Patel et al. (2020) docked a library of 8.4 million com-

mercially available compounds to the orthosteric pockets
of both the MT1 and MT2 receptors. Prior to the screen,
the MT1 and MT2 receptor structures were analyzed to
optimize the docking performance. The focused screen-
ing library was constructed by selecting commercially
available fragment-like compounds from the ZINC data-
base with physicochemical properties similar to known
ligands. The 5000 top-ranked compounds for each recep-
tor were selected and docked with an increased compu-
tational sampling to both the MT1 and MT2 receptors.
From each receptor screen, the top 500 compounds were
considered, and compound selection was guided by
chemical clustering and docking scores. In total, 62 com-
pounds (23 from MT1R, 25 from MT2R, and 14 from
both) were finally prioritized for binding and functional
experiments based on their structural novelty, chemical
diversity, and interactions with the receptors. Out of the
62 compounds, 11 activated one or both subtypes with
submicromolar potencies in Gi/o signaling assays. Of
these, 10 displayed Ki values <10 mM, and six were
MT2-selective. The most potent compound (28, a melato-
nin derivative) showed an EC50 of 0.04 nM at both MT1

and MT2. Compound 21, which was the most potent
new chemotype, displayed a 30-fold selectivity for the
MT2R (EC50 5 0.36 nM and 12 nM for MT2 and MT1

receptors, respectively). The identified hits were also
evaluated for functional selectivity. Compounds 21 and
28 displayed reduced b-arrestin recruitment at the
MT2R compared with melatonin. Conversely, compound
37 showed no Gi signaling but marked b-arrestin–medi-
ated activity at the MT1R. These compounds hence dis-
played signaling bias, and the predicted binding modes
provided hypotheses regarding the structural basis of
the observed functional selectivity, e.g., interactions
with Asn4.60 and Tyr7.38.

I. Muscarinic (Acetylcholine) Receptors

There are five muscarinic (acetylcholine) receptors
(MRs) in humans, and these are drug targets for a
large number of conditions, e.g., Alzheimer’s disease,
diabetes, and asthma (Kruse et al., 2014). However,
as the MRs share very high sequence similarity in the
orthosteric site, the development of subtype-selective
ligands has been challenging. The determination of
crystal structures of all MR subtypes (Figs. 3 and 4;
Supplemental Table 1) provided the opportunity to
use molecular docking to screen for selective ligands,
which has been explored in three virtual screens by
targeting either orthosteric or allosteric binding sites
(Table 5).
Kruse et al. (2013) focused on structure-based discov-

ery of orthosteric MR ligands. The crystal structures of
the M2R and M3R confirmed that the orthosteric sites

1722 Ballante et al.

at A
SPE

T
 Journals on A

pril 4, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


are very similar and only differ by a single amino acid
(Phe and Leu in position 5.33 of the M2R and M3R,
respectively). A commercial chemical library with 3.1
million compounds was first docked to the M3R, and 18
top-ranked compounds that formed interactions with
key binding site residues (Asp1033.32, Asn4046.52, and
Trp4006.48) were prioritized for experimental evaluation.
Of these, 11 showed significant binding to the M2R (Ki

values <50 mM), corresponding to a hit rate of 61%,
and the best compound had an affinity of 390 nM (com-
pound 1). A second docking screen of the same library
was then carried out for the M3R. In this case, com-
pounds that were top-ranked for the M3R and had a
lower rank in the M2R screen were extracted to bias
the screening result toward subtype selectivity. A set of
16 compounds that formed interactions with noncon-
served Leu2255.33 were selected, and eight of these
were shown to bind to the M3R with affinities ranging
from 780 nM to 64 mM (hit rate 5 50%). Although a
large fraction of the hits showed some selectivity for the
M3R, the differences in affinities were small, and the
best compound reached a selectivity ratio of only 6-fold.
A majority of the discovered compounds did not show
agonist activity, which was consistent with the fact that
the docking screens were performed using receptors
crystallized in an inactive state. One compound (16)
was a partial M3R agonist (EC50 5 5.2 mM, Emax 5
65%), but it showed no detectable activity for the M2

subtype.
Korczynska et al. (2018) explored an alternative

approach to identify selective ligands by docking to
an allosteric site in an M2R crystal structure. An allo-
steric pocket was identified at the extracellular
entrance of the orthosteric site, which was separated
from the cocrystallized antagonist by a layer of aro-
matic residues (Fig. 11). In contrast to the orthosteric
site, the sequence conservation of the ECV is rela-
tively low, and �50% of the residues in this pocket
differ between the M2 and M3 subtypes. A structure-
based virtual screen of 4.6 million compounds was
performed. The effects of 13 top-ranked compounds
were evaluated in binding assays, and three of these
showed a significant allosteric effect (hit rate 5 23%).
One compound (‘589) was found to increase the affin-
ity of the antagonist N-methyl scopolamine by 22%,
corresponding to PAM activity, and had an affinity of
4 mM for the allosteric site. Structure-based optimiza-
tion of this ligand using docking of commercially
available analogs resulted in the identification of a
compound (‘628) that had an affinity of 1.1 mM and
also showed PAM activity in functional assays. The
optimized modulator was also tested at the other four
MRs and showed either no or very weak activity in all
cases, demonstrating that the compound was subtype
selective.

Fish et al. (2017) searched for new M2R agonist scaf-
folds using the active-state structure of M2R in complex
with the agonist iperoxo. Based on the binding mode of
iperoxo, a set of 19 aromatic compounds were designed
to establish a hydrogen bond interaction with Asn4046.52

and a salt bridge with Asp1033.32. Prior to performing
the biological experiments, this set of molecules was
then docked to active and inactive M2R conformations.
Based on hydrogen bonding with Asn4046.52 and docking
scores, the compounds were classified as agonists or non-
agonists. These predictions were then compared with the
results from functional assays. The compounds displayed
affinities in the mid to low micromolar range at M1R,
M2R, and M3R, with two of them reaching nanomolar Ki

values. One compound (3) was correctly predicted to be
an agonist (Ki 5 14 mM, Emax 5 75%), and 16 com-
pounds were correctly classified as M2R antagonists or
inverse agonists. Compound 17 was a high-affinity
antagonist (Ki 5 0.14 mM, Emax 5 �14%) but had been
predicted to be an agonist, and compound 2 was an ago-
nist but was expected to be an antagonist. Further
optimization identified compound 22, which displayed
improved affinity but lower efficacy (Ki 5 1 mM,
Emax 5 44%) compared with 3. Finally, a docking
screen using a fragment library with 2.2 million com-
pounds was also performed against the M2R active-
state crystal structure. The top-ranked 1000 fragments
were inspected, and 10 compounds were prioritized for
experiments among those showing interactions with
Asn4046.52 and Asp1033.32, which were expected to be key
interactions for receptor activation. Of these, seven frag-
ments (hit rate 5 70%) had Ki values <50 mM, and the
best affinity was 6 mM (compound 29). Three compounds
were shown to be agonists in functional assays, with EC50

values in the low micromolar range. Compound 29 was the
most potent agonist, with EC50 and Emax values of 9.9 mM
and 74%, respectively.

J. Neurotensin Receptors

There are two neurotensin receptors, and several
crystal and cryo-EM structures of the NTS1 subtype
(Figs. 3 and 4; Supplemental Table 1), which is a tar-
get for central nervous system diseases, have been
determined (White et al., 2012; Egloff et al., 2014;
Krumm et al., 2015, 2016; Kato et al., 2019; Yin et al.,
2019; Huang et al., 2020). Ranganathan et al. (2017)
performed structure-based screening of fragment- and
lead-like chemical libraries (Table 5) with the goal to
discover novel NTS1R ligands targeting the orthos-
teric site, which recognizes the C-terminal end of the
peptide agonist. The commercially available frag-
ment- and lead-like libraries contained 0.5 and 1.8
million compounds, respectively. Each library was
docked to the orthosteric site, and 25 fragment-like
and 27 lead-like compounds were selected for experi-
mental evaluation by SPR. The experimental binding
affinities of the eight identified fragment-like ligands
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(hit rate 5 32%, KD 5 0.2–0.3 mM) were lower than
for the five lead-like ligands (hit rate 5 19%, KD

1.2–42 mM), but the hits covered complementary chemi-
cal space. The discovered ligands were predicted to be
anchored by interactions with Arg3276.54, Tyr1463.29,
and Tyr3477.31. Structure-guided optimization of hits by
identification of analogs in commercial chemical librar-
ies led to the discovery of small-molecule agonists with
low micromolar to submicromolar affinity.

K. Opioid Receptors

The opioid receptor family is composed of the m, d, and k
receptors (MOR, DOR, and KOR, respectively), and the
opioid-related nociceptin receptor (NOP). Opioid receptors
are therapeutic targets for pain treatment (Stein, 2016;
Manglik, 2020). All three opioid receptors mediate analge-
sia, but drug interactions result in different side effects
depending on their regional expression and functional
activity in central and peripheral systems (Valentino and
Volkow, 2018). MORs are associated with respiratory
depression, addiction, sedation, tolerance, constipation,
itch, and nausea. DORs mediate respiratory depression,
constipation, dependence, and convulsions. KORs cause
dysphoria, sedation, and diuresis (Stein, 2016). For these
reasons, there is a major interest in the development of
improved analgesic drugs. Crystal structures of the MOR,
DOR, KOR, and NOP have been determined (Granier
et al., 2012; Manglik et al., 2012; Thompson et al., 2012;
Wu et al., 2012) (Figs. 3 and 4; Supplemental Table 1) and
contributed to several successful structure-based ligand
discovery campaigns (Table 5).
Negri et al. (2013) docked a library containing 4.5

million commercially available lead-like molecules to
an inactive KOR crystal structure. The top-ranked
compounds were visually inspected, and a set of 22
were selected based on identifying contacts similar to
the cocrystallized ligand (e.g., with Asp1383.32), che-
motype novelty, and interactions with KOR-specific
residues. Experimental validation led to the identifi-
cation of four ligands that displayed significant affini-
ties in a binding assay. Out of these, the racemic
mixture of MCKK-17 activated GaoB signaling, and
the two stereoisomers of this compound were synthe-
sized. The S-stereoisomer (MCKK-17S) was identified
as a full and subtype-selective KOR agonist with
micromolar potency (EC50 5 7.2 mM).
Zheng et al. (2017) performed a structure-based vir-

tual screening campaign for KOR ligands. In addition
to a KOR crystal structure, two modified receptor
structures, which were optimized for ligand enrich-
ment, were also used. A total of 4.5 million commer-
cially available compounds were docked into the three
different KOR models. Based on chemical diversity,
novelty, and predicted binding affinity, 43 compounds
were prioritized for experimental testing, and 14 had
Ki values <10 mM (hit rate 5 33%). The most active
compound had an affinity of 0.2 mM (compound 28).

Hit-to-lead optimization was attempted for six chemo-
types by combining similarity searches in commercial
chemical databases and docking. In total, 40 analogs
were tested experimentally, resulting in 11 ligands
with submicromolar affinities that represented four
different scaffolds. The compound with the highest
affinity (64, Ki 5 0.09 mM) was an antagonist of both
G protein and b-arrestin–mediated signaling.
Manglik et al. (2016) screened >3 million commer-

cially available lead-like compounds with the goal to
identify MOR agonists. Compounds were docked to an
inactive MOR structure, and ligands were prioritized
based on their ability to interact with key residue
Asp1473.32 and other residues considered important
for receptor affinity and specificity. In total, 23 mole-
cules from the top-scored 2500 compounds were prior-
itized for experimental evaluation. Seven compounds
showed micromolar activity (hit rate 5 30%), and the
highest affinity was 2.3 mM. A similarity search based
on the three most potent compounds identified 500
commercially available analogs, and 15 of these were
evaluated experimentally. Seven analogs had Ki val-
ues between 42 nM and 4.7 mM, and the most potent
agonist showed robust activation of Gi/o and low
arrestin recruitment. Structure-guided optimization
of this compound led to the identification of PZM21, a
potent and selective Gi-biased MOR agonist (EC50 5
4.6 nM, Ki 5 1.1 nM). In tests on mice, PZM21
induced longer and robust analgesia with less respira-
tory depression and constipation than morphine.
In a study by Weiss et al. (2018) focusing on identi-

fying KOR-selective ligands, crystal structures of both
the KOR and MOR were used in a docking screen of 3
million lead-like compounds. Compounds that ranked
in the top 1% for the KOR structure were further
investigated and ranked according to the ratio of their
ranks from the KOR and MOR screens. The com-
pounds with the highest rank ratio were visually
inspected, and 22 of these were purchased and experi-
mentally evaluated. Nine compounds showed affinity
for the KOR (hit rate 5 41%), with two displaying
>18-fold selectivity for this receptor subtype. How-
ever, there were also compounds among the hits that
showed similar selectivity for the MOR, i.e., the oppo-
site selectivity than predicted. These results
highlighted the difficulty in utilizing structure-based
virtual screening to identify selective compounds for
closely related receptors.

L. Orexin Receptors

The orexin signaling system is involved in a pleth-
ora of behavioral functions, including regulation of
the sleep-wake cycle (Scammell and Saper, 2007). It
consists of two GPCRs, the orexin receptor subtypes 1
(OX1R) and 2 (OX2R), which are activated by the
orexin A and B neuropeptides (de Lecea et al., 1998;
Sakurai et al., 1998). In 2014, the Food and Drug
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Administration approved the nonselective orexin
receptor antagonist suvorexant for the treatment of
insomnia (Winrow and Renger, 2014). The sequence
identity between the two receptors is 64%, with
nearly identical binding sites, which makes it chal-
lenging to develop subtype-selective compounds. Crys-
tal structures of the OX1R (Yin et al., 2016; Hellmann
et al., 2020; Rappas et al., 2020) and OX2R (Yin et al.,
2015; Suno et al., 2018; Rappas et al., 2020) with
diverse antagonist chemotypes have been determined
(Figs. 3 and 4; Supplemental Table 1) and were used
in two studies with the goal to identify novel and
selective ligands (Table 5).
Gunera et al. (2020) performed a docking screen

against a crystal structure of OX2R using lead- and
drug-like sets from the ZINC database with �11 mil-
lion compounds. Two docking programs were used in
combination with four scoring functions. Visual
inspection of 6500 top-ranked molecules led to the
selection of 43 commercially available compounds,
which were experimentally tested at both the OX1

and OX2 receptors. Eleven compounds showed mea-
surable pKi values at the OX2R (hit rate 5 26%), and
the highest affinity ligand had a pKi of 5.55 (com-
pound P33). The discovered compounds showed simi-
lar affinities for both receptors. In total, 54 analogs
were selected based on docking scores, predicted bind-
ing poses, and commercial availability, and 16 of these
showed a detectable affinity for the OX2R with a high-
est pKi of 6.18 (compound F33.3). F33.3 was predicted
to bind with a suvorexant-like pose and establish a
hydrogen bond with Asn3246.55. Functional assays for
19 discovered ligands revealed antagonist activity at
both OX1R and OX2R. As the hits from the screen
showed similar activity at both subtypes, a second vir-
tual screen was carried out with the goal to identify
OX2-selective ligands. In this case, results from dock-
ing screens against both the OX1R and OX2R struc-
tures were considered, and 25 OX2-selective ligands
were predicted. Experimental evaluation resulted in a
hit rate of 24% (six ligands) and similar affinities as
the hits from the single-target screen (pKi 5 5.80
for the best compound). However, despite the fact that
the docking screen used structures of both subtypes,
only a weak subtype selectivity (5-fold) was achieved.
An excellent example of how crystal structures can

facilitate the identification of selective compounds is the
study by Hellmann et al. (2020), which used OX1 and
OX2 receptor structures to design a subtype-selective
analog of the drug suvorexant. Suvorexant shows similar
affinity for both subtypes, and crystal structures revealed
that only two amino acids differed in the binding sites
(Ser1032.61 and Ala1273.33 of OX1R are exchanged for
Thr1112.61 and Thr1353.33 in the OX2R). Molecular dock-
ing calculations guided the design of suvorexant analogs
with modifications on the homopiperazine moiety of

suvorexant. By moving a methyl to a different position
on the homopiperazine and optimizing the size of this
substituent, a pocket that is created by the smaller side
chain in position 3.33 could be filled in the OX1R binding
site. In the OX2R, substituents in this position would
clash with Thr1353.33. Based on this observation, a set of
compounds with small hydrophobic substituents were
synthesized and evaluated experimentally. The most
selective compound (JH112) retained affinity for the
OX1R (Ki 5 0.72 nM), but there was a large loss of affin-
ity at the OX2R (Ki 5 54 nM) compared with suvorexant.
As predicted, the compound was hence OX1R-selective
with a 75-fold higher affinity for this subtype. A crystal
structure of OX1R in complex with JH112 confirmed the
predicted binding mode and interactions of the designed
substituent.

M. Serotonin (5-Hydroxytryptamine) Receptors

The 5-Hydroxytryptamine (5-HT) receptors are tar-
gets of several therapeutics, including antipsychotics
and antimigraine drugs. The large number of receptor
subtypes recognizing serotonin makes it difficult to iden-
tify selective ligands. Experimental structures of four
serotonin receptor subtypes (5-HT1BR, 5-HT2AR,
5-HT2BR, and 5-HT2CR) are currently available (Figs. 3
and 4; Supplemental Table 1) (Liu et al., 2013; Wacker
et al., 2013; Wang et al., 2013; Wacker et al., 2017;
Garc�ıa-Nafr�ıa et al., 2018; McCorvy et al., 2018; Peng
et al., 2018; Yin et al., 2018; Kimura et al., 2019; Kim
et al., 2020), which guided three virtual screening cam-
paigns focusing on subtype-selective ligands (Table 5).
Rodriguez et al. (2014) aimed to identify ligands that

were selective for the 5-HT1BR over the 5-HT2B subtype.
A target-focused library with 1.3 million commercially
available compounds, which all had a positively charged
nitrogen moiety, was docked to 5-HT1B and 5-HT2B recep-
tor crystal structures. The rankings of the compounds in
these two screens were then compared. A set of 500 com-
pounds that were top-ranked for the 5-HT1BR and ranked
substantially lower (>100,000) for the 5-HT2B subtype
were inspected visually. Of these, 22 compounds were
experimentally evaluated in binding assays, leading to
the discovery of 11 ligands with affinities <10 mM (hit
rate 5 50%). Nine compounds showed selectivity for the
5-HT1B over the 5-HT2B subtype, and the fold difference
in affinity was >10 in four cases. Three 5-HT1BR-selec-
tive compounds were also tested in functional assays, and
all of them activated the G protein pathway, which
agreed with the fact that the 5-HT1BR had been crystal-
lized in complex with an agonist. The most promising
agonist had an affinity of 300 nM for the 5-HT1BR and
>300-fold subtype selectivity.
Rataj et al. (2018) attempted to identify ligands

that were selective for the 5-HT2BR using a combina-
tion of ligand- and structure-based techniques. A
machine learning method based on 2D fingerprints
was first trained to identify 5-HT1B and 5-HT2B
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ligands and subtype selectivity using compounds with
known activity. This method was then used to predict
5-HT2B-selective ligands in a library with 4.8 million
commercially available compounds. The resulting
focused library (24,849 compounds) was docked to
several 5-HT1B and 5-HT2B receptor crystal struc-
tures. The docking results were filtered based on
interactions with conserved residue Asp3.32 in the
orthosteric site, binding site waters, and noncon-
served residues in a secondary binding pocket to favor
the identification of selective compounds. A set of 231
compounds fulfilled the interaction criteria and also
had a better ranking in the 5-HT2B docking screen
than in that carried out for the 5-HT1B subtype. Nine
of these were selected for experimental evaluation
based on novelty and visual inspection. Three com-
pounds showed significant activity in binding assays
(hit rate 5 33%), and as predicted, all of these were
selective for the 5-HT2B subtype. The best compound
(8) displayed an affinity of 0.3 nM for the 5-HT1BR,
and it was nearly 10,000-fold selective.
Egyed et al. (2021) used a fragment-based approach

to optimize the selectivity of lysergic acid diethylam-
ide (LSD) for the 5-HT2B receptor. LSD binds to the
orthosteric site of both the 5-HT1B and 5-HT2B sub-
types, but affinity is 10-fold higher for the former
receptor. The goal of the study was to design a bitopic
ligand based on LSD that would increase selectivity
for the 5-HT2BR. A set of 119 fragments were docked
to a secondary pocket of the 5-HT2BR with LSD
placed in the orthosteric site. Top-scoring fragments
were then linked to LSD via an amide bond, and the
resulting compounds were then docked again, which
confirmed that the LSD scaffold and the fragments
maintained their binding modes. Two of these bitopic
compounds were synthesized, and binding assays con-
firmed the predicted selectivity profile in both cases.
Compound 5 had an affinity of 0.2 mM for the 5-HT2B

receptor and was >60-fold selective over the 5-HT1B

subtype. The selectivity profile was further evaluated
by testing at five other aminergic GPCRs (adrenergic,
serotonin, and dopamine receptors), and compound 5
again showed the highest affinity for the 5-HT2BR.
The GPCR Dock 2013 assessment demonstrated

that access to crystal structures of other aminergic
GPCRs enabled accurate prediction of the 5-HT1B and
5-HT2B receptor structures using homology modeling
(Kufareva et al., 2014). The overall binding mode of
the ligand ergotamine was well predicted (RMSD
from the crystal pose of 1.51 and 1.05 Å, respectively),
and �50% of the ligand contacts were captured in the
best models (Fig. 9). Several virtual screening studies
have used homology models of serotonin receptors
(Lin et al., 2012; Weiss et al., 2018). Weiss et al.
(2018) attempted to use a structure-based approach to
identify a multitarget compound binding to the D2R

and the 5-HT2AR, but without any affinity for H1R.
Compounds with such a polypharmacological profile
could be useful in the development of efficient anti-
psychotics with reduced side effects (Roth et al.,
2004). As there were no experimental structures of
the D2R and 5-HT2AR at this point, homology models
were created for each receptor based on a D3R crystal
structure, and an H1R crystal structure was used as
an antitarget. In total, 3 million commercially avail-
able lead-like compounds were docked into the two
models and the H1R structure. Molecules that were
top-ranked in the D2R and 5-HT2AR screens and did
not show similarity to top-ranked compounds for the
H1R or known H1R ligands were visually inspected.
Out of 28 selected compounds, 17 showed activity at
the 5-HT2AR (hit rate 5 61%), 10 showed activity for
D2R (hit rate 5 36%), and eight compounds showed
activity for both receptors (hit rate 5 29%). However,
16 of the compounds also showed affinity for the anti-
target (hit rate 5 57%). A second virtual screen with
the same aim, but with a modified docking protocol
and a new structural model of the H1R, was then per-
formed. Experimental testing of 20 predicted com-
pounds yielded similar results as the first screen, i.e.,
high hit rates for both the targets and antitarget.
Hence, although high hit rates were obtained for the
two targets, it was difficult to avoid interactions with
the closely related H1R.

N. Smoothened

Smoothened (SMO) was the first class F GPCR to
be crystallized and is a target of cancer drugs (e.g.,
vismodegib). Crystal structures revealed that several
SMO antagonists bind in buried TM pockets that par-
tially overlap with the orthosteric site of class A
GPCRs (Figs. 3 and 4; Supplemental Table 1). These
complexes revealed that certain SMO antagonists are
ineffective against tumors because binding site muta-
tions disrupt receptor-ligand interactions (Wang
et al., 2013, 2014; Weierstall et al., 2014; Byrne et al.,
2016; Zhang et al., 2017; Qi et al., 2019). Two struc-
ture-based virtual screens have been carried out with
the goal to identify novel antagonists binding in the
TM region (Table 5).
Lacroix et al. (2016) performed the first docking

screen for SMO ligands using a structure of the com-
plex with the antagonist LY2940680 (taladegib). The
docking protocol was optimized by docking of actives
and decoys, followed by a screen of 3.2 million lead-
like compounds. The top 0.2% of the ranked list
(�6400 compounds) was visually inspected, and 21 of
these were selected for experimental evaluation. The
selected compounds were predicted to interact with at
least two residues known to be important for antago-
nist binding (Asn219, Asp473, Arg400, Lys394,
Glu518, or Asp384) and to explore different subpock-
ets in the TM region. Four compounds were
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experimentally confirmed to inhibit signaling medi-
ated by SMO with IC50 values ranging from 5.3 to
34.4 mM (hit rate 5 19%). A set of 231 analogs of the
hits were identified in commercial chemical libraries
and docked to SMO. Of these compounds, 46 were
experimentally tested, which led to the identification of
several inhibitors in the micromolar range. One of these
ligands (45b, IC50 5 3.1 mM) was also tested against the
drug-resistant SMO mutant Asp473His and showed only
a 3-fold loss of activity, which can be compared with a
100-fold reduction for vismodegib.
Lu et al. (2018) developed a structure-based virtual

screening protocol to discover SMO antagonists. Four
SMO structures were first evaluated based on redock-
ing and ligand enrichment calculations, and two bind-
ing site conformations were used in the prospective
screen. A library with >1 million compounds was first
docked and scored in each structure. The 100,000 top-
ranked compounds were then extracted and docked in
two steps using increasingly advanced scoring func-
tions. The 1000 top-ranked compounds for each struc-
ture were filtered to identify molecules with drug-like
properties and clustered. From the remaining set, 21
compounds were selected for experimental evaluation.
The compounds were tested in a functional assay
measuring inhibition of hedgehog signaling. Six com-
pounds had IC50 values <10 mM (hit rate 5 29%).
The most potent compound (20) displayed an IC50 of
47 nM, which is similar to marketed drugs targeting
SMO. Twelve analogs of compound 20 were identified
by similarity and substructure searches in commer-
cial chemical libraries. Several of these were active,
but they were not more potent than the initial screen-
ing hit. MD simulations and binding free-energy cal-
culations with the molecular mechanics/generalized
Born surface area (MM/GBSA) method were used to

interpret SAR, which identified Asn219, Val386,
Ser387, Tyr394, Arg400, and Phe484 as key residues
for SMO antagonism.
Prior to the release of the first SMO crystal struc-

tures, the GPCR Dock 2013 assessment evaluated
whether this receptor in complex with ligands could
be modeled accurately. At that time, there were only
templates with very low sequence identity available
(<15% in the TM region). The results of the assess-
ment showed that it was not possible to predict the
complexes with the two ligands (LY-2940680 and
SANT-1) with high accuracy (Fig. 9). Although the
binding site of the ligands was identified, only a small
fraction of the receptor-ligand contacts (<10%) were
captured, and the RMSDs from the crystal poses were
high (4.42 and 4.31 Å, respectively) (Kufareva et al.,
2014).

IV. Opportunities and Limitations: What Can
Molecular Docking Do for You?

A. Can Docking Screens Discover G Protein–Coupled
Receptor Ligands?

Yes, the large number of successful prospective vir-
tual screens using crystal structures clearly shows
that molecular docking can identify GPCR ligands
(Fig. 8; Table 5). Novel ligand chemotypes that can
serve as starting points for drug discovery were iden-
tified in most of these screens, and with high affinities
in several cases. Based on the available results, there
are some trends regarding what can be expected from
a prospective docking screen targeting the orthosteric
binding site. The hit rates and ligand affinities will
primarily depend on the nature of the binding pocket
(Fig. 12). The highest hit rates and ligand affinities

Fig. 12. Virtual screening success depends on the nature of the receptor binding sites. High hit rates and ligand affinities/activities were obtained for
well defined and buried binding pockets with a few key polar receptor-ligand interactions, which include small-molecule binding receptors such as
M2R and H1R. Peptide and protein-binding GPCRs (e.g., NTS1R and CXCR4) have more complex orthosteric sites with either shallow, open, and/or
larger pockets than receptors that recognize small molecules. Such binding sites are generally more challenging, which is also reflected by the number
of known ligands in the ChEMBL database (activity # 10 mM and mol. wt. # 350). The dashed red line illustrates the difference in pocket depth
between the two types of binding sites (shallow: NTS1R and CXCR4; buried and/or deep: M2R, H1R, and KOR).
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were obtained for well defined and buried binding
pockets with a few key polar receptor-ligand interac-
tions. Such sites are likely to bind small-molecule
ligands with high affinity, and chemical libraries gen-
erally contain a large number of compounds endowed
with the required pharmacophore features. As a con-
sequence, a majority of the most successful docking
screens focused on receptors having such binding
pockets (e.g., adenosine, adrenergic, muscarinic, dopa-
mine, histamine, serotonin, and melatonin receptors).
Conversely, there are fewer published virtual screen-
ing studies for peptide- and protein-binding GPCRs
(e.g., neurotensin, orexin, and CXCR4 receptors). In
these cases, the orthosteric sites are more complex
with either shallow, open, and/or larger pockets than
receptors that recognize small molecules. Such bind-
ing site features will make it more challenging to
identify a drug-like ligand. In addition, the docking
algorithms can be expected to perform worse for these
types of binding sites compared with buried pockets.
Encouragingly, ligands have been discovered even for
the peptide- and protein-binding GPCRs (e.g., NTS1R
and OX2R). However, the hit rates have generally
been lower, and the ligand activities have been
weaker (Figs. 8 and 12). Even if molecular docking
clearly can discover ligands of diverse GPCRs, it
should of course not be assumed that all virtual
screens are successful. There are likely many docking
screens that did not result in any hits, which remain
unpublished.
Allosteric modulators of GPCRs have great poten-

tial as drugs (Conn et al., 2009). Although several
structures of GPCRs in complex with allosteric modu-
lators are available (Lu and Zhang, 2019; Wakefield
et al., 2019), only a few virtual screens for such
ligands have been performed (Lane et al., 2013; Korc-
zynska et al., 2018; L€uckmann et al., 2019; Liu et al.,
2020). The most challenging aspect of such studies is
to identify the site to target. Four docking screens
focusing on allosteric pockets located in the minor
pocket or ECV have been carried out (i.e., b2R,
FFA1R, D3R, and M2R) and all of these identified
ligands. Whereas extracellular, intracellular, and
intrahelical sites are straightforward to screen with
molecular docking, extrahelical pockets are more
challenging to target because standard docking algo-
rithms have not been parameterized to consider lipid-
exposed sites. An illustrative example is the binding
site of the P2Y1 receptor antagonist BPTU, which was
unexpectedly shown to bind to an extrahelical site
(Zhang et al., 2015a).
Several strategies can be used to increase the chan-

ces of screening success. Retrospective calculations to
ensure that known ligands are enriched by the recep-
tor structure are widely used. In this step, several
receptor structures can be considered to identify the

best performing binding site conformation (Rodriguez
et al., 2015; Kooistra et al., 2016; Scharf et al., 2020).
The receptor structure can also be optimized compu-
tationally before carrying out the screen to identify
additional binding site conformations (Katritch et al.,
2010; Lane et al., 2013; Vass et al., 2014b; Zheng
et al., 2017; L€uckmann et al., 2019; Patel et al., 2020;
Sadybekov et al., 2020). The inclusion of water mole-
cules in the binding site can improve the docking per-
formance (Katritch et al., 2010; Lenselink et al.,
2014). Some studies also use combinations of several
scoring functions to further improve the predictions
from the virtual screen (Vass et al., 2016; Gunera
et al., 2020; Wei et al., 2020). In the vast majority of
prospective virtual screens, a set of top-ranked com-
pounds, which can range from hundreds to thousands
of complexes, are inspected in the last step to identify
the most promising candidates. Compounds forming
similar interactions as known ligands are often priori-
tized for testing, and those that score well due to defi-
ciencies of the docking method are excluded. The
composition of the chemical library can be tailored to
increase the chances of success. Depending on the tar-
get and screening assay, fragment-, lead-, or drug-like
compound libraries may be most relevant (Table 5).
Target-focused libraries were also generated by
matching the expected formal charge of the ligands
(de Graaf et al., 2011; Wang et al., 2017; Adlere et al.,
2019) or using pharmacophore models (Wei et al.,
2020).

B. Can Docking Screens Predict G Protein–Coupled
Receptor Ligands with a Specific Functional Effect?

Prospective docking screens have identified orthos-
teric agonists, antagonists, as well as inverse agonists
of GPCRs. However, is it possible to bias the screen-
ing results toward the discovery of ligands with a spe-
cific efficacy profile? Prediction of the functional effect
of a ligand, e.g., receptor activation of G protein sig-
naling, represents another level of difficulty compared
with simply identifying compounds with affinity for
the target. The propensity of a GPCR to activate in
response to ligand binding is target-dependent. How-
ever, the prediction of agonists can generally be
expected to be more difficult than the identification of
antagonists because the stabilization of an active con-
formation requires the formation of several specific
interactions (Fig. 2).
A ligand typically has some affinity for both active

and inactive receptor conformations, and the relative
binding strength to the different states determines
the observed functional effect (Staus et al., 2016). For
this reason, it is not surprising that agonists have
emerged from docking screens against inactive recep-
tor conformations (Kruse et al., 2013; Manglik et al.,
2016; Wang et al., 2017; Lyu et al., 2019), and con-
versely, antagonists and inverse agonists were
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identified using active receptor structures (Rodriguez
et al., 2015; Stein et al., 2020). Additional steps can
be introduced to bias a screen toward the discovery of
agonists. One strategy is to compare docking results
obtained with the inactive and active receptor confor-
mations. This approach was used successfully in pro-
spective screens to identify b2R agonists (Weiss et al.,
2013) but failed for the A2AR (Rodriguez et al., 2015).
The binding site conformations of the active and inac-
tive state are generally very similar, but there are
often clear differences between what interactions the
agonists and antagonists make (Lebon et al., 2011;
Rasmussen et al., 2011). In screens for ligands with a
specific functional effect, compounds forming (or lack-
ing) key interactions can be prioritized in visual
inspection of predicted complexes (Fish et al., 2017)
or by automated filtering for contacts such as hydro-
gen bonds (Weiss et al., 2013). A more advanced
approach is to use interaction fingerprints, which has
the potential to screen for a specific functional effect
through the selection of an appropriate reference fin-
gerprint (Kooistra et al., 2015, 2016). As ligand inter-
actions that trigger activation are generally not
transferrable between receptors recognizing different
types of endogenous ligands, the prospects of success
in docking screens for agonists will be dependent on
how well the structural basis of activation is under-
stood. An encouraging result from the docking screens
is that biased signaling has been observed for a num-
ber of discovered ligands (Weiss et al., 2013; Manglik
et al., 2016; Wang et al., 2017; Patel et al., 2020), but
the structural basis of functional selectivity is still
not entirely clear.
The composition of the screening library also plays an

important role in screens for ligands with a specific effi-
cacy profile. If the goal is to identify agonists, the endoge-
nous ligand and synthetic agonists can guide the
selection of a suitable library. If the known agonists are
small and have low molecular complexity (e.g., adrena-
line or melatonin), fragment libraries are likely to con-
tain potent agonists, and such sets can be prioritized for
screening. For example, fragment-sized agonists were
discovered by docking to both the adrenergic (Weiss
et al., 2013; Kooistra et al., 2016) and melatonin (Patel
et al., 2020) receptors. If the target receptor recognizes
more complex endogenous compounds (e.g., larger pepti-
des/proteins, or complex chemistry, e.g., nucleotides),
drug-like molecules or focused libraries that capture fea-
tures required for activation may be necessary to identify
agonists. One example is the prospective docking screen
for agonists of the A2AR. Although the same strategy
allowed to identify b2AR agonists, none of the discovered
high-affinity ligands activated the A2AR. One potential
explanation for this result was a bias toward A2AR
antagonist chemotypes in the library for this target and
the complex interaction network formed by the ribose

moiety of the agonist (Rodriguez et al., 2015). In such
cases, focused virtual libraries with more complex com-
pounds, which may not be present in the commercial
libraries, can be screened, and this strategy resulted in
the discovery of several adenosine receptor agonists
(Rodriguez et al., 2016).

C. Can Docking Screens Predict Selectivity and
Polypharmacology?

Subtype-selective GPCR ligands are difficult to predict
using molecular docking screening because of limitations
of available structural data and the docking method.
First, atomic-resolution structures may not be available
for all the relevant subtypes. In addition, each experi-
mentally determined structure only represents one of
many accessible receptor conformations, which is a
major limitation if the aim is to predict ligand selectivity.
Second, docking scoring functions have not been devel-
oped to compare affinities for different binding sites.
Several strategies to identify selective GPCR ligands

using structure-based virtual screening have been
explored. In screens for subtype-selective ligands, the
least computationally expensive approach is to dock a
library to the target receptor and select compounds that
form interactions with binding site residues that are not
conserved in the antitarget (Negri et al., 2013; Wang
et al., 2017). The advantage of this method is that the
structure of the antitarget is not required. An alternative
method is to perform docking screens against both the
target and antitarget, followed by the identification of
compounds that score better for the target (Rodriguez
et al., 2014; Weiss et al., 2018). Known selective ligands
can also be docked to gain knowledge regarding the
structural basis of selectivity (Katritch et al., 2011; Ran-
ganathan et al., 2015). However, as most docking pro-
grams either do not consider binding site flexibility or
have very limited representation of induced fit, it is diffi-
cult to make accurate predictions. Even if a compound
has an unfavorable docking score for the antitarget
structure, in reality the binding pocket can rearrange
and still bind the ligand with high affinity. For these rea-
sons, it is not surprising that docking screens were
unable to identify subtype-selective ligands, e.g., for the
muscarinic (Kruse et al., 2013), orexin (Gunera et al.,
2020), and opioid (Weiss et al., 2018) receptors. However,
from a pragmatic point of view, the computational cost of
filtering for specific interactions or performing docking to
an additional structure is relatively small, and there are
also examples of successful predictions of subtype-selec-
tive ligands using this approach, e.g., for the serotonin
(Rodriguez et al., 2014) and chemokine (Schmidt et al.,
2015) receptors. The approach is most likely to succeed if
there is a well defined pocket or interactions that are
accessible in the target, but not in the antitarget. To fur-
ther improve prediction accuracy, multiple conformations
of the antitarget can be considered to account for recep-
tor flexibility (Ranganathan et al., 2015).

Structure-Based Virtual Screening for GPCR Ligands 1729

at A
SPE

T
 Journals on A

pril 4, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


A screening library can be designed to favor the dis-
covery of selective ligands. One successful study focusing
on the serotonin receptors used machine learning to
identify compounds with features similar to selective
ligands, and the resulting library was docked to the
receptor structure (Rataj et al., 2018). Ligand-based
approaches can also be used to remove compounds from
the library that are similar to ligands of the antitarget,
reducing the probability of selecting such chemotypes
(Weiss et al., 2018). As demonstrated by Ballante et al.
(2020), public HTS data can be used to identify com-
pounds that have been experimentally observed to lack
activity at a large number of targets. Such a library of
molecules was used to identify A2AR and D4R ligands
with reduced off-target activity. An alternative to screen-
ing lead- or drug-like compounds is to start with a frag-
ment library. A fragment screen against the target is
first carried out to identify many starting points for opti-
mization. In a second step, the identified fragments are
optimized to achieve potency and selectivity (Vass et al.,
2014a; Ranganathan et al., 2015).
There is an increasing interest in compounds that can

modulate several GPCRs relevant for the same disease
(Anighoro et al., 2014). Polypharmacology could lead to
synergistic therapeutic effects, and multitarget activity is
an essential property of many antipsychotic drugs (Roth
et al., 2004). The prospects of virtual screening success
will depend primarily on how closely related the targets
are and whether they recognize similar compounds. Four
structure-based virtual screening studies have used
molecular docking to identify multitarget ligands. The
first two studies focused on closely related chemokine
(Schmidt et al., 2015) and aminergic (Weiss et al., 2018)
receptors and successfully identified dual-target ligands.
In these studies, crystal structures were not available for
all targets, and homology models were used. Jaiteh et al.
(2018) and Kampen et al. (2021) focused on GPCR and
enzyme targets with disparate binding sites (A2AR and
either monoamine oxidase B or D2R) and identified sev-
eral ligands with potent dual-target activity. As new
GPCR structures become available, it will be possible to
screen large panels of targets and antitargets to identify
leads with tailored selectivity profiles. At this point, the
size of the screening library may be a limiting factor
because the number of compounds that fulfill the desired
activity profile will decrease as the number of targets
and antitargets increases.

D. Can Docking Guide Optimization of Screening Hits
for Affinity?

Hits from virtual screens often have weak activity and
need to be optimized to become useful chemical probes or
lead candidates. How can molecular docking contribute to
the hit-to-lead optimization process? First, it is well estab-
lished that docking scoring functions are rarely able to
rank congeneric ligands by affinity (Warren et al., 2006).
Instead, docking should be viewed as a tool to generate

ideas regarding what analogs to test. In a few cases, crys-
tal structures of ligands have been used to guide struc-
ture-based ligand optimization (Hellmann et al., 2020),
but typically the binding mode generated by docking is
the only available model. The predicted complex can be
helpful to identify key interactions with the receptor and
provide insights into what regions of the binding site are
not occupied. This knowledge can be an important guide
in deciding what part of the chemical structure to modify.
The predicted complex should first be analyzed in detail
to assess whether alternative binding modes are possible.
In this case, testing compounds that are predicted to be
inactive based on the model of the complex can also be
informative to judge its accuracy (Kolb et al., 2009; Rodri-
guez et al., 2014). The most common and straightforward
approach to obtain initial SAR is to identify similar com-
pounds in commercial chemical libraries, which often has
led to the identification of ligands with improved activity
(Manglik et al., 2016; Ranganathan et al., 2017; Jaiteh
et al., 2018). Considering that there are now billions of
commercially available make-on-demand compounds, the
prospects of performing rapid optimization of hits have
improved substantially in recent years (Lyu et al., 2019;
Grygorenko et al., 2020).
In the hit-to-lead optimization process, other useful

structure-based methods can complement the docking
calculations. One example is the analysis of binding site
hydration networks to identify ordered waters that can
be displaced to gain ligand affinity, which has been
applied to several GPCRs (Higgs et al., 2010; Mason
et al., 2013; Sabbadin et al., 2014; Kuhne et al., 2016).
To make more quantitative predictions, more rigorous
computational methods can also be applied. MD simula-
tions and free-energy calculations are substantially more
computationally demanding methods but should in the-
ory be able to predict relative binding affinities with
higher accuracy than docking scoring functions. MD sim-
ulations have already played an important role in under-
standing the mechanism of GPCR activation (Latorraca
et al., 2017), and recent reviews summarize the state of
the art of binding affinity prediction methods (Cournia
et al., 2017). Increasing computational power and more
automated tools to prepare such calculations make it
possible to use free-energy simulations in prospective
ligand discovery studies, and there are already a few
examples of applications to GPCRs (Lenselink et al.,
2016b; Matricon et al., 2017; Deflorian et al., 2020; Jes-
pers et al., 2020; Egyed et al., 2021).

E. Is an Experimentally Determined G
Protein–Coupled Receptor Structure Required to
Perform a Virtual Screen, or Can a Homology Model
Be Used?

Community-wide assessments of GPCR structure pre-
diction demonstrated that homology model accuracy is
strongly dependent on access to a structure of a closely
related receptor. In order for a homology model to be
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useful in virtual screening, the binding site structure
must be well predicted. The three GPCR Dock assess-
ments, which challenged modelers to blindly predict the
structures of the A2AR, D3R, CXCR4, 5-HT1BR, 5-
HT2BR, and SMO, provide some guidelines regarding
when to consider using homology models in virtual
screening (Michino et al., 2009; Kufareva et al., 2011,
2014). If only distant templates (TM sequence identity
<30%–35%) were available, it was difficult to generate
good models of the binding site. In such cases, it is
unlikely that the model will be useful in virtual screen-
ing. Good binding site models were obtained if structures
of closely related receptors (TM sequence identity
>35%–40%) were available and if the target and tem-
plate recognize similar compounds. Based on bench-
marking studies and prospective screens, the same
virtual screening success rates with a homology model
as with a crystal structure can be expected at this level
of model quality (Carlsson et al., 2011; Jaiteh et al.,
2020). However, as several details of the binding site
structure (e.g., loop regions) may not be modeled accu-
rately, prediction of the efficacy or selectivity of the com-
pounds will be more difficult compared with using a
high-resolution experimental structure (Rodriguez et al.,
2014; Weiss et al., 2018). Virtual screening performance
of homology models can be enhanced when known
actives are available. Models generated with different
methods and/or templates can then be evaluated by cal-
culating the ligand enrichment, and the structure with
the optimal performance can be used in the prospective
virtual screen (Lim et al., 2018; Costanzi et al., 2019;
Jaiteh et al., 2020). Most of the successful virtual screens
based on homology models used a structure of a closely
related receptor as template (Carlsson et al., 2011; Kolb
et al., 2012; Vass et al., 2014b; Lam et al., 2015; Ranga-
nathan et al., 2015; Sz}oll}osi et al., 2015; Kaczor et al.,
2016; Weiss et al., 2018). If only distant templates are
available, the binding site model will generally be poor,
and the chances of virtual screening success are lower.
For example, virtual screening using homology models of
the A2AR (Langmead et al., 2012) and CXCR4 (Mysinger
et al., 2012b) based on distant templates resulted in hit
rates that were >4-fold lower than subsequent screens
based on crystal structures (Carlsson et al., 2010;
Mysinger et al., 2012b). Notable examples of docking
screens that identified ligands using homology models
based on distant templates are the discovery of modula-
tors of orphan receptors MAS related GPR family mem-
ber X2 (MRGPRX2), GPR65, and GPR68 (Huang et al.,
2015; Lansu et al., 2017).

V. Conclusions

The rapidly increasing structural coverage of the GPCR
family provides ample opportunities to use virtual screen-
ing to discover ligands of these therapeutically important
targets. Our summary of successful molecular docking

screens shows that this approach can contribute to the
discovery of novel leads for a wide range of GPCRs. The
chances of identifying GPCR ligands by molecular docking
are not only dependent on the screening approach itself
but also heavily influenced by the nature of the binding
site and the composition of the chemical library. In favor-
able cases, the efficacy and selectivity profiles of the
ligands can also be predicted, but there is a clear need for
more accurate computational methods in this area. The
application of virtual screening to the large number of
GPCR structures that have recently been solved has the
potential to contribute to the discovery of chemical probes,
which can yield insights into the biological functions of
GPCRs and facilitate drug discovery.
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