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Abstract——The first matrix metalloproteinase (MMP)
was discovered in 1962 from the tail of a tadpole by its
ability to degrade collagen. As their name suggests, ma-
trix metalloproteinases are proteases capable of remodel-
ing the extracellular matrix. More recently, MMPs have
been demonstrated to play numerous additional biologic
roles in cell signaling, immune regulation, and transcrip-
tional control, all of which are unrelated to the degrada-
tion of the extracellular matrix. In this review, we will
present milestones and major discoveries of MMP re-
search, including various clinical trials for the use of
MMP inhibitors. We will discuss the reasons behind the
failures of most MMP inhibitors for the treatment of
cancer and inflammatory diseases. There are still mis-
conceptions about the pathophysiological roles of
MMPs and the best strategies to inhibit their detrimen-

tal functions. This review aims to discuss MMPs in
preclinical models and human pathologies. We will dis-
cuss new biochemical tools to track their proteolytic
activity in vivo and ex vivo, in addition to future phar-
macological alternatives to inhibit their detrimental
functions in diseases.

Significance Statement——Matrix metalloprotei-
nases (MMPs) have been implicated in most inflamma-
tory, autoimmune, cancers, and pathogen-mediated
diseases. Initially overlooked, MMP contributions can
be both beneficial and detrimental in disease progres-
sion and resolution. Thousands of MMP substrates
have been suggested, and a few hundred have been
validated. After more than 60 years of MMP research,
there remain intriguing enigmas to solve regarding
their biological functions in diseases.

I. Introduction

Proteolysis is a key posttranslational modification. Every

single protein will encounter a protease, at some point in its

lifetime, to either remove a signal peptide, cleave a propep-

tide for activation, process a protein to modify its functions,
or initiate ubiquitination and degradation (Fortelny et al.,
2014; Kappelhoff et al., 2017). Proteases are fundamental
enzymes implicated in all aspects of biology, representing
�3% of the human genome, and are divided into five

ABBREVIATIONS: ABP, activity-based probe; ACPP, activatable cell-penetrating peptide; ADAM, a disintegrin and metalloproteinase;
ADAMTS, a disintegrin and metalloproteinase with thrombospondin motif; AP, activator protein; BAY 12-9566, tanomastat; BB-94, batima-
stat; BBB, blood-brain barrier; B-CLL, B cell chronic lymphocytic leukemia; BM, basement membrane; BRET, bioluminescence resonance
energy transfer; CD, Crohn’s disease; CDn, cluster of differentiation n; CLP, cecal ligation and perforation; CNS, central nervous system;
EAE, autoimmune encephalomyelitis; ECM, extracellular matrix; EMMPRIN, extracellular matrix metalloproteinase inducer; FDA, US
Food and Drug Administration; Fra, FOS-related antigen; FRET, F€orster resonance energy transfer; GI, gastrointestinal; GM6001, iloma-
stat; GPI, glycosylphosphatidylinositol; HBV, hepatitis B virus; HIV, human immunodeficiency virus; IBD, inflammatory bowel disease;
ICU, intensive care unit; IFN, interferon; IL, interleukin; INXN-1001, veledimex; LAP, latency-associated peptide; LPS, lipopolysaccharide;
LRP1, low-density lipoprotein receptor–related protein 1; LTBP, latent TGFb binding protein; mAb, monoclonal antibody; mCD100, mem-
brane-bound CD100; Met, methionine; MMP, matrix metalloproteinase; MPO, myeloperoxidase; MRI, magnetic resonance imaging; MS,
multiple sclerosis; MT-MMP, membrane-type matrix metalloproteinase; NF-jB, nuclear factor kappaB; NIR, near-infrared; PAR, protease-
activated receptor; PDB, Protein Data Bank; PTM, posttranslational modification; RA, rheumatoid arthritis; RECK, reversion-inducing
cysteine-rich protein with Kazal motifs; ROS, reactive oxygen species; sCD100, soluble CD100; SDS, suppressor of defective silencing; SpA,
spondyloarthritis; Tat, transactivator of transcription; TGFb, transforming growth factor-beta; TIMP, tissue inhibitor of metalloproteinase;
TNFa, tumor necrosis factor-alpha; UC, ulcerative colitis; VE-cadherin, vascular endothelial cadherin; VEGF, vascular endothelial growth
factor.
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mechanistic classes of catalysis: metallo, serine, cysteine, as-
partic acid, and threonine proteases (Puente et al., 2003;
Wang et al., 2021) (Fig. 1); see the MEROPS database
(https://www.ebi.ac.uk/merops/) for the lists of all known
proteases (Rawlings et al., 2010). Proteases can selectively
process, cleave, or degrade all proteins, and our understand-
ing of this web of interactions known as the protease web
(Fortelny et al., 2014) remains largely uncharacterized. In
this review, we will focus on matrix metalloproteinases
(MMPs) and present our current understanding of their bio-
logic functions and roles in diseases, examine biochemical
tools to study their functions, and discuss past and future
clinical trials of MMP inhibitors. Precisely, we start with a
historical perspective of MMPs (section II). Next, we discuss
their molecular mechanisms and physiologic roles in
cellular processes (section III). We provide examples of
how MMPs can be protective or detrimental in various dis-
eases (section IV) and discuss multiple MMP inhibitors
(section V). Moreover, we present molecular tools for target-
ing active MMPs (section VI), and we conclude our review
with new perspectives and future directions in the MMP
field (section VII).

II. Matrix Metalloproteinases

A. History of Matrix Metalloproteinases

In 1962, J. Frederick Woessner published a land-
mark paper showing that a protease could degrade
collagen in the mammalian uterus (Woessner, 1962).
A few months after, Jerome Gross and Charles Lap-
iere published the first publication describing an
MMP by demonstrating that the anuran tadpole
underwent collagen turnover during metamorphosis,
as shown by collagen degradation in the skin, gills,
and gut (Gross and Lapiere, 1962). Four years later,
in 1966, the first MMP (MMP1), termed tadpole colla-
genase at the time, was purified from a tadpole tail

fin and back skin (Nagai et al., 1966). Not long after,
in the 1970s, MMP2 and MMP3 were identified.
MMP2 was first sequenced in 1988 and was first
called 72-kDa type IV collagenase/gelatinase A due to
its ability to degrade denatured collagen/gelatin (Col-
lier et al., 1988). The laboratories of Guy Salvesen
and Hideaki Nagase first purified MMP2 from human
rheumatoid synovial fibroblasts in 1990 (Okada et al.,
1990). MMP3, originally termed proteoglycanase, was
identified due to its lower molecular mass (54 kDa)
and its ability to degrade proteoglycan and casein
(Galloway et al., 1983). In 1985, the laboratory of
Zena Werb first purified MMP3 from rabbit synovial
fibroblasts and later called it stromelysin (Chin et al.,
1985). The first evidence of the cross-activation of
MMPs in a protease web was in 1987 by the activa-
tion of proMMP1 (latent MMP1) by MMP3 (Murphy
et al., 1987), further demonstrated in 1989 by the lab-
oratory of Gregory Golberg (He et al., 1989). At the
time of discovery, MMP4, -5, and -6 were believed to
be novel MMPs but were later found to be redundant-
ly identified as MMP1, -2, or -3; therefore, they are
not present in the current nomenclature (Overall and
Sodek, 1987; Otsuka et al., 1988). As more MMPs
were being identified, a single MMP was carrying
multiple names; hence, in the late 1980s, the name
MMP was first proposed (Okada et al., 1987), and the
International Union of Biochemistry and Molecular
Biology designated the family with the terminology.
By 1991, there were seven known MMPs (MMP1, -2,
-3, -7, -8, -9, and -10). After the completion of the hu-
man genome project, we now know that the MMP
family in humans consists of 23 members, each com-
posed of various domains (Fig. 2).

B. MMP Domains, Structures, and Mechanism of
Action for Proteolysis

MMPs belong to the superfamily of metzincin pro-
teases, which is a family of multidomain zinc-depen-
dent endopeptidases that can be grouped into six
families: the astacins, the adamalysins (a disintegrins
and metalloproteinases, or ADAMs), and the ADAMs
with thrombospondin motif (ADAMTSs), the pappaly-
sins, the serralysins, and the MMPs (Sternlicht and
Werb, 2001; Sela-Passwell et al., 2011b; Tokito and
Jougasaki, 2016; Wang et al., 2021). The metzincins
received this denomination due to a characteristic fea-
ture in their structure, a methionine (Met) residue at
the active site and the use of zinc in the enzymatic re-
action. They share the following conserved domain:
HEXXHXXGXXH, where H is histidine, E is glutamic
acid, G is glycine, and X is any amino acid. The three
histidines bind to zinc in the catalytic site (Maskos,
2005) (Figs. 2 and 3, A and B). The three-dimensional
structure of MMPs was elucidated by multiple groups
over the years. For example, it has been demonstrat-
ed that the active site of this class of proteases has a

Protease Classes

Threonine (16)

Aspartic (21)

Cysteine (136)

Metallo (148)

Serine (152)

Fig. 1. Types of protease classes. The 473 human proteases are shown by
their mechanism of catalysis. There are 152 serine proteases, 148 metal-
loproteases, 136 cysteine proteases, 21 aspartic proteases, and 16 threo-
nine proteases. For the full list, see the MEROPS database (https://www.
ebi.ac.uk/merops/).
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deep cavity and that its composition can be quite
identical among its members, reaching up to 86% of
similarity for MMP3 and -10 (Lovejoy et al., 1994;
Laronha and Caldeira, 2020). Although their active
sites located in the catalytic domain are highly con-
served (Overall and L�opez-Ot�ın, 2002), the 23 mem-
bers of the MMP family present various domains and
exhibit some structural diversity (Fig. 2).
MMPs can be divided into subgroups depending on

their linear sequence similarity, domain organization,
and substrate specificity. For example, MMP1, -3, -8,
-10, -12, -13, -19, -20, and -27 are archetypal MMPs
containing a signal peptide, a prodomain, a catalytic
domain, and a hemopexin-like C-terminal domain
(Fig. 2). MMP2 and -9 were previously called gelati-
nases A and B due to their ability to cleave denatured
collagen or gelatin; they contain a fibronectin type-II
modules domain. MMP7 and -26, initially termed ma-
trilysins, lack a hemopexin-like domain. There are six
membrane-type matrix metalloproteinases, or MT-
MMPs (MT1-MMP or MMP14, MT2-MMP or MMP15,
MT3-MMP or MMP16, MT4-MMP or MMP17, MT5-
MMP or MMP24, and MT6-MMP or MMP25), that lo-
calize to the plasma membrane via a transmembrane

segment or a glycosylphosphatidylinositol (GPI) an-
chor domain (Fig. 2). MMP23 is a unique MMP that
contains a cysteine array (CA) and immunoglobulin
(Ig)-like domains; there is only limited knowledge in
the literature on MMP23, and as such, the precise
roles of these unique domains remain elusive (Fig. 2).
MMP28 or epilysin is the last member of the MMPs
to be identified and characterized, and it contains
unique features not observed in other MMPs, such as
the presence of threonine within its catalytic se-
quence (Lohi et al., 2001). Therefore, MMPs contain
high structural homology of their catalytic domain de-
spite a lower overall sequence similarity due to the
presence of specific domains (St€ocker et al., 1995;
Sternlicht and Werb, 2001).
MMP1, -8, -13, and MT1-MMP, which were also

termed collagenases in the literature, can cleave fi-
brillar collagen types I to IV, and also XI, resulting in
the generation of two typical fragments: 1/4 C-termi-
nal and 3/4 N-terminal (Visse and Nagase, 2003; Ho-
tary et al., 2003; Nagase et al., 2006; Sabeh et al.,
2009). MMP2 and -9 (gelatinases) can also cleave ex-
tracellular matrix (ECM) proteins in vitro, including
collagens and proteoglycans, resulting in changes in

Signal peptide

Propeptide

Catalytic domain

Hinger/linker domain

Hemopexin domain

Fibronectin type II modules

Convertase cleavage site

Zn2+

Archetypal MMPs
MMP1, -3, -8, -10, -12, -13, -19, -20, -27

Gelatinases
MMP2, -9

Zn2+

Matrilysins
MMP7, -26

Zn2+

Convertase-activable MMPs

Zn2+

Secreted: MMP11, -21, -28

Membrane-associated: MMP14, -15, -16, -24

Zn2+

Membrane linker

Transmembrane segment 1

Cytoplasmic tail

GPI

Transmembrane segment 2

MMP23B

Zn2+

CA

Ig-like

Membrane-associated: MMP17, -25

Zn2+

Zn2+

Fig. 2. Domains of human MMPs. Schematic representation of the various domains of the 23 human MMPs. Archetypal MMPs (MMP1, -3, -8, -10, -12,
-13, -19, -20, and -27) contain a signal peptide, a propeptide, a catalytic domain that binds a Zn21 residue, and a hemopexin C-terminal domain. Gelati-
nases (MMP2 and -9) contain a fibronectin type-II modules domain. Matrilysins (MMP7 and -26) contain a signal peptide, a propeptide, and a catalytic
domain but lack a hemopexin C-terminal domain. The convertase-activable MMPs (MMP11, -14, -15, -16, -17, -21, -23B, -24, -25, and -28) contain a con-
vertase cleavage site in their propeptide that is cleaved by furin or furin-like proteases. Six MMPs contain a membrane linker and are localized on the
cell surface. Additional domains include glycosylphosphatidylinositol (GPI), a transmembrane segment 1 or 2, a cysteine array (CA) and an immuno-
globin-like (Ig-like) domain.
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embryonic growth and development, tissue remodel-
ing, inflammation, and wound healing (Sternlicht and
Werb, 2001; Overall and Kleifeld, 2006b; Fallata
et al., 2019). They previously received this denomina-
tion due to their distinct collagen-binding domain
that contains three fibronectin type II repeats, confer-
ring the ability to bind and cleave gelatin (denatured
collagen) (Allan et al., 1995) (Figs. 2 and 3). MMP7
and -26 (matrilysins) can also cleave collagen and gel-
atin in vitro. They are unique due to the lack of a he-
mopexin domain, which is a characteristic structure
found in all other MMPs (Fig. 2). MMP3 and -10 (stro-
melysins) share the same domain presented by the ar-
chetypal MMPs but cannot cleave interstitial collagen.
MMP3 and -10 are closely related and share structural
characteristics and substrate specificity. In addition,
they can cleave numerous substrates and promote the
conversion of a proMMP into an active enzyme (Na-
gase et al., 2006). The MT-MMPs have a prodomain at
the C-terminal, which contains a furin-like proprotein
convertase site. Therefore, they are activated intracel-
lularly via proteolytic processing of the furin domain,
promoting activation of the enzyme that is further di-
rected to the cell surface due to its membrane-anchor-
ing domains (Sohail et al., 2008; Khokha et al., 2013).
They can be subdivided into two groups: type I trans-
membrane proteins (MMP14, -15, -16, and -24) and
GPI anchored proteins (MMP17 and -25) (Fig. 2).
MMP28 mRNA is typically expressed in epithelial cells
of many tissues in both mice and humans, with a high
expression in the lungs and skin, as well as in macro-
phages (Lohi et al., 2001; Rodgers et al., 2009; Gharib
et al., 2018). Interestingly, MMP28 appears to contain
limited ability to cleave ECM proteins, as very few
substrates have been identified to date, but it has been
shown to stimulate chemokine expression (Ma et al.,
2013; Manicone et al., 2017; Gharib et al., 2018; Long
et al., 2018).
MMP transcription is independently regulated, as

each cell type, depending on the stimulus, may pro-
duce different MMPs and at different levels (Sternlicht
and Werb, 2001; Overall and L�opez-Ot�ın, 2002). Most
MMPs are not produced or only produced in low
amounts under homeostatic conditions; however, this
changes dramatically when a cell is stimulated with
chemokines, cytokines, or growth factors, which typi-
cally results in an elevation of MMP production. Other
factors like cell shape or cell stress can also regulate
MMP transcription (Kheradmand et al., 1998). Some
MMPs are uniquely regulated via specific transcription
factors. For example, functional AP-1 site was demon-
strated to mediate MMP2 transcription in cardiac cells
via the binding of protein c-FOS (FOS)-related antigen
(Fra)1-JunB and FosB-JunB heterodimers (Bergman
et al., 2003). This regulation is often cell dependent;
for example, in glomerular mesangial cells, MMP2 is

regulated by the YB1 transcription factor (Mertens
et al., 1997). Interestingly, during ischemia-reperfusion
injury, elevated levels of FosB and JunB were identi-
fied, whereas only JunB was identified under control
conditions (Alfonso-Jaume et al., 2006). In another
study, ischemia induced the expression and binding of
several transcription factors, including c-FOS, c-Jun,
JunB, FosB, and Fra2 (Lee et al., 2005). In skeletal
muscle, activator protein (AP)1 and repressor element
1 (RE1) binding sites coupled with increased Fra1,
Fra2, and AP2 (Liu et al., 2010). Therefore, transcrip-
tional regulation of MMPs appears to be cell selective,
tightly regulated, and likely an adaptable process.
Changes in cell signaling via phosphorylation of

various kinases such as mitogen-activated protein ki-
nase (MAPK), p38, focal adhesion kinase (FAK), ex-
tracellular signal-regulated kinase (ERK)1, or protein
kinase B (Akt) can induce MMP transcription and
translation (Johansson et al., 2000; Dufour et al.,
2010; Zarrabi et al., 2011; Madzharova et al., 2019).
Despite various extracellular signals and cell signal-
ing pathways shown to regulate MMP expression, the
transcription factor AP1 and its binding site are pre-
sent in the promoter region of most MMPs and ap-
pear to regulate their transcription (Pend�as et al.,
1997). AP1 contains members of the FOS and JUN
family of oncoproteins which are likely involved in
the regulation of MMPs in cancer cells (Overall and
L�opez-Ot�ın, 2002). Transcriptional control of MMPs is
complex, and there are multiple other nuclear factors
that have been demonstrated to regulate MMPs, in-
cluding erythroblast transformation-specific (ETS),
NF-jB, signal transducers and activators of transcrip-
tion (STATs), transcription factor 4 (TCF4), CIZ, p53,
and core-binding factor alpha 1 (CBFA1) (Bond et al.,
1999; Sun et al., 1999; Nakamoto et al., 2000; Craw-
ford et al., 2001). Although most MMPs are regulated
by the same transcription factors, some MMPs, like
MMP26, have a unique TATA box and a transcription-
al site located at 60 and 35 nucleotides upstream of
its translation start site (Strongin, 2006). Only
MMP12, -26 and -27 contain an unusual poly(A) site
located upstream of their promoter, which, for the
case of MMP26, abolishes accidental transcription;
however, the functional role of this poly(A) site in
MMP12 and -27 remains uncharacterized (Strongin,
2006). Overall, MMPs are transcriptionally regulated
in multiple ways and tend to be closely associated
with an increase in inflammation, immune cell infil-
tration, and tumorigenesis.
The first MMP 3D structures were published in 1994

by different groups showing the catalytic domain of
MMP1 and MMP8 using X-ray crystallography, followed
by the determination of the active full-length MMP1 in
1995 (Li et al., 1995). To date, a multitude of new struc-
tures have been described for multiple MMPs, using tools
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such as X-ray crystallography and nuclear magnetic reso-
nance (NMR) spectroscopy. These tools provided the full-
length tridimensional structure of a few MMPs, including
proMMP1 (Li et al., 1995), proMMP2 (Morgunova, 1999),
proMMP7 (Prior et al., 2015), and proMMP12 (Bertini
et al., 2008). Based on X-ray crystallography data, MMPs
are usually composed of a signal peptide, a prodomain, a
catalytic site, a linker or hinge region, a hemopexin do-
main, and, depending on the MMP, a transmembrane re-
gion (Fig. 3A). Signal peptides can be of variable length
and are found at the N terminus, targeting the protein
for secretion. The prodomain, typically �80 amino acids,
keeps the protease inactive and is proteolytically removed
by other proteases once the enzyme has reached the re-
spective site requiring its biologic function. The catalytic
site of �170 amino acids harbors the zinc ion and is com-
posed of five b-sheets and three a-helixes. The linker or
hinge region has a variable length, from 14 to 69 amino
acids, and links the catalytic domain to the hemopexin-
like domain. The hemopexin domain, composed of �210
amino acids, has a four-blade propeller domain. Six
MMPs, the MT-MMPs, have a transmembrane region
(Nagase et al., 2006; Cauwe et al., 2007; Laronha and
Caldeira, 2020) (Fig. 2). Notable exceptions include
MMP7, -23, and -26 lacking the linker peptide and hemo-
pexin domain (Nagase et al., 2006) (Fig. 2). MMP2 and -9
are characterized by three repeats of a fibronectin type-II
motif in the metalloprotease domain (Fig. 2).
MMPs are synthesized with a signal peptide located

at their N terminus (Fig. 2). This short peptide tar-
gets the protein to the secretory pathway before being
removed in the endoplasmic reticulum to give rise to
the proMMP or zymogen (Sternlicht and Werb, 2001;
Maskos, 2005). The prodomain comprises three a-he-
lixes, connecting loops, and a cysteine switch (Stern-
licht and Werb, 2001; Visse and Nagase, 2003). The
a-helixes assume a nearly perpendicular shape among
each other, gaining some flexibility due to the loop
(Maskos, 2005). This arrangement promotes an oval
structure located close to the catalytic domain and its
active site cleft. The first loop, located between helix 1
and helix 2, has a protease-sensitive sequence known
as the “bait region.” In the case of proMMP1 and
proMMP2, it is defined by amino acids EKRRN and
SCNLF, respectively (Maskos, 2005; Mannello and
Medda, 2012; Laronha and Caldeira, 2020). Cleavage
within the bait region can destabilize the prodomain
structure in proMMPs (Suzuki et al., 1990; Atkinson
et al., 1995). The flexibility that is a feature of this re-
gion imposes a challenge for proper elucidation of its
structure, which has only been described for proMMP2.
There were two factors that played a role in resolving
the structure of proMMP2’s bait region: 1) a shorter loop
with six amino acids fewer when compared with other
MMPs and 2) the presence of a disulfide bond that stabil-
izes the region (Maskos, 2005). In the prodomain of

MMP1, a highly conserved sequence follows the three
a-helixes and is composed of PRCGXPD (Mannello and
Medda, 2012; Laronha and Caldeira, 2020). This region,
also termed the cysteine switch, starts at amino acid 90
and ends at the cleavage site located at amino acid 99,
marking the beginning of the active enzyme (Maskos,
2005). The cysteine switch rests on top of the substrate-
binding site and is so called due to its ability to inhibit
the protease’s function. Of note, this sequence binds
from the P30 to the P2 at the substrate-binding site,
which is the opposite of the actual peptide substrate
and which makes five hydrogen bonds with the main
chain (Maskos, 2005; Nagase et al., 2006). The Arg91
and the Asp96 form a salt bridge, bending the loop
structure placed above a histidine that takes part in
the zinc-binding residues. Moreover, the salt bridge is
protected from water by the side chains of up to three
Tyr/Phe residues located in the intact prodomain (Mas-
kos, 2005). Finally, the sulfhydryl group located on
Cys92 interacts with the catalytic zinc ion, working as
a fourth ligand and forming a tetrahedral coordination
sphere that blocks the enzyme activity (Jacobsen et al.,
2010). Cleavage within the bait region allows exposure
to other cleavage sites, destabilizing this Cys-Zn21 in-
teraction, allowing the binding of a water molecule to
the zinc, and resulting in full activation of the enzyme
(Nagase et al., 2006; Jacobsen et al., 2010).
In proMMP1, the prodomain can regulate the entire

enzyme configuration because it binds to the hemo-
pexin domain and promotes a locked protein arrange-
ment, which is the opposite of active MMP1 (Li et al.,
1995; Jozic et al., 2005). Upon the removal of its pro-
domain, MMP1 assumes an open configuration that
creates a collagen-binding site. In the case of MMP11,
-28, and the MT-MMPs, an increase of up to 22 resi-
dues can be observed in between the cysteine switch
and the N terminus (Marchenko et al., 2002; Maskos,
2005). Cleavage of the furin-like region located in this
loop promotes enzyme activation, which takes place
in the trans-Golgi network; therefore, these specific
MMPs can then reach the cell surface in their active
state. Lastly, MMP26 depends on specific processing
mechanisms since an Arg/His mutation in the other-
wise conserved cysteine motif, PHCGXXD, abolished
its function and promoted an alternative activation
pathway (Marchenko et al., 2002).
The active site is largely conserved among the dif-

ferent MMPs, presenting as a sphere shape with a di-
ameter of around 40 Å (Tallant et al., 2010). There
are two features on the surface of MMPs that are
characteristic of the catalytic domain: a pocket that
holds the Zn21 ion and a shallow cleft for substrate
binding, which further subdivides the region into an
upper N-terminal subdomain and a lower C-terminal
subdomain (Fig. 3, A and B). The secondary struc-
tures that constitute the catalytic domain include five
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b-strands (bI to bV), with four parallel strands (bI,
bII, bIII, bV) and one antiparallel (bIV), three a-helix-
es (aA to aC), and eight connecting loops (Tallant
et al., 2010) (Fig. 3C). Of note, three loops protrude
from the surface of the upper subdomain: the connec-
tion between bII and bIII (LbIIbIII), LbIIIbIV, and
LbIVbV; these connections are a characteristic feature
of MMPs, which separates them from other metzin-
cins (St€ocker and Bode, 1995; Gomis-R€uth, 2003,
2009). Besides the Zn21 ion in the catalytic site, which
is required for catalysis, an additional Zn21 ion and
three Ca21 ions promote conformational stability for
the protein’s structure. Starting from the N terminus,
the chain goes through bI, aA, bII, and bIII (Maskos,
2005) (Fig. 3, A and C). Next, it enters the LbIIIbIV
loop, commonly referred to as the S-loop, which has 16
amino acids and possesses two ion-binding sites (Tal-
lant et al., 2010) (Fig. 3C). Zinc is the first ion housed
by this loop, presenting a structural function, tetrahe-
drally supported by three histidines (His147, His162,
and His175, using the proMMP1 sequence), and mono-
dentately supported by an aspartate (Asp149) (Tallant
et al., 2010). This chain composition is essential for
proper MMP function, as a double mutant presenting
no metal ligands is inactive (Tallant et al., 2010; Pala-
dini et al., 2013).

Calcium is the second ion supported by the S-loop,
which is coordinated by the side chain of two aspartates
and one glutamine (Asp154, Asp177, and Glu180) and
three main chain carbonyl oxygens, all of them in a
monodentate manner (Maskos, 2005; Tallant et al.,
2010). The S-loop connects the chain to the bIV strand,
which provides the structure for the active site cleft.
Next, the main chain enters the LbIVbV loop that, in
combination with LbIIbIII, holds another Ca21 ion
(Visse and Nagase, 2003; Tallant et al., 2010; Laronha
and Caldeira, 2020). Interestingly, in some structures, a
third Ca21 ion is housed in between the LbIaA and
LbVaB loops via the carboxylate groups of two acidic
groups and two main chain carbonyl groups (Maskos,
2005). After exiting strand bV, the chain goes through
the LbVaB loop, which is a source of substrate specific-
ity in the MMP family due to its high variability. This
region constitutes the fibronectin type II motif, found in
MMP2 and -9 and spanning 177 and 178 residues, re-
spectively (Tallant et al., 2010) (Fig. 3C). Subsequently,
the loop connects the polypeptide to helix aB, which
also participates in the active site by providing two his-
tidine residues as ligands for the catalytic zinc ion (Tal-
lant et al., 2010) (Fig. 3B). The glycine of the consensus
sequence in the helix aB marks the end of the upper N-
terminal subdomain. Moreover, this amino acid also

Fig. 3. MMP structure. (A) Ribbon representation of proMMP2 (PDB: 1GXD). MMP domains and inorganic ions are labeled and colored. Prodomain is
shown in magenta, catalytic domain in teal, linker region in black, hemopexin domain in gray, zinc ion in yellow, and calcium ion in dark gray. (B) Rib-
bon representation of MMP1’s active site (PDB: 1AYK). The overall structure is colored in teal. Important residues in the zinc interaction are labeled,
colored, and represented as sticks. Zinc is shown in yellow, histidine in gray, and glutamic acid in orange. (C) Ribbon representation of proMMP2’s cata-
lytic site. Secondary structures are colored, and important segments are also labeled. Calcium is shown in dark gray, zinc in yellow, a-helixes in blue
(aA, aB, and aC), b-sheets in green (bI, -II, -III, -IV, -V), S-loop in navy blue, specificity loop in purple, and Met-turn in pink.
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allows the chain to perform a sharp turn, closely fol-
lowed by the third histidine residue that participates in
the zinc ion interaction (Tallant et al., 2010) (Fig. 3B).
After the third histidine, a short loop precedes a tight
1.4-turn, named “Met-turn” due to a conserved methio-
nine residue (Visse and Nagase, 2003; Maskos, 2005;
Tallant et al., 2010; Laronha and Caldeira, 2020). Finally,
a specificity loop that is important for substrate specificity
connects the Met-turn with the aC helix, the last compo-
nent of this lower C-terminal subdomain (Fig. 3C).
The catalytic domain is connected to the hemopexin

domain via the linker or hinge region (Tallant et al.,
2010) (Figs. 2 and 3A). The linker region is a proline-
rich sequence of variable length (Laronha and Cal-
deira, 2020), spanning from 15 to 65 amino acids
(Maskos, 2005). It is crucial for the MMP structure
since it provides interdomain flexibility (Overall and
Butler, 2007; Murphy and Nagase, 2008). Moreover,
the hinge region is involved in the hydrolysis of com-
plex substrates by MMP1, -8, and -13 since it requires
the coordinated activation of both the catalytic domain
and the hemopexin domains. For example, MMP1 and -8
have reduced collagenolytic function when mutations are
introduced in the hinge region (Kn€auper et al., 1997;
Tsukada and Pourmotabbed, 2002). Lastly, the laborato-
ries of Hideaki Nagase (Chung et al., 2004), Chris Over-
all (Tam et al., 2004), Irit Sagi (Rosenblum et al., 2007),
and Ghislain Opdenakker (Van den Steen et al., 2006)
have demonstrated that the linker region itself can also
contribute in the binding, unwinding, and breakdown of
collagen and various other MMP substrates.
The hemopexin-like domain is located at the C ter-

minus of MMP’s structure and was named after its
similarity with hemopexin, which is a plasma heme-
binding and heme-transport protein (Faber et al.,
1995; Tallant et al., 2010) (Fig. 3A). The structure of
the hemopexin domain can be characterized by the
presence of four b-sheets (bI to bIV), or blades, which
are named according to their appearance order. Im-
portantly, the b-sheets follow a symmetrical structure
that creates a central channel, which resembles a
four-bladed propeller structure (Gohlke et al., 1996;
Gomis-R€uth et al., 1996; Morgunova, 1999; Cha et al.,
2002; Jozic et al., 2005). The b-sheets are connected
by short peptide loops and, in combination with short
helixes, shape the outer edges of the structure, which
is connected and stabilized by disulfide bridges be-
tween blade I and blade IV (Maskos, 2005). The he-
mopexin domain is lacking in three MMPs: MMP7,
-23, and -26 (Fig. 2). Interestingly, multiple MMPs
that contain a hemopexin domain lose it soon after be-
ing activated. One example is MMP12; after losing its
hemopexin domain, four amino acids within blade II
of its hemopexin domain contain potent antimicrobial
activities against both gram-negative and gram-posi-
tive bacteria (Houghton et al., 2009). However, in

most cases, the hemopexin domain is involved in sub-
strate identification and specificity (Murphy et al.,
1992; Dufour et al., 2008, 2010; Zucker et al., 2009;
Zarrabi et al., 2011; Manka et al., 2012; Vandooren
et al., 2013).
Lastly, there is a total of six binding pockets in

MMPs: S1, S2, S3, S1’, S2’, and S30 (Rangasamy
et al., 2019). The S1, S2, and S3 are located on the
right side of the catalytic zinc ion (Rangasamy et al.,
2019). Consequently, the S1’, S2’, and S30 are located
on the left side of the zinc ion. The inhibitors or mole-
cules interacting with the binding pockets are named
according to which pocket they interact with, such as
P1, P2, P3, P1’, P2’, and P30 (Maskos, 2005). Among
all of the pockets, the S1’ is the most variable and the
most important since it determines substrate specific-
ity (Nagase et al., 2006). The pocket cavity, in turn, is
defined by the X-loop, which is highly hydrophobic
(Rangasamy et al., 2019). Alternatively, S2 is the
least variable pocket (Laronha and Caldeira, 2020).
The remaining pockets, S2, S30, S1, and S3, sit in be-
tween with around the same level of variability (Na-
gase et al., 2006). The depth of the S1’ pocket can be
used to subdivide the MMPs since it can be present in
a shallow, intermediate, and deep pocket configura-
tion (Eckhard et al., 2016b; Rangasamy et al., 2019).
MMPs are activated via various mechanisms to exert
their proteolytic functions and need to be tightly reg-
ulated by endogenous inhibitors to assure an ade-
quate physiologic balance of their processing and
degradative functions.

C. Endogenous Inhibitors and the Tissue Inhibitor of
Metalloproteinases

1. Cloning and Identification. The first tissue in-
hibitor of metalloproteinase (TIMP) was described in
1972 (Bauer et al., 1972). After the initial discovery
and subsequent molecular characterization in 1985,
TIMP1 was found to be identical to a factor with ery-
throid-potentiating activity (Gasson et al., 1985). Im-
portantly, due to this initial link between TIMP1 and
the physiologic regulation of erythropoiesis, as well as
its ability to stimulate cells of the erythroid lineage,
TIMPs and MMPs were initially studied separately
and not in the same context of protein-protease inter-
actions. In 1990, TIMP2 was cloned and sequenced
from an A2058 human melanoma cell cDNA library
(Stetler-Stevenson et al., 1990). Importantly, in 1991,
TIMP2 was demonstrated to inhibit collagenase activ-
ity in a 1:1 molar ratio complex, supporting the role
of TIMPs in the inhibition of metalloproteinases
(DeClerck et al., 1991). First cloned in chicken in
1992 (Pavloff et al., 1992), the human form of TIMP3
was first cloned in 1994 by multiple groups (Apte
et al., 1994; Leco et al., 1994; Silbiger et al., 1994;
Ur�ıa et al., 1994; Wilde et al., 1994; Jay et al., 2012).

Pharmacology of Matrix Metalloproteinases 721

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


Finally, human TIMP4 cDNA was cloned in 1996
(Greene et al., 1996).

2. Structure and Overall Functions. The four TIMPs
are variably glycosylated and have molecular masses be-
tween 22 and 28 kDa (Khokha et al., 2013). Mammalian
TIMPs exhibit basic similarities in their structure, folding
to give a wedge-shaped appearance comprised of two
main domains (Masciantonio et al., 2017). The first is an
approximately 125 amino acid N-terminal domain, and
the second is an approximately 65 amino acid C-terminal
domain (Brew et al., 2000). These two domains are con-
nected through six conserved disulfide bonds, and each
domain mediates different functions (Brew and Nagase,
2010). The N-terminal domain is critical for inhibiting
metalloproteinase activity by forming a ridge that inter-
acts with the catalytic site of metalloproteinases (Jaya-
wardena et al., 2019). This interaction occurs in a 1:1
stoichiometric inhibitor-to-enzyme ratio and blocks the ac-
tive site Zn21 molecule (Masciantonio et al., 2017; Jaya-
wardena et al., 2019). The C-terminal domain of TIMPs
was thought to have a limited role in metalloproteinase
inhibition, but instead it plays a role in mediating addi-
tional protein-protein interactions such as the interaction
with the hemopexin domain of some proMMPs (Brew and
Nagase, 2010; Masciantonio et al., 2017). For example,
TIMP2, TIMP3, and TIMP4 have the ability to interact
with proMMP2, whereas TIMP1 and TIMP3 can interact
with proMMP9 (Brew and Nagase, 2010).

3. Localization and Expression. Many mammalian
tissues constitutively express the various TIMP fami-
ly members, and the expression of TIMPs can be in-
duced or inhibited in various situations, including
during development, injury, and tissue repair (Mas-
ciantonio et al., 2017). Transcriptionally, TIMP levels
can be altered by various growth factors, cytokines,
and chemokines (Cabral-Pacheco et al., 2020). TIMP1
has been identified in many tissues, including the
brain, heart, arteries, colon, kidneys, liver, lungs,
bladder, breasts, skin, lymph nodes, ovaries, uterus,
prostate, and testes (Cabral-Pacheco et al., 2020). The
mRNA and protein levels of TIMP1 are generally ele-
vated in several types of cancers and in settings of in-
flammation and tissue injury (Cabral-Pacheco et al.,
2020). For example, TIMP1 mRNA expression can be
upregulated by proinflammatory cytokines, including
tumor necrosis factor-alpha (TNFa) and interleukin-1-
beta (IL1b) (Bugno et al., 1999). Moreover, TIMP1
mRNA and protein levels were found to be increased
in the lungs of mice after bleomycin-induced injury
(Madtes et al., 2001).
TIMP2 is expressed in tissues such as the lymph no-

des, brain, heart, arteries, colon, kidneys, liver, breasts,
ovaries, prostate, and testes (Cabral-Pacheco et al.,
2020). TIMP2 is generally considered to be constitutively
expressed, but its levels can also be modified by stimuli,
including hormones, bacterial products, cytokines, and

growth factors (Masciantonio et al., 2017). TIMP2 levels
can also be altered in response to tissue damage or vari-
ous disease states. For example, Timp2 mRNA levels
were elevated in rats after eccentric exercise-induced
muscle damage (Koskinen et al., 2001). Furthermore,
TIMP2 was found to be overexpressed in malignant ovar-
ian tissues (Hu et al., 2004).
TIMP3 has been identified in the brain, heart, co-

lon, kidneys, lungs, liver, breasts, ovaries, prostate,
and testes (Cabral-Pacheco et al., 2020). The localiza-
tion of TIMP3 is unique from the other TIMP family
members in that it is localized to the extracellular
matrix, whereas the other TIMPs are generally con-
sidered to be soluble (Stetler-Stevenson, 2008). This
interaction with the extracellular matrix has been shown
to occur via TIMP3 binding to heparan sulfate and possi-
bly chondroitin sulfate proteoglycans (Yu et al., 2000).
Certain growth factors and cytokines can regulate the
levels of TIMP3, such as TNFa and transforming growth
factor-beta (TGFb) (Masciantonio et al., 2017). Available
TIMP3 levels can also be regulated by low-density lipo-
protein receptor–related protein 1 (LRP1), a scavenger
receptor that facilitates endocytosis of TIMP3 into the
cell (Scilabra et al., 2013). Furthermore, the expression
of TIMP3 is frequently altered after infection and injury.
For example, Timp3 expression decreased rapidly after
bleomycin-induced lung injury, a mouse model of pulmo-
nary fibrosis (Gill et al., 2010). Conversely, TIMP3 was
increased in the kidneys of patients with diabetic ne-
phropathy and chronic allograft nephropathy relative to
healthy controls (Kassiri et al., 2009).
TIMP4 remains the least studied member of the

mammalian TIMPs. TIMP4 has been identified in the
brain, heart, kidneys, breasts, uterus, pancreas, co-
lon, ovaries, testes, prostate, and adipose tissue (Ca-
bral-Pacheco et al., 2020). The level of TIMP4 is
altered in various types of cancer and is increased in
the plasma of patients after acute myocardial infarc-
tion (Melendez-Zajgla et al., 2008; Kelly et al., 2010).
It is important to mention that the elevation of
TIMP1, -2, -3, or -4 expression does not necessarily
imply a net beneficial or detrimental pathogenic out-
come. Careful validation of MMPs and other proteins
linked with TIMPs expression must be evaluated in
specific tissues and diseases being investigated.

4. MMP-Dependent TIMP Functions. TIMPs have
been found to function through both metalloprotei-
nase-dependent and metalloproteinase-independent
mechanisms to regulate cellular functions such as an-
giogenesis, apoptosis, cell differentiation, growth, and
migration (Brew and Nagase, 2010). However, the pri-
mary function of TIMPs is thought to be the regula-
tion of metalloproteinase activity (Nagase et al.,
2006). The mammalian TIMPs display similar struc-
tural properties, so it is not surprising that they
share overlapping metalloproteinase inhibition
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profiles (Masciantonio et al., 2017). Furthermore, all
four TIMPs are collectively able to inhibit the active
forms of all metalloproteinases studied to date, with
binding constants being in the low picomolar range
(Baker et al., 2002). There are, however, some differ-
ences in the inhibition profiles of TIMPs and their af-
finities for different metalloproteinases. For example,
TIMP1 does not appear to effectively inhibit several
membrane-type MMPs (MT-MMPs), including MT1-
MMP, MT3-MMP, and MT5-MMP (Brew and Nagase,
2010). TIMP1 is also a poor inhibitor of MMP19
(Brew and Nagase, 2010). Conversely, TIMP3 has a
broad inhibition profile compared with the other
TIMPs. In addition to inhibiting MMPs, TIMPs also
inhibit several members of the ADAM and ADAMTS
families (Brew and Nagase, 2010; Jackson et al.,
2017). The in vitro activity of ADAM10 was demon-
strated to be inhibited by TIMP1 and -3 but not
TIMP2 and -4 (Amour et al., 2000). TIMP3 also inhibits
ADAM17 activity resulting in regulation of mitogen-acti-
vated protein kinase (MAPK) signaling via extracellular
signal-regulated kinase (ERK) and p38 in addition to
TGFa in Ca and M2 modified CHO cells, respectively
(Xu et al., 2012). In fact, TIMP3 appears to inhibit the
greatest number of ADAMs (ADAM10, -12, -17, -28, -33)
and ADAMTSs (ADAMTS1, -2, -4, -5) (Jackson et al.,
2017). Therefore, when assessing the biologic functions
of TIMPs, it is important to also consider ADAM and
ADAMTS proteolysis.
TIMP1 has been shown to promote cell survival by

reducing apoptosis of hepatic stellate cells. The regu-
lation of cell survival is at least partially MMP-depen-
dent, as a TIMP1 mutant that selectively lacked
MMP inhibitory activity had no antiapoptotic effect
(Murphy et al., 2002). There is also evidence to sug-
gest that TIMP1 negatively regulates hepatocyte
growth factor activity during liver regeneration by an
MMP-dependent mechanism (Mohammed et al., 2005).
Additionally, TIMP1 can restrict microvascular endothe-
lial cell migration by regulating MMP-mediated disrup-
tion of vascular endothelial cadherin (VE-cadherin) at
cell-cell junctions (Akahane et al., 2004). TIMP1 has
also been found to regulate the process of airway epithe-
lial cell migration by inhibiting MMP7 activity (Chen
et al., 2008). Specifically, TIMP1 appears to inhibit the
MMP7-dependent cleavage of syndecan-1 from mediat-
ing bronchiole epithelial cell migration after injury
(Chen et al., 2008, 2009). Syndecans are heparan sul-
fate glycoproteins found on the surface of adherent
cells, and their shedding is associated with increased
cell migration (Teng et al., 2012). TIMP2 has similarly
been found to restrict syndecan-1 cleavage from the cell
surface; however, this cleavage event was mediated by
MT1-MMP (Endo et al., 2003). In addition to regulating
MT1-MMP, TIMP2 also regulates MMP2 and MMP9 ac-
tivity (Cabral-Pacheco et al., 2020). After myocardial

infarction, Timp2�/� mice presented with greater left ven-
tricular dilation, dysfunction, and severe inflammation.
This phenotype was associated with impaired MMP2 acti-
vation but increased activity of MT1-MMP (Kandalam
et al., 2010). Furthermore, TIMP2 was found to inhibit
both the invasion and migration of HCT-116 colon carcino-
ma cells via the regulation of MMP9 (Wang et al., 2019).
Interestingly, TIMP3 is known to promote apopto-

sis. Through its N-terminal domain, TIMP3 inhibits
the shedding of death receptors like Fas from the cell
surface, thus promoting activation of an apoptotic sig-
naling pathway (Ahonen et al., 2003). As TIMP3 can
be found localized to the ECM, it is unsurprising that
TIMP3 also appears to have the ability to impact
ECM-cell signaling (Gill et al., 2006). Specifically,
TIMP3 has been found to inhibit metalloproteinase-
dependent fibronectin degradation during lung devel-
opment, impairing signaling through focal adhesion
kinase (Gill et al., 2006). Similarly, Timp3�/� mice
showed enhanced collagen degradation in the peri-
bronchiolar space and disorganized collagen fibrils in
the alveolar interstitium that progressed as the mice
aged (Leco et al., 2001). This phenotype was proposed
to be due to a shift of the MMP/TIMP balance, leading
to enhanced metalloproteinase activity and conse-
quent ECM degradation. Importantly, TIMP3 has also
been found to promote the normal function of the mi-
crovascular endothelial barrier (Arpino et al., 2016).
Although the specific metalloproteinase remains un-
known, this function of TIMP3 is at least partly medi-
ated through metalloproteinase-mediated disruption
of adherens junctions, as treatment with a broad-
spectrum metalloproteinase inhibitor rescued both
barrier dysfunction and endothelial cell surface locali-
zation of vascular endothelial cadherin (Arpino et al.,
2016).
TIMP4 was determined to be the primary MMP in-

hibitor in human platelets and is involved in regulating
platelet aggregation and recruitment (Radomski et al.,
2002). TIMP4 is known to negatively regulate MT1-
MMP activity (Cabral-Pacheco et al., 2020). Specifically,
after ischemia-reperfusion injury in Timp4�/� mice,
there was a persistent increase in MT1-MMP activity
that resulted in exacerbated diastolic dysfunction
(Takawale et al., 2014). TIMP4 has also been shown to
regulate the activity of MMP2 by inhibiting MT1-MMP
(Bigg et al., 2001).

5. TIMPless Mice. To study the biologic functions
of the four members in the Timp gene family, a qua-
druple Timp knockout termed the TIMPless mouse
was generated by the laboratory of Rama Khokha
(Shimoda et al., 2014). Genetic removal of the four
Timps resulted in runted pups with reduced body size
and only 25% survival past 10 days postnatal (Shimo-
da et al., 2014). TIMPless fibroblasts acquired hall-
mark cancer-associated fibroblast functions via an
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increase of a-smooth muscle actin, and exosomes pro-
duced by these cells elevated cancer cell motility and
cancer stem cell markers. In addition, the proteomes
of TIMPless fibroblasts were found to be enriched in
ECM proteins and ADAM10. Furthermore, knock-
down of ADAM10 in TIMPless fibroblasts was suffi-
cient to abrogate the functions of cancer-associated
fibroblasts (Shimoda et al., 2014). This study demon-
strated the close interplay between the TIMPs,
MMPs, and ADAMs family members and highlighted
the difficulties in characterizing a single TIMP’s bio-
logic role, as the web of interactions appears to be in-
terdependent among these proteins.

6. Latent MMP Interactions. As their name sug-
gests, TIMPs are primarily recognized for their ability
to inhibit metalloproteinases. However, there are in-
stances of TIMPs interacting with latent (inactive)
MMPs and facilitating their activation. The best
known example of this is the interaction between
TIMP2 and proMMP2. First, TIMP2 binds to MT1-
MMP on the cell surface, which acts to form a recep-
tor for proMMP2; once proMMP2 is bound to this
complex, another free MT1-MMP can cleave the pro-
domain of proMMP2, converting it to its active form
(Sato et al., 1994; Brew et al., 2000; Masciantonio
et al., 2017). In Timp2�/� mice, proMMP2 activation
is impaired, reflecting the unique role of TIMP2 in
proMMP2 cell surface activation (Baker et al., 2002).
TIMP3 and TIMP4 have also been shown to interact
with proMMP2, but both appear to restrict its activa-
tion (Brew and Nagase, 2010).

7. Other Endogenous MMP Inhibitors. MMPs have
additional endogenous inhibitors, including alpha-2
macroglobulin, a reversion-inducing cysteine-rich pro-
tein with Kazal motifs (RECK), tissue factor pathway
inhibitor, and MMP prodomains (Sellers et al., 1977;
Oh et al., 2001; Iyer et al., 2012). Alpha-2 macroglob-
ulin is a large 720-kDa glycoprotein that is regarded
as the inhibitor of several proteases within the plas-
ma (Rehman et al., 2013). The protein contains four
identical subunits, each with a 25 amino acid “bait re-
gion” that is susceptible to proteolytic cleavage (Reh-
man et al., 2013; Serifova et al., 2020). Cleavage of
the bait region by active proteinases activates alpha-2
macroglobulin, triggering a conformational change
that traps the protease (Rehman et al., 2013; Goulas
et al., 2017). This interaction is further anchored by
the covalent binding of an exposed reactive thioester
of activated alpha-2 macroglobulin with accessible ly-
sine residues of the protease (Rehman et al., 2013).
For example, Serifova et al. (2020) demonstrated that
alpha-2 macroglobulin efficiently traps monomers of
MMP9, preventing them from proteolytically cleaving
large substrates such as gelatins. Additionally, after
alpha-2 macroglobulin activation, receptor-binding
domains can be exposed that bind to cell surface

receptors such as LRP1, which can stimulate inter-
nalization and clearance of the activated alpha-2 mac-
roglobulin/protease complexes from the circulation
(Serifova et al., 2020). MMP9 alpha-2 macroglobulin
complexes were shown to be removed from the extra-
cellular environment through LRP1-mediated
internalization.
RECK is a 110-kDa glycoprotein widely expressed in

mammalian tissues; it has been shown to mediate tis-
sue remodeling and inhibit tumor angiogenesis and
metastasis (Oh et al., 2001; Alexius-Lindgren et al.,
2014). The protein contains serine protease inhibitor–
like domains and is the only known MMP inhibitor
that is cell membrane–bound, which occurs via a GPI
anchor on RECK (Takahashi et al., 1998; Alexius-
Lindgren et al., 2014). Previous studies have suggested
that RECK negatively regulates MMP2, MMP9, and
MT1-MMP (Takahashi et al., 1998; Oh et al., 2001; Ta-
kagi et al., 2009). RECK has also been demonstrated
to be a physiologic inhibitor of ADAM10, an upstream
regulator of Notch signaling that impacts brain devel-
opment (Muraguchi et al., 2007). RECK is also required
for the development of multiple organs; Reck�/� mice
do not survive past embryonic day 10.5 and present
with defects in blood vessel development as well as
compromised integrity of collagen fibers and the basal
lamina, suggesting that this developmental defect may
be due to aberrant metalloproteinase activity (Oh
et al., 2001). Therefore, despite a key role in regulating
MMP functions, RECK’s inhibition of other proteases
such as ADAM10 must be taken into consideration
when studying its biologic functions.

III. Molecular Mechanisms to Physiologic Roles
of Matrix Metalloproteinases

As indicated by their names, MMPs can cleave and
degrade ECM proteins. However, the name “matrix
metalloproteinase” is causing confusion in the litera-
ture in relation to its biologic functions. It is estimat-
ed that only �31% of their substrates are ECM
proteins and �69% are non-ECM proteins (Dufour and
Overall, 2015) (Fig. 4, as of April 2022; Supplemental
Table 1). Therefore, in the recent decade, there has
been a reevaluation of their substrates and physiologic
roles.

A. Extracellular Matrix Remodeling

The ECM is a noncellular structure that is highly
dynamic and remains in close contact with cells either
throughout their entire life or at important phases of
their development. For this reason, the ECM is pre-
sent in all tissues and organs of the body, providing
structural support as one of its main functions (Hy-
nes, 2009). The ECM has a tridimensional structure
characterized by a distinct composition according to
each organ; therefore, its composition is crucial since
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mutations in genes that encode key components of
the ECM can lead to severe tissue defects or even em-
bryonic lethality (Bateman et al., 2009; J€arvel€ainen
et al., 2009). For example, gene deletion of fibronectin
and collagens are often lethal at the embryonic stage,
as shown by multiple loss-of-function studies (Rozario
and DeSimone, 2010). In the 1980s, the biochemical
studies investigating the ECM composition focused on
large extracellular matrices such as those in the bone
and cartilage. At the time, the biochemistry of native
ECM was challenging due to its intrinsic characteris-
tics, including insolubility and high levels of cross-
linkage (Hynes and Naba, 2012). These challenges
persist today, but the advancement of biochemical
techniques and the availability of complete genome
sequences allowed the identification of >300 ECM
proteins in mammals (Hynes and Naba, 2012). These
proteins constitute the core matrisome, including col-
lagens, proteoglycans, and glycoproteins, as well as
ECM-associated proteins that contribute to matrices
in different scenarios such as growth factors (Hynes
and Naba, 2012).
The ECM can be divided into two main types: the in-

terstitial connective tissue matrix and the basement
membrane (BM), which differ according to their locali-
zation and composition (Hynes and Naba, 2012). The
connective matrix surrounds cells and provides struc-
tural support for tissues, whereas the BM is special-
ized in separating the epithelium from the neighboring
stroma (Bonnans et al., 2014). Importantly, the ECM
function is not limited to tissue support, integrity, and
elasticity. In fact, its structure is constantly being re-
modeled to sustain tissue homeostasis. ECM remodel-
ing, degradation, or processing result in constant and
dynamic changes in cell and tissue behavior (Lu et al.,

2011; Cox, 2021). The ECM constitutes �4% of the hu-
man proteome (Cox, 2021) and can regulate basic bio-
logic functions such as cellmovement, shape, growth, and
survival via cell adhesion, cell-ECM, and cell-cell interac-
tions (Sternlicht andWerb, 2001). Epithelial cells interact
with ECM components, which serve as ligands for cell re-
ceptors; these interactions result in signaling that con-
trols proliferation, apoptosis, adhesion, migration,
survival, or differentiation (Bonnans et al., 2014). Fur-
thermore, many cell types have a major role in remodel-
ing and rebuilding the ECM by degrading, synthesizing,
reassembling, and chemically modifying its components.
These mechanisms are highly complex and require some
fine-tuning to function properly; otherwise, dysregulated
ECM composition is associatedwith a variety of patholog-
ic conditions, especially in response to injuries, and can
worsen disease progression (Bonnans et al., 2014). For ex-
ample, uncontrolled ECM deposition or degradation is
linked to fibrosis, osteoarthritis, and cancer (Zhen and
Cao, 2014).
ECM remodeling is mainly accomplished by the cleav-

age of its components, controlling their abundance, com-
position, and structure. Moreover, the processing of the
ECM by proteases can release bioactive molecules, such
as growth factors, with a variety of functions. In general,
two main pathways are responsible for ECM degrada-
tion: an intracellular and an extracellular pathway (Du-
four and Overall, 2015). For the intracellular processing,
the ECM is degraded in the phagolysosome by lysosomal
proteases, whereas the extracellular remodeling is per-
formed by secreted proteases (Dufour and Overall, 2015).
One misconception from the literature is that MMPs are
the main acting proteases implicated in ECM degrada-
tion, especially collagens and proteoglycans. In reality,
multiple proteases other than the MMPs regulate ECM

ECM substrates
Non-ECM substrates
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Fig. 4. MMP substrates. Reported ECM (black) and
non-ECM (cyan) MMP substrates for all 23 human
MMPs as reported by TopFIND (https://topfind.clip.
msl.ubc.ca) (Fortelny et al., 2015). TopFIND integrates
information from the UniProt knowledgebase (Uni-
ProtKB), MEROPS peptidase database, and experi-
mental terminomics studies of eight species, including
(Homo sapiens, Mus musculus, Rattus norvegicus, Ara-
bidopsis thaliana, Saccharomyces cerevisiae, and Es-
cherichia coli).
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remodeling, such as the ADAMs, ADAMTSs, plasmin,
cathepsins, neutrophil elastase, and several others (Bras-
sart-Pasco et al., 2020; Cox, 2021; Martin et al., 2021). In
addition, dysregulation or downregulation of protease in-
hibitors such as the TIMPs, cystatins, or serpins also
contribute to changes in ECM remodeling (Cox, 2021).
Therefore, ECM degradation is significantly more com-
plex than initially thought and implicates much more
than only the MMPs. Although collagen and proteogly-
can (ECM) degradation is not carried out by MMPs
alone, MMPs do play a major role in this biologic process.
For example, thyroid hormones during metamorphosis
promote the release of several MMPs that present an ac-
tive role in remodeling the intestine. Although the exact
mechanism is not fully understood, active MMP11 is re-
leased by fibroblasts after hormonal stimulation and pro-
motes epithelial cell apoptosis and growth of connective
tissues (Patterton et al., 1995; Ishizuya-Oka et al., 2000;
Amano et al., 2005; Bonnans et al., 2014). Other MMPs
are also upregulated by thyroid hormones, such as
MMP2, MMP9, and MT1-MMP, which were shown to be
increased in the classic tadpole model (Fujimoto et al.,
2007). In contrast to MMP11, MMP2 and MT1-MMP ap-
pear to have an important role in ECM remodeling after
apoptosis has occurred during the late phases of intesti-
nal morphogenesis (Fujimoto et al., 2007; Hasebe et al.,
2007).
MMPs are also important for branching morpho-

genesis. The ECM at the tip of ducts appears to be
thinner than other regions that do not participate in
the elongation process, indicating that proteases are
likely required to cleave the ECM, allowing proper in-
vasion in the surrounding tissue (Daley and Yamada,
2013). Tan et al. (2014) showed that MMP11 is crucial
for mammary gland morphogenesis, and in Mmp11�/�
mice, a decrease in branching and downregulation of
periductal collagen content occurred. Mmp2�/� and
Mmp3�/� mice are also defective in mammary gland
branching, showing that these MMPs are implicated
and important for proper gland development (Wiseman
et al., 2003). MT2-MMP was demonstrated to play a key
role in digesting collagen IV in submandibular and mam-
mary glands to sustain the proliferation of tip cells (Re-
bustini et al., 2009). In lung embryogenesis, Timp3�/�
mice exhibited decreased bronchiole branching but en-
hanced activity of MMPs associated with increased fibro-
nectin degradation compared with wild-type controls (Gill
et al., 2006). Although mouse models of various MMP
knockouts show defects in ECM remodeling, only the
MT1-MMP�/� mice exhibited craniofacial dysmorphism,
osteopenia, dwarfism, and fibrosis of soft tissues resulting
in death within 50–90 days after birth. Except for MT1-
MMP, most MMP knockout mice resulted in fertile, viable,
and relatively healthy animals, suggesting that MMPs
are not essential for embryogenesis and development (Ta-
ble 1). Importantly, proteases regulate and modulate the

branching process by other mechanisms besides cleavage
of the ECM. For example, the hemopexin domain in
MMP3 binds to WNT5B, leading to an increase in mam-
mary stem cell numbers, which results in increased
branching morphogenesis (Kessenbrock et al., 2013). Tak-
en together, these results demonstrate that MMPs regu-
late the ECM during branching morphogenesis via
proteolytic and nonproteolytic mechanisms.
In the ECM, MMPs are also involved in the degra-

dation and processing of growth factors and their re-
ceptors, which actively participate in the wound
healing process, including the modulation of angio-
genic factors to promote or inhibit angiogenesis
(Schultz and Wysocki, 2009). The processing of the di-
verse reservoir of growth factors located in the ECM
can expose regions capable of activating growth factor
receptors or release them to the interstitial space
(Mott and Werb, 2004). Two examples of growth fac-
tors released from the ECM by MMPs include TGFb
and vascular endothelial growth factor (VEGF). TGFb
belongs to the transforming growth factor superfami-
ly, and it is classified as a multifunction cytokine, ex-
erting different tasks on a wide variety of biologic
processes (Mott and Werb, 2004). Importantly, after
TGFb is secreted, it is maintained in a latent form by
interacting noncovalently and forming a complex with
a latency-associated peptide (LAP). The TGFb-LAP
complex remains bound to the ECM via an interaction
between LAP and a protein belonging to the fibrillin
family, the latent TGFb binding protein (LTBP) (Mott
and Werb, 2004). TGFb becomes active when released
from the complexed form and MMP2, -9, -13, and
MT1-MMP can directly activate TGFb by releasing it
from LAP (Yu and Stamenkovic, 2000; Mu et al.,
2002). Moreover, MMP2 and -9 can cleave a soluble
form of LTBP, whereas only MMP2 can cleave the
ECM-bound LTBP (Dallas et al., 2002). These results
indicate that MMPs are important for TGFb activa-
tion, either by directly inhibiting the LAP interaction
or by releasing the TGFb complex from the matrix via
LTBP cleavage.
MMPs can also activate VEGF, an important regu-

lator of angiogenesis, as it stimulates vascular perme-
ability and vessel growth (Park et al., 1993; Bergers
et al., 2000). Heparan sulfate proteoglycan in the
ECM can tightly bind specific isoforms of VEGF, re-
ducing its bioavailability (Park et al., 1993). This pro-
cess can also be reversed by proteolytic cleavage of
the ECM, leading to the release of bound VEGF. For
example, Bergers et al. (2000) demonstrated that
MMP9 is associated with VEGF release and the de-
velopment of pancreatic neuroendocrine tumors in
the RIP-Tag2 insulinoma model, switching the envi-
ronment from vascular quiescence to active angiogen-
esis. These studies show the importance of ECM as a
rich reservoir of latent growth factors and cytokines,
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TABLE 1
MMP knockout mice phenotypes

MMP Phenotype of MMP Knockout Mouse Impact on Biologic Functions References

Mmp1a�/� No obvious abnormalities and both
males and females were fertile.

#Lung tumor growth and
angiogenesis using LLC1 lung

cancer cell line.

(Fanjul-Fern�andez et al., 2013,
2018; Foley et al., 2014)

Mmp1b�/� N/A N/A N/A
Mmp2�/� Both males and females were fertile.

Smaller at birth and �15% slower
growth rate. Litters from

heterozygous crosses yielded �85%
fewer than expected homozygous

Mmp2�/� pups.

"Susceptibility to dextran-sulfate-
induced colitis, "protection and

#reduction in hepatocyte apoptosis
in TNFa-induced hepatitis, "severity
of antibody-induced arthritis, #white
matter sparing and #serotonergic

fibers in spinal-cord lesions, "cardiac
allograft survival, delay of

neovascularization, #atherosclerotic
plaques, #numbers and proliferation

of osteoblasts and osteoclasts,
"apoptosis.

(Itoh et al., 1997, 2002; Wielockx
et al., 2001; Campbell et al., 2005;
Samolov et al., 2005; Garg et al.,
2006; Hsu et al., 2006; Kuzuya
et al., 2006; Martignetti et al.,

2014)

Mmp3�/� No obvious abnormalities and both
males and females were fertile.

"Protection and #reduction in
hepatocyte apoptosis in TNFa-
induced hepatitis, #immune-

complex-induced lung injury and
#neutrophils, "myocardial scar

volume post injury, #skin-contact
hypersensitivity, delayed clearance
of bacteria and appearance of CD41

T lymphocytes into intestinal lamina
propria, #production of macrophage

chemoattractant in disc hernia
in vitro.

(Mudgett et al., 1998; Wang et al.,
1999; Haro et al., 2000a; Warner
et al., 2001; Wielockx et al., 2001;
Li et al., 2004; Mukherjee et al.,

2005)

Mmp7�/� No obvious abnormalities and both
males and females were fertile.

Normal lifespan.

#Release of TNFa from peritoneal
macrophage in vitro,

#transepithelial neutrophil
migration in bleomycin-induced lung
injury, #reepithelization postinjury
in trachea, #processing of alpha-
defensin resulting in #innate

immunity, "corneal
neovascularization after injury,

#epithelial cell apoptosis linked with
#Fas ligand processing, protected

from LPS-induced intestinal
permeability and lethality.

(Wilson et al., 1997; Dunsmore
et al., 1998; Powell et al., 1999;

Wilson, 1999; Haro et al., 2000b; Li
et al., 2002; Kure et al., 2003;
Vandenbroucke et al., 2014)

Mmp8�/� Normal development, fertile, and no
reduction in survival.

"Incidence of skin tumors,
#inflammatory cell apoptosis but
"neutrophils in BAL in an asthma
model, "protection in TNFa-induced
hepatitis and impaired leukocyte
influx, #neutrophil infiltration
toward LPS, #mortality and

hypothermia in sepsis and renal
ischemia/reperfusion.

(Balb�ın et al., 2003; Gueders et al.,
2005; Van Lint et al., 2005; Tester
et al., 2007; Vandenbroucke et al.,

2012; Fortelny et al., 2014)

Mmp9�/� No gross phenotypic abnormalities,
fertile, and normal lifespan.
However, they have abnormal

development of growth plates in
long bones.

"Protection and #reduction in
hepatocyte apoptosis in TNFa-
induced hepatitis, #severity of

antibody-induced arthritis, #cardiac
allograft survival, #immune-
complex-induced lung injury,

prolonged skin-contact
hypersensitivity, #alveolar

bronchiolization after bleomycin
treatment, "bronchoalveolar lavage

cell recruitment post allergic
challenge, impaired neutrophil
infiltration and " early vascular

permeability in a model of zymosan
peritonitis, #resistance against

Escherichia coli peritonitis due to
#leukocyte recruitment, #dextran-
sulfate-induced colitis, "bacterial-
induced arthritis but #bacterial

clearance, "brain hemorrhage and
injury, #remyelination after spinal
cord trauma, spontaneous deficient
myelination of corpus callosum with

fewer oligodendrocytes,
#experimental autoimmune

(Vu et al., 1998; Dubois et al., 1999;
Wang et al., 1999; Betsuyaku et al.,
2000; Wielockx et al., 2001; Warner

et al., 2001; Itoh et al., 2002;
Larsen et al., 2003, 2006; McMillan
et al., 2004; Johnson et al., 2004;
Tang et al., 2004; Campbell et al.,
2005; Heissig et al., 2005; Heymans
et al., 2005; Castaneda et al., 2005;

Kolaczkowska et al., 2006;
Renckens et al., 2006; Calander
et al., 2006; Cheung et al., 2008)

(continued)
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TABLE 1—Continued
MMP Phenotype of MMP Knockout Mouse Impact on Biologic Functions References

encephalomyelitis in young mice,
#vessel formation in an ischemic
limb model, #left-ventricle dilation
and fibrosis post pressure overload,
#capillary branching post ischemic

insult, "myocardial injury and foci of
infection when infected with

coxsackievirus B3.
Mmp10�/� No overt defects in fertility, litter

size, gross appearance, organ
structure, or tissue histology.

Muscles displayed impaired
recruitment of endothelial cells,
reduced levels of extracellular

matrix proteins, diminished collagen
deposition, and decreased fiber size

muscles displayed impaired
recruitment of endothelial cells,
reduced levels of extracellular

matrix proteins, diminished collagen
deposition, and decreased fiber size,
muscles display #recruitment of
endothelial cells, #ECM proteins,
#fiber size, delayed fibrinolysis,

"collagen deposition in skin wounds,
"infiltration of macrophages during

acute infection.

(Kassim et al., 2007; Orbe et al.,
2011; Bobadilla et al., 2014; Rohani
et al., 2015; McMahan et al., 2016)

Mmp11�/� Viable, fertile, no behavior
differences with wild type

littermates.

"Neointima formation after vascular
injury, #7,12-

dimethylbenzanthracene-induced
tumorigenesis, "subcutaneous (SC)
and gonadal (GON) fat deposits,

adipogenesis, adipocyte membrane
alteration, "dysregulation of

metabolism.

(Masson et al., 1998; Lijnen et al.,
1999, 2002; Andarawewa et al.,
2005; Dali-Youcef et al., 2016)

Mmp12�/� Normal embryonic and postnatal
development in the absence of
inflammatory stress. Resting

hematopoiesis and myelomonocytic
development are normal. Mmp12�/�

mice have a 40% reduction in litter
sizes likely due to placental

abnormalities.

#Migration and invasion in
macrophages, resistance against

cigarette-smoke-induced
emphysema, unable to process

chemokines and cytokines like IFNa
and IFNc resulting in exacerbation
of acute and chronic inflammation,
unable to resolve bacterial and virus
infections, reduced phagocytosis and
hemolysis capacity, dysregulated

complement activation, #macrophage
infiltration in ligament-injury repair,
spontaneous deficient myelination of

corpus callosum with fewer
oligodendrocytes, "experimental
autoimmune encephalomyelitis

severity.

(Shipley et al., 1996; Hautamaki
et al., 1997; Weaver et al., 2005;
Larsen et al., 2006; Dean et al.,

2008; Houghton et al., 2009; Bellac
et al., 2014; Marchant et al., 2014;
Dufour et al., 2018; Mallia-Milanes

et al., 2018)

Mmp13�/� No gross phenotypic abnormalities,
fertile, and normal lifespan.

Spontaneous abnormal growth plate
and "trabecular bone.

(Inada et al., 2004; Stickens et al.,
2004)

Mmp14�/�/
Mt1-mmp�/�

Viable but display severe runting,
wasting and "mortality. Death

occurs between 50 and 90 days after
birth.

Craniofacial dysmorphism, arthritis,
osteopenia, dwarfism, and fibrosis of
soft tissues, #lung alveolar surface

area, retarded lung alveolar
development, #neovessel formation,
poorly differentiated kidney tubular

epithelia, lack of molar tooth
eruption and root formation, defects

in dentin formation and
mineralization, #metabolic
homeostasis, #regulation of

adipocyte fate determination in the
developing mammary gland.

(Holmbeck et al., 1999, 2003; Chun
et al., 2004; Koshikawa et al., 2004;
Atkinson et al., 2005; Irie et al.,
2005; Feinberg et al., 2016; Mori
et al., 2016; Xu et al., 2016; Mai

et al., 2017)

Mmp15�/�/
Mt2-mmp�/�

Viable, fertile, and live through
adulthood.

"Positive regulators of brown or
induced brown (beige) adipocytes

production.

(Feinberg et al., 2016)

Mmp16�/�/
Mt3-mmp�/�

Viable, fertile, but displayed
retarded growth of the skeleton
compared with wild types or
heterozygous littermates.

#Viability of mesenchymal cells in
skeletal tissues.

(Shi et al., 2008)

(continued)
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capable of modulating the tissue during homeostasis
and disease development.

B. Non-ECM MMP Substrates

N-terminomics and proteomics techniques were used to
profile hundreds of cleavage sites in proteomes associated
with MMP activity and identified numerous MMP sub-
strates unrelated to the ECM (Butler and Overall, 2009;
Starr et al., 2012a; Dufour and Overall, 2013, 2015; Bellac
et al., 2014; Mallia-Milanes et al., 2018). Data obtained
from these techniques have resulted in an expansion and
restructuring of our understanding of MMP biology, yet it
is still underappreciated in the literature. Bioinformatics

tools are essential for handling big data, and multiple pro-
grams have been developed to integrate these large data-
sets, such as MEROPS (Rawlings et al., 2010) and
TopFIND (Lange and Overall, 2011; Fortelny et al., 2015).
In MEROPS (https://www.ebi.ac.uk/merops/), over 1 million
proteases, �92,000 cleavage sites, and �6,500 peptidase-in-
hibitor interactions are included (as of April 2022). In Top-
FIND (https://topfind.clip.msl.ubc.ca), protein N and C
termini, protease substrates, and proteolytic processing are
presented from eight different organisms: Homo sapiens,
Mus musculus, Rattus norvegicus, Saccharomyces cerevi-
siae, Arabidopsis thaliana, Escherichia coli, Caenorhabditis
elegans, and Danio rerio. There are hundreds to thousands

TABLE 1—Continued
MMP Phenotype of MMP Knockout Mouse Impact on Biologic Functions References

Mmp17�/�/
Mt4-mmp�/�

No apparent defects in growth,
fertility, and life span.

"Protection from Il1b-mediated GAG
release into synovial fluid in a model

of joint inflammation;
"predisposition to aortic aneurysms;

plays a role in embryonic
development, brain formation,

angiogenesis and limb development.

(Rikimaru et al., 2007; Clements
et al., 2011; Mart�ın-Alonso et al.,

2015; Blanco et al., 2017)

Mmp19�/� Viable, fertile, and no apparent
phenotype under homeostasis.

"Body weight under high-fat diet,
adipocytes hypertrophy,

#susceptibility to develop skin
tumors induced by a model of

chemical carcinogens; in a model of
contact hypersensitivity, impaired T

cell-mediated immune reaction
characterized by minimal influx of
inflammatory cells, low proliferation
of keratinocytes, #activated CD81 T

cells in lymph nodes; after an
allergen challenge, "eosinophilic

inflammation and " tenascin protein,
"lung fibrotic response to bleomycin,
"protection against hepatic fibrosis,
"susceptibility to colitis in a dextran
sulfate sodium-induced colitis model.

(Pend�as et al., 2004; Beck et al.,
2008; Gueders et al., 2010;

Jirouskova et al., 2012; Yu et al.,
2012; Jara et al., 2015; Brauer

et al., 2016)

Mmp20�/� Severe tooth defects but mice were
viable and had no fertility issues.

Hypomineralization of mantle
dentin, defects in processing

amelogenin, altered enamel protein,
and associated rod pattern.

(Caterina et al., 2002; Beniash
et al., 2006)

Mmp21�/� N/A N/A N/A
Mmp23�/� N/A N/A N/A
Mmp24�/�/
Mt5-mmp�/�

Normal appearance, fertile, and
have normal lifespan.

Unable to develop neuropathic pain
with mechanical allodynia after a
sciatic nerve injury; #nerve-fiber
sprouting and neural invasion;
"sensitivity to noxious thermal
stimuli under basal conditions;

unable to develop thermal
hyperalgesia under inflammatory

conditions; protected against
amyloid pathology, cognitive decline,

and inflammation.

(Komori et al., 2004; Folgueras
et al., 2009; Baranger et al., 2016)

Mmp25�/�/
Mt6-mmp�/�

Viable, fertile, and no apparent
phenotype under homeostasis.

Defective innate immune response
via a low sensitivity to bacterial
LPS, hypergammaglobulinemia,
#secretion of proinflammatory
molecules, impaired NF-jB

activation.

(Soria-Valles et al., 2016)

Mmp26�/� N/A N/A N/A
Mmp27�/� N/A N/A N/A
Mmp28�/� Viable, fertile, and no apparent

phenotype under homeostasis.
"Macrophage recruitment,

"macrophage migration, and
"bacterial clearance into the lung in
Pseudomonas aeruginosa–treated
mice; #macrophage polarization,
#collagen deposition, and few

myofibroblasts.

(Manicone et al., 2009, 2017; Ma
et al., 2013; Gharib et al., 2014)
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of potential MMP substrates, yet only a small number
have been extensively validated in vivo, in animal models,
or in humans. Apart from ECM and BM substrates, sever-
al non-ECM substrates have been identified, including che-
mokines, cytokines, cell-surface receptors, growth factors,
metabolic proteins, and nuclear proteins (for the full list,
see Supplemental Table 1) (Cauwe et al., 2007; Butler and
Overall, 2009; Cauwe and Opdenakker, 2010; Dufour and
Overall, 2013; Chopra et al., 2019; Young et al., 2019).
The tight regulation of MMPs is fundamental to

what substrates they cleave, and substrate processing
is cell, tissue, and disease dependent. Indeed, changes
in the balance between MMP and TIMP ratio have a
significant impact on disease progression and resolu-
tion of inflammation in both acute and inflammatory
conditions. For example, multiple studies have dem-
onstrated a key role of MMPs in regulating the biolog-
ic functions of virtually all human chemokines
functions by either an activation or inactivation cleav-
age, resulting in a “go” or “stop” signal via chemokine
receptor downstream signaling (McQuibban, 2000;
Van den Steen et al., 2003; Dean et al., 2008; Starr
et al., 2012b; Young et al., 2019). MMP regulation of
chemokines enhances or dampens leukocytes’ recruit-
ment to the site of inflammation or pathogen infec-
tion. Eight CXCL chemokines have chemoattraction
abilities to attract neutrophils, and as an example,
two neutrophil MMPs, MMP8 and -9, were demon-
strated to cleave and activate interleukin-8 (IL8)/
CXCL8 in a feedforward mechanism (Van den Steen
et al., 2003; Tester et al., 2007). All of the Glu-Leu-
Arg (ELR)1 CXC chemokines, which are proteins
able to attract neutrophils to the site of injury or in-
flammation, are processed by MMP12 released from
macrophages, resulting in an inactivation of CXC che-
mokines signaling (Dean et al., 2008). Other chemo-
kines, such as CCL15 and CCL23, are also processed
by multiple MMPs (MMP1, -2, -3, -7, -8, -12, 13, and
MT1-MMP), resulting in their activation via a Ca21

increase and an elevation of their chemotactic index
(Starr et al., 2012b). MMP1 can cleave the Arg-Ser
bond on protease-activated receptor (PAR)1. This sub-
strate is also cleaved by thrombin, and proteolytic
processing of PAR promotes its activation, which re-
sults, for example, in growth and invasion of breast
carcinoma cells (Boire et al., 2005; Nagase et al.,
2006). Overall, MMPs can cleave multiple substrates,
including ECM and non-ECM related substrates.

C. Intracellular Roles of MMPs

MMPs were first described as secreted proteases ca-
pable of cleaving ECM proteins, but we now know
that their roles go beyond this initial dogma. A semi-
nal discovery by Dr. Richard Schulz’s group in 2002
identified an intracellular form of MMP2 inside cardi-
ac myocytes (Wang et al., 2002). Later work by this
group and David Lovett’s group demonstrated that

there are three intracellular isoforms (splice variants)
of MMP2 since its signal peptide inefficiently targets
MMP2 to the secretory pathway, thus resulting in
�50% of MMP2 remaining in the cytosol (Ali et al.,
2012; Lovett et al., 2012, 2014; Bassiouni et al., 2021).
One splice variant of MMP2, identified in the cytosol
of cardiomyocytes, lacks 50 amino acids from its N
terminus and was termed MMP2NTT50 (Ali et al.,
2012). Another MMP2 intracellular variant missing
76 amino acids, termed MMP2NTT76, was identified
after induction of oxidative stress and was shown to
activate NF-jB and nuclear factor of activated T cells
(NFAT) mitochondrial-nuclear stress signaling
(Lovett et al., 2012). MMP3 contains a proline resi-
due that impacts its conformation and could weaken
its signal sequence efficiency, resulting in MMP3 lo-
calized in the nucleus in human chondrosarcoma-de-
rived chondrocytic HCS-2/8 cells (Eguchi et al.,
2008). Additionally, MMP3 was found to be localized in
the nucleus of human liver cancer cells (HepG2 cells)
and liver myofibroblasts and was demonstrated to induce
apoptosis via its catalytic activity (Si-Tayeb et al., 2006)
(Fig. 5).
In dopaminergic neurons, intracellular MMP3 was

also shown to induce apoptosis (Choi et al., 2008).
Further, intracellular MMP10 was also identified
within neurons, where it was demonstrated to cleave
huntingtin into a toxic fragment, resulting in cell
death (Miller et al., 2010). An MMP11 isoform of �40
kDa was identified inside cancer cells due to an alter-
native gene promoter (Luo et al., 2002). During viral
infection, intracellular MMP12 (in HeLa cells) was
demonstrated to mediate NF-jB transcription, result-
ing in interferon alpha (IFNa) secretion and host pro-
tection (Marchant et al., 2014). Nuclear MT1-MMP
was shown to modulate inflammation independent of
proteolysis via the activation of a phosphoinositide 3-
kinase delta (PI3Kd )/protein kinase B (Akt)/glycogen
synthase kinase 3 beta (GSK3b) signaling cascade
(Shimizu-Hirota, et al., 2012) (Fig. 5). MMP23 lacks a
recognizable signal sequence (Fig. 2) and is therefore
suggested to be intracellular, although it has not been
validated yet (Velasco et al., 1999). Interestingly, most
of the MMP26 produced by cells remains intracellular
due to MMP26’s unique latency motif (Pro-His-Cys-
Gly-Val-Pro-Asp) containing the conserved cysteine
that is inactive (Marchenko et al., 2002; Savinov
et al., 2006; Strongin, 2006).
Although multiple MMPs have been identified as

intracellular proteases, it remains enigmatic as to
how some MMPs are first secreted and can reenter
the cells at a later stage. Some MMPs have been
found to enter the cells by endocytosis, via either cla-
thrin-dependent or clathrin-independent mechanisms
(Cauwe and Opdenakker, 2010). Clathrin-dependent
mechanisms use cargo proteins that recognize adaptor
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proteins, resulting in packaging inside clathrin-coated
vesicles subsequently absorbed by the cells (Grant and
Donaldson, 2009; Traub, 2009). Clathrin-independent
mechanisms are less characterized and function via cav-
eolae or flotillin-dependent manner and can be linked to
macropinocytosis and phagocytosis (Swanson, 2008;
Grant and Donaldson, 2009). For example, in neurons,
MMP7 has been demonstrated to enter the cells via a
clathrin-dependent mechanism, implicating the process-
ing of synaptosomal-associated protein of 25 kDa
(Szklarczyk et al., 2007). Other MMPs such as MMP2,
-9, and -13 have been demonstrated to enter the cells via
the low-density lipoprotein-related protein 1 (LRP1)
(Yang et al., 2001; Raggatt et al., 2006; Van den Steen
et al., 2006). MT1-MMP appears to be internalized via ei-
ther clathrin-dependent (Jiang et al., 2001) or -indepen-
dent mechanisms (Remacle et al., 2003). Despite
supporting evidence of MMPs entering via these mecha-
nisms, it is still unclear as to how MMPs can exit the en-
dosomes, enter the cytosol, and cleave substrates. Flip-
flop mechanisms have been suggested to explain these
mechanisms, but further experiments are needed to

demonstrate these observations better (Cauwe and Opde-
nakker, 2010). Additionally, several MMPs contain nucle-
ar localization signals in their sequences, which could
potentially explain their entry to the nucleus or, alterna-
tively, could be brought into the nucleus via RNA-binding
cargo proteins (Cauwe and Opdenakker, 2010; Xie et al.,
2017; Frolova et al., 2020). Further characterization of
the intracellular roles of MMPs will likely unravel new
substrates and identify novel functions.

D. Oxidative and Nitrosative Stress Activation of
MMPs

The production of reactive oxygen species (ROS) is
an important mechanism to regulate normal metabo-
lism but is also a key immune response to external
and internal stimuli. ROS production includes numer-
ous chemical oxidants such as hydrogen peroxide
(H2O2), hydroxyl radicals (�OH), and superoxide an-
ion (O2�–) (Sies and Jones, 2020; Muri and Kopf,
2021). During phagocytosis, ROS are generated and
play important biologic roles. Similarly, free radical ni-
tric oxide (NO�) is an important intra and extracellular

Fig. 5. Intracellular MMPs and localization to the cytoplasm or nucleus in three different cell types. Left: some intracellular MMPs associated with
cardiomyocytes. Some examples of known MMP2 interactions within organelles are illustrated. Middle: known intracellular MMPs in cancer cells.
One example is the upregulation of MMP2 by IL8-mediated signaling, as observed in melanoma cells. Right: known intracellular MMPs in immune
cells or virus-infected cells. An example is illustrated of MMP12 mediated INFa release during viral infection.
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regulatory chemical. When imbalances occur between
the levels of O2�– and NO�, peroxynitrite (ONOO–) can
form, resulting in nitrosative stress and increased dam-
age to DNA, proteins, and lipids (Pacher et al., 2007;
Brandes et al., 2009). Reactive nitrogen species can re-
sult in three different posttranslational modifications: 1)
S-nitrosylation, 2) S-glutathiolation, and 3) tyrosine ni-
tration; these can impact the latency-inducing cysteine
to Zn21 coordination in MMPs (Ali and Schulz, 2009;
Mart�ınez and Andriantsitohaina, 2009).
We now know that MMPs have both extracellular and

intracellular functions, as MMPs have been identified in
various subcellular compartments, including the cytosol,
sarcomere, ER, nucleus, and mitochondria (Bassiouni
et al., 2021). However, it is still unclear how the proteo-
lytic activity of intracellular MMPs is regulated. One
mechanism that contributes to regulating MMP activity
inside the cell is the generation of reactive oxygen and
nitrogen moieties (Cauwe and Opdenakker, 2010; Bas-
siouni et al., 2021). Via the oxidation of their thiol group
within the cysteine switch, ROS has been demonstrated
to activate MMPs even in the presence of the propeptide
(Okamoto et al., 2001; Viappiani et al., 2009). More pre-
cisely, peroxynitrite (ONOO–) has been shown to acti-
vate some MMPs by cysteinyl S-glutathiolation or S-
nitrosylation of cysteines 60 and 102, resulting in a di-
sulfide S-oxide bond, as demonstrated for MMP1, -2, -8,
and -9 (Okamoto et al., 2001; Viappiani et al., 2009; Ja-
cob-Ferreira et al., 2013). These types of MMP activation
likely occur during an immune response or during
stress. For example, the generation of hypochlorous acid
from hydrogen peroxide occurs during neutrophil activa-
tion via myeloperoxidase activation and has been shown
to activate MMP1, -2, -7, -8 and -9 (Weiss et al., 1985;
Peppin and Weiss, 1986; Fu et al., 2001; Meli et al.,
2003). Another example is oxidative stress, which can
occur during myocardial infarction. Specifically, the lev-
els of peroxynitrite increase during myocardial infarc-
tion, resulting in MMP2 activation and cardiac troponin
I processing (Cheung et al., 2000; Wang et al., 2002). In
a feedforward mechanism, inflammatory cytokines have
been shown to increase peroxynitrite activating intracel-
lular MMP2 (Ferdinandy et al., 2000; Gao et al., 2003).
Another example is the S-nitrosylation of MMP9 in cere-
bral ischemia, which results in neuronal apoptosis (Gu
et al., 2002). Therefore, oxidative and nitrosative stress
increases MMP activation and has been linked to patho-
logic modifications of the biologic functions of MMPs.

IV. Pathophysiology of Matrix
Metalloproteinases

A. Cancer

Tumors are heterogeneous, dynamic, and multicellular
and closely interact with their microenvironment (Quail
and Joyce, 2013; Maley et al., 2017). Dysregulation of

signaling networks in cancer impacts metabolism, growth,
blood vessel formation, and immune regulation (Maley
et al., 2017; Hiam-Galvez et al., 2021). MMPs have been
demonstrated to be implicated in most if not all of the dys-
regulated processes in cancer (Egeblad and Werb, 2002;
Piperigkou et al., 2021). For several decades now, MMPs
have been studied in the context of cancer progression,
mainly for their ability to remodel the BM and to drive
the cell invasion program resulting in increased metasta-
sis (Egeblad and Werb, 2002; Overall and Kleifeld, 2006a;
Young et al., 2019; Piperigkou et al., 2021). There is a
strong relationship between cancer progression, clinical
outcome, and upregulation of MMPs; however, what was
originally thought about their detrimental roles in cancer
has been challenged in the past two decades. The initial
concept about MMPs was that broad-spectrum inhibition
of their proteolytic activity would reduce ECM remodeling
and prevent cell invasion and cancer metastasis. We now
know that an increase of a specific MMP does not neces-
sarily imply the promotion of tumor growth or metastasis;
at least 10 MMPs have also been demonstrated to have
protective roles in cancer (Dufour and Overall, 2013).
Therefore, each MMP must be studied carefully, as it like-
ly has cell-, tissue-, or tumor-specific functions.

1. Matrix Remodeling and Cell Invasion. The ECM
is a fundamental component of all tissues and organs.
Tissue integrity is maintained when there is a sus-
tained equilibrium of ECM turnover (i.e., when ECM
production is in balance with its degradation). Howev-
er, tumors disrupt ECM homeostasis on the biochemi-
cal, biologic, and structural levels due to their
dynamic nature and dysregulated growth (Cox, 2021).
Importantly, the ECM becomes highly dysregulated
within tumors and can be both protumorigenic and
antitumorigenic. For example, elevated MMP8 ex-
pression and activity are associated with good out-
comes in oral squamous cell carcinoma and skin
cancers (Korpi et al., 2008; Juurikka et al., 2021) but
are associated with poor outcomes in ovarian, diges-
tive, and hepatocellular cancers [reviewed by Juurik-
ka et al. (2019); Cox (2021)]. Several MMPs can
cleave ECM proteins and selectively release cell sur-
face–bound cytokines, growth factors, and their recep-
tors, thereby impacting overall ECM integrity and
tissue turnover [for additional details, see Piperigkou
et al. (2021); Shimoda et al. (2021)]. Multiple MMPs
have been demonstrated to remodel the ECM, but
there is strong evidence that either MT1-MMP, MT2-
MMP, or MT3-MMP alone is sufficient to drive ECM
transmigration and invasion and could be the pre-
dominant MMPs driving ECM remodeling (Rowe and
Weiss, 2008, 2009). However, only the Mt1-mmp�/�

mouse suffers from severe craniofacial dysmorphism,
arthritis, osteopenia, dwarfism, and fibrosis of soft tis-
sues associated with type I collagen remodeling defi-
ciency, which results in death within 50–90 days
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(Table 1). Mt2-mmp�/� and Mt3-mmp�/� mice are vi-
able and live through adulthood with minimal defects,
suggesting that ECM remodeling during development
is likely MT1-MMP dependent (Holmbeck et al., 2004).
Furthermore, MT1-MMP, but not MT2-MMP or other
MMPs, was demonstrated to be the dominant MMP im-
pacting both branching morphogenesis and carcinoma
cell invasion (Hotary et al., 2003; Feinberg et al., 2018).

2. Angiogenesis. Tumors require an adequate
blood supply for their high demands of glucose and
nutrients; therefore, angiogenesis, the creation of
new blood vessels from preexisting vascular net-
works, is a key process in cancer progression (De
Palma et al., 2017). Hypoxia, the low availability
of oxygen, is a key aspect of tumor angiogenesis,
where hypoxic cancer cells increase their secretion
of multiple growth factors, including VEGFA, to
increase vessel formation and reach the appropri-
ate oxygen supply (Potente et al., 2011). MMPs
have also been closely implicated in regulating an-
giogenesis in most cancers, and broad-spectrum inhibi-
tion using batimastat (BB-94; Fig. 6) resulted in
inhibition of the angiogenic switch in premalignant le-
sions (Bergers, 1999). Sprouting angiogenesis involves
ECM remodeling byMMPs and other proteases produced
by activated endothelial and immune cells (De Palma
et al., 2017).

In tumors, MMPs often impact the vascular BM,
which can be irregular, discontinuous, and loosely associ-
ated with endothelial cells and pericytes, resulting in an
elevation of vascular leakiness and thus an elevation in
cancer cell intravasation and metastasis (Egeblad and
Werb, 2002; De Palma et al., 2017; Piperigkou et al.,
2021). For example, in a pancreatic neuroendocrine tu-
mor, elevated MMP9 cleaves and releases VEGFA from
the matrix, resulting in a switch between vascular quies-
cence to active angiogenesis initiation (Bergers et al.,
2000). There is evidence that multiple MMPs (MMP1, -3,
-7, -9, -14, -16, and -19) can cleave and regulate VEGF
bioavailability and vascularity in cancer (Piperigkou
et al., 2021). Processing of ECM components such as col-
lagen IV, XVIII, and perlecan by various MMPs (MMP1,
-2, -3, -9, or -13) can initiate the production of antiangio-
genic products like tumstatin, endostatin, angiostatin,
and endorepellin (Iozzo et al., 2009). Despite multiple
MMPs having important biologic functions in the regula-
tion of angiogenesis, individual MMPs also have tissue-,
cell-, and tumor-specific functions. For example, Little-
page et al. (2010) demonstrated that MMP2, -7, and -9
have distinct roles in cancer progression and angiogene-
sis. The authors used a rodent model of spontaneous
prostate cancer and metastasis, where transgenic mice
express SV40 large T antigen in their prostatic neuroen-
docrine cells under the control of transcriptional regulatory

Fig. 6. Structure of MMP inhibitors. The chemical structure of some representative MMP inhibitors from natural sources (row 1), small synthetic hy-
droxamate-based MMP inhibitors (row 2), and other types of inhibitors with different zinc-binding moieties (row 3): Col-3/metastat, AE-941/neovastat,
BB-94/batimastat, BMS-275291/rabimastat, Ro-32-3555/cipemastat, BB-2516/marimastat, GM6001/ilomastat, MMI270/CGS27023A, MMP8 inhibitor,
AG3340/prinomastat, BAY 12-9566/tanomastat, MMP408, RXP470.1, SB-3CT, MMP8/13, and MMP13 inhibitor. Key: when known, the zinc-binding
moiety is colored in magenta within the inhibitor structure. P1’ position and P2’/P3’ positions are identified in blue and green, respectively.
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elements from the mouse cryptdin-2 gene [Cryptdin-2-T
Antigen (CR2-TAg)] (Littlepage et al., 2010). Evaluated af-
ter 24 weeks using this model, Mmp2�/�/CR2-Tag mice
had reduced tumor burden with fewer lung metastases,
increased survival, and decreased blood vessel density
(Littlepage et al., 2010). Interestingly, the survival and tu-
mor growth of Mmp7�/�/CR2-Tag or Mmp9�/�/CR2-
Tag mice were not impacted, but the Mmp7�/�/CR2-Tag
had reduced endothelial area coverage with decreased
vessel size and Mmp9�/�/CR2-Tag mice had decreased
tumor blood vessel size (Littlepage et al., 2010). In another
model, MMP9 was demonstrated to release soluble Kit li-
gand, resulting in the transfer of endothelial and hemato-
poietic stem cells from a quiescent to proliferative niche
and enabling the bone marrow repopulating cells to a dif-
ferentiating vascular niche (Heissig et al., 2002). These
studies illustrate the heterogeneity of the roles that
MMPs exert on tumor angiogenesis.

3. Apoptosis. Evading programmed cell death is key
to the survival of cancer cells. Apoptosis can be initiated
via extracellular receptors such as the FAS receptors, re-
sulting in a proteolytic cascade by intracellular caspases
as well as degradation of additional substrates and nu-
clear DNA (Kessenbrock et al., 2010; Young et al., 2019).
MMPs have been demonstrated to interfere with the in-
duction of apoptosis in cancer cells. For example, MMP7
was shown to cleave Fas ligand in a doxorubicin-induced
cell death assay, using SK-N-MC and SW-480 cancer cell
lines, and MMP7 had a protective effect by reducing cell
death (Mitsiades et al., 2001). In a mouse model of pan-
creatic acinar-to-ductal metaplasia, MMP7 was demon-
strated to accumulate during the metaplastic transition,
increasing soluble Fas ligand (Crawford et al., 2002). Ad-
ditionally, Mmp7�/� mice or mice carrying an inactive
FasL gene demonstrated a significant defect in the devel-
opment of progressive metaplasia and acinar cell apopto-
sis (Crawford et al., 2002). When MDA-MD-231 and
MDA-MB-435 human breast cancer cells were treated
with sodium phenylacetate in the presence of ilomastat
(GM6001), a broad-spectrum MMP inhibitor (Fig. 6), ap-
optosis decreased (Augustin et al., 2009). Under similar
conditions, the induction of autophagic vacuoles was also
inhibited in MDA-MB-231 cells (Augustin et al., 2009).
In patients with B cell chronic lymphocytic leukemia (B-
CLL), the interaction of proMMP9 via its hemopexin do-
main to a4b1 integrin and a 190-kDa variant of cluster of
differentiation 44 (CD44v) resulted in an induction of
Lyn and signal transducer and activator of transcription
3 (STAT3) phosphorylation signaling as well as preven-
tion of apoptosis (Redondo-Mu~noz et al., 2010). Interest-
ingly, the nuclear localization of various MMPs (MMP2,
-9, -13) was demonstrated to induce cell death; however,
no precise mechanism has yet been demonstrated (Xie
et al., 2017). Overall, MMPs are likely implicated in the
regulation or inhibition of cell death, but it is still unclear
what the precise roles of each MMP are in these processes.

4. Cell Migration. Cancer cells have been demon-
strated to have increased motility and migratory ca-
pacity over noncancerous cells (Paul et al., 2017). In
B-CLL cells, upregulation of MMP9 by the chemokine
CXCL12 was demonstrated to enhance cell invasion
and transendothelial migration via interaction with
a4b1 integrin (Redondo-Mu~noz et al., 2006). The che-
mokine CCL21 was also demonstrated to upregulate
MMP9 and enhance cell migration of B-CLL cells via
c-c chemokine receptor type 7 (CCR7) (Redondo-Mu~noz
et al., 2008a). Furthermore, the binding of proMMP9
to a4b1 integrin inhibited B-CLL cell migration, and
the proteolytic activity of MMP9 was required; impor-
tantly, this effect was not observed in normal B cells
(Redondo-Mu~noz et al., 2008b). When noncancerous
COS-1 cells were transfected with the cDNA encoding
for various MMPs, their migration was enhanced, and
this was independent of the MMP inhibitor CT1746 or
the addition of TIMP1 or TIMP2 (Dufour et al., 2008).
This enhancement of cell migration by MMP9 and
MT1-MMP was associated with their hemopexin do-
mains and signaling via CD44 and epidermal growth
factor receptor (EGFR) (Dufour et al., 2010; Zarrabi
et al., 2011). Interestingly, for MMP9, mutations in the
outer amino acid sequences of blade I and IV of its hemo-
pexin domain resulted in a reduction of cell migration us-
ing uncoated membranes in a transwell chamber assay
(Dufour et al., 2010). Using inhibitory peptide sequences
mimicking blade I (548SRPQGPFL555) and blade IV
(689NQVDQVGY696) of the MMP9 hemopexin domain,
HT-1080 and MDA-MB-435 cancer cells were inhibited
in a dose-dependent manner (Dufour et al., 2010). Using
a similar approach for MT1-MMP and using peptides se-
quences mimicking blade I (349VMDGYPMP356) and
blade IV (496GYPKSALR503), the migration of HT-1080
cancer cells was significantly inhibited (Zarrabi et al.,
2011). Interestingly, in a xenograft mouse model using
the MDA-MB-435 GFP-labeled cancer cells that can
spontaneously metastasize to the lungs, 20 mg/kg of
blade I and IV mimicking peptides injected intraperito-
neally six times per week significantly reduced the num-
ber and size of lung metastases but without any effect on
tumor growth (Zarrabi et al., 2011). Additionally, both
peptides inhibited new blood vessel formations in a
chicken chorioallantoic membrane (CAM) angiogenesis
assay (Zarrabi et al., 2011). After a molecular docking
study, small molecule inhibitors for MMP9 (Dufour et al.,
2011; Das et al., 2020) and MT1-MMP (Remacle et al.,
2012) were identified and demonstrated to inhibit cell
migration.
There is unequivocal evidence that MMPs are im-

plicated in most if not all aspects of cancer progres-
sion and metastasis (Overall and L�opez-Ot�ın, 2002;
Kessenbrock et al., 2010; Dufour and Overall, 2013;
Das et al., 2020; Piperigkou et al., 2021). However, it
is still challenging to determine which role each MMP
plays, their synergies with other MMPs, other
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proteases, which substrates are cleaved leading to ac-
tivation or inactivation, and, most importantly, what
the net balance is between MMPs’ detrimental and
beneficial roles in tumors (Overall and Kleifeld,
2006b; Sela-Passwell et al., 2011b; Dufour and Over-
all, 2013; Young et al., 2019). Therefore, despite over
30 years of investigating the use of MMP inhibitors
for the treatment of various cancers, no broad-spec-
trum or selective MMP inhibitors have yet been
approved.

B. Gut and Joint Inflammatory Diseases

The gastrointestinal (GI) tract, encompassing the
organs from mouth to anus, breaks down food, ab-
sorbs nutrients, and eliminates waste. When homeo-
stasis is lost in the GI tract, there is often an
inflammatory response that develops and, if unre-
solved, can further hinder the gut’s ability to perform
its functions. Similarly, the joints and musculoskele-
tal components are susceptible to loss of function once
chronic inflammation is initiated or established. Im-
mune cells can secrete proteases and inflammatory
components that ultimately result in cartilage and
bone destruction. Similar destructive outcomes occur
in the GI tract, and loss of epithelial lining results in
a leaky gut. The inflammatory pathways that govern
gut and joint diseases share common features, includ-
ing a prevalence of type 3 immunity. Although its
very nature remains imprecise, the gut-joint link is
evident, with studies being published as early as 1958
(Wilkinson and Bywaters, 1958).
Inflammatory bowel diseases (IBDs) are chronic in-

flammatory conditions that affect the GI, and they in-
clude two distinct manifestations: Crohn’s disease
(CD) and ulcerative colitis (UC) (Ng et al., 2017). CD
and UC differ in the affected parts of the GI, patho-
physiology, symptoms, and disease course but are cen-
tered on a strong inflammatory component that
drives both diseases (Drewes et al., 2020). CD can in-
volve any part of the GI tract, and it is characterized
by lesioned areas interposed between normal-appear-
ing mucosa, affecting multiple layers of the tissue and
leading to chronic pain, obstructions, and intestinal
complications such as fibrotic strictures and fistulae
(Drewes et al., 2020). On the other hand, UC involves
GFP labeled cancer cells the rectum and colon, with
lesions present in a continuous manner and an in-
flammatory process that is limited to the mucosal sur-
face, leading to erosions and ulcers.
The global prevalence of IBD has been growing for

the past 20 years, with Western countries such as Can-
ada projecting an increase of 33.4% from 2015 to 2025
(Coward et al., 2015). Importantly, the disease etiology
remains elusive, but numerous studies have proposed
MMPs as risk factors for IBD development and pro-
gression via proteolytic regulation or modulation of
transcription factors (Dufour and Overall, 2015;

O’Sullivan et al., 2015). MMPs are upregulated after
cell-cell and cell-ECM interactions or as a response
mechanism to proinflammatory cytokines widely ex-
pressed in IBD (Hu et al., 2007; O’Sullivan et al.,
2015). MMPs are produced by multiple cell types, in-
cluding leukocytes, mesenchymal cells, and epithelial
cells. For example, myofibroblasts can produce MMP1,
-2, -3, and -9, whereas infiltrating neutrophils and
macrophages are an important source of MMP8, -9,
-10, and -12 (Andoh et al., 2007; Yoo et al., 2011; Dry-
giannakis et al., 2013) (Fig. 7). Ulcerated and inflamed
colon regions from patients with UC show an increase
in MMP1 (Wang and Mao, 2007) and MMP9 (Lakatos
et al., 2012), correlating with the inflammation severi-
ty. Although the exact mechanism initiating IBD is not
yet known, multiple studies point toward the involve-
ment of gut microbes. Moreover, MMPs cleave proteins
and peptides that actively control the microbiota. For
example, MMP7 can activate procryptdins into their
active form, cryptdins, increasing their antimicrobial
activity (Wilson, 1999; Weeks et al., 2006) (Fig. 7).
MMPs play a role in the modulation of IBD pathogen-

esis. Cytokines involved in the inflammatory process de-
veloped in the intestine are capable of increasing MMP
levels. For example, TNFa and bradykinin can induce
MMP3 expression via the signaling cascade containing
PKC, PKD1, and MEK (Yoo et al., 2011). Interleukin
17A (IL17A) and IL17F can upregulate the expression of
MMP1 and -3 via myofibroblast, with IL17A presenting
more potent effects than IL17F (Fig. 7). When combined
with IL1b and TNFa, both IL17 cytokines augmented
the expression of MMP1 and -3 (Yagi et al., 2007). In
UC, TNFa induces expression of MMP1, which damages
the colon by remodeling the ECM and leads to additional
expression of TNFa in a feedforward mechanism, ulti-
mately culminating in excessive mucosal damage (Wang
and Mao, 2007) (Fig. 7). TNFa is also dependent on pro-
teolytic activity since it is synthesized as a membrane-
anchored precursor (pro-TNFa) and requires proteolytic
processing to release its soluble 17-kDa extracellular do-
main. The pro-TNFa cleavage is predominantly executed
by the protease ADAM17, a member of the larger group
of metzincin proteases (Horiuchi et al., 2007) (Fig. 7). In-
terestingly, studies also indicate protective roles for
MMPs in IBD, as Mmp2�/� mice have a severe inflam-
matory response and higher susceptibility to disease de-
velopment in a model of mucosal inflammation (Garg
et al., 2006) (Fig. 7). Therefore, additional investigation
is required to better characterize the protective functions
of MMPs in IBD.
The study of MMPs in IBD is not limited to the in-

testine. A recent study by Majster et al. (2020) dem-
onstrated an elevation of IL6 and MMP10 levels in
the saliva of patients with IBD, which correlated posi-
tively with the protease expression in the serum. The
identification of MMP expression in easily accessible
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Fig. 7. Matrix metalloproteinase changes in inflammatory bowel disease (IBD) and arthritis. In healthy gut tissue (top left panel), homeostasis is es-
tablished with a balance of proinflammatory and anti-inflammatory signals. The local immune response can be modulated by multiple factors, includ-
ing the microbiota. Proteases such as MMP7 can shape the microbiota and gut immunity by aiding the release of antimicrobial peptides. Reduction of
proinflammatory signals lowers the expression of MMP3 and -12, setting the stage for successful application of anti-TNFa monoclonal antibodies.
MMPs also perform protective roles, as the absence of MMP2 results in gut inflammation, although the exact mechanism remains to be explored. In
IBD (top right panel), multiple MMPs are upregulated. For example, increased expression of MMP8, -9, and -10 results in tissue damage, generating
damage-associated molecular patterns (DAMPs) that promote further expression of additional MMPs and proinflammatory signals such as TNFa.
MMPs are also capable of cleaving anti-TNFa drugs, reducing treatment efficacy. High expression of certain MMPs has been used in diagnostic tests
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fluids such as saliva and serum could be exploited to
generate diagnostic tools, especially when a signifi-
cant correlation with disease activity is observed.
Currently, there is no single biomarker able to diag-
nose IBD with high accuracy and sensitivity. Howev-
er, a panel of 13 blood biomarkers for patients with
CD has been developed to improve diagnosis (D’Haens
et al., 2020). The panel was evaluated in two cohorts,
showing two distinct values, 0.962 and 0.693, for the
area under receiver operating characteristic curve
(D’Haens et al., 2020). The 13 biomarkers included
MMP1, -2, -3, -9, and extracellular matrix metallopro-
teinase inducer (EMMPRIN) (Fig. 7). Although not
yet approved by the US Food and Drug Administra-
tion (FDA), the test is commercially available as PRO-
METHEUS Monitr Crohn’s Disease by Prometheus
Laboratories.
One of the challenges that patients with IBD face is

the development of extraintestinal manifestations,
with a prevalence ranging from 6% to 47% (Greuter
and Vavricka, 2019). The most common form of extra-
intestinal manifestations is arthritis present as pe-
ripheral arthritis and as spondyloarthritis (SpA)
(Greuter and Vavricka, 2019). SpA is a group of in-
flammatory diseases, including ankylosing spondyli-
tis, psoriatic arthritis, and reactive arthritis (Gracey
et al., 2020). Although the precise mechanism is not
yet understood, the gut-joint axis is evident, which
can be exemplified by type 3 immunity, responsible
for governing the immune response in the gut and
joint tissue via IL17 and related cytokines (Greuter
and Vavricka, 2019). SpA pathogenesis is marked by
innate and adaptive immune cells infiltrating the
joints, promoting chronic inflammation and tissue re-
modeling. In SpA, the degradation of collagens ap-
pears to be implicated, potentially associated with
MMP3, -8, and -9 proteolysis (Moz et al., 2017). MMP3
is elevated in patients with ankylosing spondylitis
compared with healthy controls, and it correlates with
disease activity and C-reactive protein (CRP) levels, a
broad marker of inflammation. Less is known about
MMP8 and -9 in SpA, but they also appear to be asso-
ciated with disease activity (Mattey et al., 2012).
In addition to SpA, studies have suggested an in-

creased risk for the development of rheumatoid ar-
thritis (RA) in patients with IBD. Although the
gut-joint axis has already been established, the link
between RA and IBD remains debatable. In a system-
atic review and meta-analysis performed to determine
if patients with IBD have a higher risk of developing

RA, eight studies were included and revealed a signif-
icantly higher risk of RA in patients with IBD (rela-
tive risk5 2.59; 95% confidence interval: 1.93–3.48)
(Chen et al., 2020). RA is a chronic inflammatory dis-
ease that has similarities to IBD and SpA but is gener-
ally characterized by the rheumatoid factor, which are
autoantibodies to immunoglobulin G (anti-IgG) and
anti-citrullinated protein antibodies (Steiner, 2007;
Smolen et al., 2018; Zaiss et al., 2021). Importantly,
the joint damage promoted by RA can lead to irrevers-
ible disability (Zaiss et al., 2021). MMPs contribute to
tissue damage in RA and are present starting at the
early stages, as evidenced by the high levels identified
within the first week after the onset of RA symptoms
(Fang et al., 2020). One of the key features in the syno-
vium of patients with RA is the expansion of the inti-
mal lining due to the production of a large number of
cytokines and proteases by synoviocytes (Hu et al.,
2007; Hueber and McInnes, 2009). MMP1, -8, -13, and
MT1-MMP are responsible for the proteolytic cleavage
of important tissue components that surround the
joint, whereas MMP9 can further degrade type II colla-
gen fragments, generating important immunodomi-
nant epitopes (Vankemmelbeke et al., 1998; Van den
Steen et al., 2002; Van den Steen et al., 2004; Dufour,
2015). Using monolayers and three-dimensional hu-
man RA synovial fibroblasts micromasses, RANTES/
CCL5 was demonstrated to induce MMP1 and -13 ex-
pression in a dose-dependent manner and the effect
was reversed via inhibition of CCL5 (Agere et al.,
2017). Although MMPs are commonly associated with
ECM degradation and tissue destruction, it is impor-
tant to note that some MMPs such as MMP2, -8, and
-12 have protective roles (Cox et al., 2010; Bellac et al.,
2014; Dufour, 2015). For example, MMP12 secreted by
macrophages can cleave interferon gamma (IFNc) at
the C terminus (135Glu#Leu136), and the truncated
product of IFNc loses the region that interacts with
the IFN receptor 1 and fails to initiate the proinflam-
matory signaling pathway (Dufour et al., 2018).
The inflammatory nature of IBD and various forms

of arthritis translate to common or overlapping ave-
nues of treatment. For example, therapies targeting
TNFa have revolutionized the treatment of IBD, SpA,
and RA (Smolen et al., 2018; Friedrich et al., 2019;
Gracey et al., 2020). One common approach is the use
of anti-TNFa monoclonal antibodies (i.e., infliximab,
adalimumab, golimumab, etanercept) that block the
cytokine’s functions. These inhibitors present different
modes of action, as TNFa is not limited to proinflammatory

for Crohn’s disease, as the protease levels and cytokines are readily detectable in the blood. The systemic nature of IBD correlates with joint inflamma-
tion, where increased expression of multiple MMPs is also observed (lower right panel). High expression of MMPs results in tissue damage and a feed-
forward mechanism for further joint inflammation. Remarkably, MMPs also have protective roles, as exemplified by animal models lacking Mmp2 and
Mmp8 (lower left panel). Lastly, MMP12 can control joint inflammation via IFNc cleavage, generating a product incapable of promoting downstream
signaling of proinflammatory signals.
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functions and can modulate cell migration, proliferation,
and death (Levin et al., 2016). Unfortunately, the response
rate for anti-TNFa therapy remains low to moderate, and
�40% of patients with IBD present primary or secondary
nonresponsiveness to the therapy (Friedrich et al., 2019).
Patients with SpA have a higher response rate, with up to
60% of patients responding to the therapy (Gracey et al.,
2020). The response rate of patients with RA can be as
high as 39% when golimumab is combined with methotrex-
ate (Smolen et al., 2018). Interestingly, MMPs have been
linked to the lack of responsiveness toward monoclonal
antibody therapy. When tissue homogenates from pa-
tients with IBD were incubated with anti-TNFa monoclo-
nal antibodies, MMP3 and -12 were shown to cleave
infliximab, adalimumab, and etanercept (Biancheri
et al., 2015). Of note, a higher proportion of cleaved
monoclonal antibodies is observed in nonresponders to
anti-TNFa therapy compared with patients who re-
sponded better, which could be partially explained by the
higher amounts of MMP3 and -12 that are produced as a
response to IL17A, a major player in the gut and joint in-
flammatory processes (Biancheri et al., 2015). Collective-
ly, these studies show that MMPs have important
functions in IBD and arthritis, as they influence disease
progression and response to therapy with functions that
go beyond the digestion of ECM proteins.

C. Vascular Diseases

Angiogenesis plays a role in several biologic pro-
cesses, including tumorigenesis, organ regeneration,
wound healing, and normal development (De Palma
et al., 2017). As MMPs have been demonstrated to
regulate angiogenesis, it is not surprising that MMPs
play critical roles in vascular diseases such as athero-
sclerosis, myocardial infarction, hypertension, ische-
mia, and strokes (Hu et al., 2007). Increased MMP1
levels in the heart were linked to a disruption of
structural collagen and associated with cardiomyopa-
thy (Kim et al., 2000). In mice, overexpression of
MMP1 in cardiac myocytes showed a decrease in car-
diac interstitial collagen along with noticeable systolic
and diastolic dysfunction (Kim et al., 2000). Upregula-
tion of circulating MMP2 has been associated with
left ventricular remodeling after myocardial infarc-
tions and poor prognostic outcomes (George et al.,
2005; Matsunaga et al., 2005). In mice, overexpression
of MMP2 in hearts resulted in several physiologic
changes that are common with left ventricular remod-
eling, cardiac mitochondrial disruption, systolic heart
failure, myocyte hypertrophy, and troponin I proteolysis
(Bergman et al., 2007). Interestingly, an intracellular
splice variant of MMP2 has been identified and impli-
cated in the development of diabetic cardiomyopathy
(Lee et al., 2019; Bassiouni et al., 2021). This MMP2
splice is missing the 76 amino acids at its N terminus,
which includes part of the signal peptide (MMP2-
NTT76) and has been observed in cardiomyocytes

(Ali et al., 2012; DeCoux et al., 2014; Baghirova
et al., 2016; Bassiouni et al., 2021). MMP2 is local-
ized at the sarcomere, whereas MMP2-NTT76 is lo-
calized in the mitochondria and in the nucleus
(Bassiouni et al., 2021) (Fig. 5). In a rat model of dia-
betic cardiomyopathy, treatment with doxycycline re-
sulted in a reduction of action potential duration,
calcium handling, and cardiac contractile force, sug-
gesting that MMP2-NTT76 could be a contributing
factor (Yaras et al., 2008).
After cardiovascular surgery, patients’ arteries can

develop scar tissue called neointima, leading to a de-
crease in vascular elasticity and eventual vessel ob-
struction (Silvestre-Roig et al., 2020). Neointima
formation is often caused by the proliferation and mi-
gration of smooth muscle cells from the middle layer
(tunica media) to the inner layer of the blood vessel
(tunica intima), leading to scar tissue (Silvestre-Roig
et al., 2020). This scar tissue can lead to a lack of
elasticity of the vascular tissue, which can lead to
eventual plaque rupture that can obstruct smaller
downstream blood vessels. This rupture of atheroscle-
rotic plaques is the leading cause of coronary arterial
thrombi in humans, and MMPs have been implicated
in this process (Libby and Aikawa, 2002). There are
different kinds of plaques that can develop: stable pla-
ques that contain a thick fibrous cap that prevents
the lipid core of the plaque from encountering the
blood or vulnerable plaques that contain a thick fi-
brous cap between the plaque and the blood (Fitridge
and Thompson, 2012). As the name implies, vulnera-
ble plaques are more likely to rupture and trigger
myocardial infarction. Macrophage MMPs have been
proposed to be a driving mechanism of this process
(Fitridge and Thompson, 2012). In a mouse model of
atherosclerosis, treatment with RXP470.1 (Fig. 6), a
selective MMP12 inhibitor, significantly reduced ath-
erosclerotic plaque cross-sectional area, by 2-fold
(Johnson et al., 2011). In the same model, MMP13
was associated with the rupture of plaques via the deg-
radation of the fibrous cap, as Mmp13�/�/apoE�/�
mice displayed reduced collagenolytic activity within
their lesions (Deguchi et al., 2005; Quillard et al.,
2014). MMP2 and -9 have been demonstrated to have
a key role in neointima formation, and inhibition by
broad-spectrum MMPs inhibitors (ilomastat or mari-
mastat; Fig. 6) have been shown to reduce arterial con-
strictive remodeling (Sluijter et al., 2006). Interestingly,
Timp1�/� mice have an increased risk for vascular
scar tissue (neointima) formation (Lijnen et al., 1999).
Mmp11�/� mice have an increase in neointima forma-
tion rather than a decrease, suggesting that individual
MMP could play distinct roles in angiogenesis (Lijnen
et al., 2002). Given the complex role of MMPs in angio-
genesis and vascular diseases, the role of individual

738 de Almeida et al.

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


MMPs warrants further research and could lead to the
identification of new drug targets.

D. Central Nervous System Diseases

MMPs are typically absent from a healthy central
nervous system (CNS), and their upregulation may be
linked with inflammation, neurologic disorders, or in-
jury (Yong et al., 2001). For example, MMP9 was un-
detectable in the cerebrospinal fluid (CSF) of healthy
individuals but elevated in multiple sclerosis (MS)
and other inflammatory neurologic pathologies (Gij-
bels et al., 1992). During the pathogenesis of several
CNS diseases, including multiple sclerosis (MS), bac-
terial meningitis, gliomas, stroke, and multiple
others, CNS resident cells and invading immune cells
secrete MMPs that drive blood-brain barrier (BBB)
breakdown, permit leukocyte recruitment, and modu-
late cytokine and chemokine signaling (Leppert et al.,
2000; Yong et al., 2001; Meli et al., 2003). Accordingly,
many studies have suggested that inhibition of MMPs
is neuroprotective, although it has been hard to rule
out that some MMPs could limit neuroinflammation
or promote tissue repair (Chopra et al., 2019). For ex-
ample, MMP9 is involved in the remyelination pro-
cess after a demyelinating injury. In Mmp9�/� mice,
accumulation of an inhibitory proteoglycan known as
NG2 impairs remyelination by interfering with oligo-
dendrocyte precursor cell maturation and differentia-
tion. MMP9 degrades NG2 deposits to facilitate the
remyelination and repair response postinjury (Larsen
et al., 2003). Additionally, multiple studies suggest
that MMP2, -7, and -9 remodel lesioned ischemic and
infarct tissue to facilitate angiogenesis, vasculogene-
sis, and neurogenesis during poststroke recovery (Re-
mpe et al., 2016).
In the postmortem analyses of the brains of patients

with MS, elevated levels of MMP2, -3, -7, and -9 were
identified as compared with non-MS brains (Cuzner
et al., 1996; Anthony et al., 1997). In a rodent model of
MS, rats with autoimmune encephalomyelitis (EAE)
exhibited increased expression of MMP7, -9, and -12
(Clements et al., 1997). Despite contrasting roles of
various MMPs in EAE rodent models and human MS,
broad-spectrum MMP inhibitors (GM6001, Ro-9790, or
BB1101) alleviate or prevent EAE in rodents (Chan-
dler et al., 1997; Yong et al., 1998). By digesting ECM,
increasing the availability of growth factors (Zhao
et al., 2006), and aiding the migration of neuronal pre-
cursor cells to areas damaged by stroke, MMPs may
support tissue remodeling and healing (Lee et al.,
2006). Beyond their role in neurodegeneration and
stroke, genetic polymorphisms of MMPs (particularly
MMP9) have been implicated in neurologic disorders
such as schizophrenia, depression, and other neuropsy-
chiatric conditions (Beroun et al., 2019; El Mouhawess
et al., 2020). Various mechanisms have been proposed
for the involvement of MMPs in neuroinflammatory

diseases. When injected into the CNS, MMPs have
been demonstrated to induce demyelination; some of
the MMP cleavage products of myelin basic protein
(MBP) have been shown to induce rodent EAE (Opde-
nakker and Van Damme, 1994; Chandler et al., 1997).
Human MMP9 can also cleave MBP, and one of these
peptide fragments is an immunodominant epitope in
MS (Opdenakker and Van Damme, 1994).
White matter damage is a major complication in

acute and chronic stroke, and MMPs have been dem-
onstrated to play various roles associated with these
injuries (Yang and Rosenberg, 2015). MMPs play a
role in the acute injury that may lead to the wide-
spread activation of other MMPs that persist in
chronic stroke. In chronic injury, secondary damage
to the white matter can occur, and MMPs that are ex-
pressed within the infiltrated leukocytes and blood
vessels may result in disruption of the BBB and the
release of toxic byproducts that spread through the
white matter (Yang and Rosenberg, 2015). More pre-
cisely, in the first phases after stroke, MMPs have
been linked to an elevation of cerebral injury, as
MMP-mediated alterations often increase BBB leak-
age, cerebral edema, hemorrhage, and leukocyte infil-
tration (Yang and Rosenberg, 2015). MMPs have also
been associated with damage to myelinated fibers (Ro-
senberg and Yang, 2007). Although MMPs can be det-
rimental during the early ischemic phase, they can be
beneficial during the recovery phase by digesting the
ECM, increasing the availability of growth factors,
and aiding the migration of neuronal precursor cells
to areas damaged by stroke. (Yong et al., 2001; Rempe
et al., 2016; Chopra et al., 2019). Overall, depending
on the stage of MS and the timing of poststroke or
postneuronal injuries, the role of MMPs can be drasti-
cally different.

1. CNS Development and Stem Cell Niche. From
the early embryonic stages, MMPs play a role in the
structural and functional changes during the develop-
ment of the CNS. The neural stem cell niche is crucial
in providing new neural cells such as the glia and neu-
rons in the postnatal brain (Shan et al., 2018). The
ECM architecture and microenvironment directly in-
fluence the fate of neural stem cells and impact their
regenerative potential. Regulation and remodeling of
the ECM are key processes in the development and
maturation of stem cell populations during neurogene-
sis. Both intracellular and extracellular MMP12 have
been demonstrated to regulate the generation of the
brain’s early postnatal ventricular-subventricular zone
via ECM remodeling and inactivation of protease inhibi-
tors (Shan et al., 2018). Increased MMP12 expression
was correlated with the development of ependymal cells,
which line ventricles within the brain (Shan et al., 2018).
MMPs have been implicated in other stem cells such as
the hematopoietic stem cells [reviewed by Kessenbrock
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et al. (2010); Klein et al. (2015)] involved in the induced
mobilization process and their ability to remodel the
ECM and cleave VEGF, TGFb, or TNFa; however, their
roles in controlling stem cells during neurogenesis still
requires in-depth characterization.

2. Breakdown of the Blood-Brain Barrier. Leuko-
cytes infiltrating the CNS parenchyma must transmi-
grate across multiple layers that comprise the BBB.
First, immune cells penetrate the vascular endotheli-
al cell monolayer and the underlying endothelial
basement membrane. The process of transendothelial
cell migration involves the binding of integrin a4b1,
expressed on leukocytes, to vascular cell adhesion
molecule-1 on the endothelial surface of inflamed ves-
sels, which induces MMP2 expression in encephalito-
genic T cells and degradation of the subendothelial
matrix (Graesser et al., 2000). After extravasation
from cerebral blood vessels, leukocytes accumulate in
the perivascular space, and inflammatory perivascu-
lar cuffs containing these leukocytes are one of the
features found in the CNS of patients with MS and
other neuroinflammatory conditions (Yong et al.,
2001; Lassmann, 2019). In MS brains, perivascular
macrophages exhibit an elevated expression of EMM-
PRIN, an upstream inducer of MMPs (Kaushik et al.,
2019). EMMPRIN is also upregulated on peripheral
leukocytes before the onset of clinical signs in the
EAE mouse model and on infiltrating and resident
cells, including microglia within the CNS of symptom-
atic mice (Agrawal et al., 2011, 2013). Using in situ
zymography, Agrawal et al. (2006) previously showed
that macrophage-derived MMP2 and -9 were critical
for leukocytes to cross the parenchymal basement
membrane and infiltrate the CNS parenchyma (Tran
et al., 1998). Mechanistically, MMP2 and -9 are able
to cleave dystroglycan, a transmembrane receptor
that anchors astrocyte endfeet to the parenchymal
basement membrane, in turn permitting leukocyte in-
filtration (Agrawal et al., 2006). Treating EAE mice
with an EMMPRIN function-blocking antibody re-
duces MMP proteolytic activity at the glia limitans,
thereby decreasing the infiltration of leukocytes into
the CNS parenchyma and reducing disease severity
(Agrawal et al., 2011). Overall, the function and local-
ization of MMPs vary across various areas of the
brain.
Another example is the elevated expression of mye-

loperoxidase (MPO) observed in several autoimmune
diseases, including MS. Predominantly associated
with phagosomes such as neutrophils, macrophages,
and dendritic cells, MPO is involved in the creation
and maintenance of an alkaline milieu aimed at kill-
ing microbes and is also implicated in inflammatory
disease progression [reviewed by Arnhold (2020)]. In-
terestingly, in response to inflammation or microbe
infection, the production of ROS via MPO can oxidatively

activate proMMPs and inactivate TIMPs (Weiss, 1989;
Wang et al., 2007). In active MS, MPO was detected in
microglial/macrophage cells within and surrounding CNS
lesions (Strzepa et al., 2017). In the EAE mouse model of
MS, a magnetic resonance imaging probe (MRI) detecting
MPO can reveal lesions with inflammatory monocytes
and neutrophils even in the absence of overt BBB break-
down (Pulli et al., 2015). MPO likely contributes to MS
pathogenesis through several mechanisms, one of which
may involve modulating BBB integrity. For example,
MPO inhibition restores BBB integrity (Zhang et al.,
2016), and lipopolysaccharide (LPS)-induced BBB dys-
function is significantly lower in Mpo�/� mice compared
with wild type (€Ullen et al., 2013). Although MMPs have
long been implicated to play a direct role in degrading the
BBB, MPO may further facilitate BBB damage by oxidiz-
ing and inactivating their tissue inhibitors (Wang et al.,
2007), thus preventing TIMPs from keeping aberrant
MMPs under control. Therefore, beyond tissue expression
of MMPs and TIMPs, it is important to consider the effect
of posttranslational modifications such as oxidation by
MPO on the activity of these proteins (discussed further
in Section VII: Future Perspectives). Overall, MMPs play
both beneficial (angiogenesis, cell survival, myelinogene-
sis, axonal growth, dampening of inflammation) and det-
rimental (neuronal death, demyelination, promotion of
inflammation, tumorigenesis, disruption of BBB) func-
tions within the CNS (Yong et al., 2001); therefore, we
still need to characterize the role of each MMP in specific
regions of the CNS and identify which cells produce spe-
cific MMPs.

3. Therapeutic Potential of MMP Inhibition in Neuro-
logic Diseases. Despite several disappointing MMP
clinical trials, the therapeutic potential of MMP in-
hibitors for neurologic diseases still exists. In an
open-label study, combined treatment of doxycycline
(broad-spectrum MMP inhibitor) and interferon beta-
1a reduced MMP9 serum levels and brain lesions and
improved Expanded Disability Status Scale values in
patients with relapsing-remitting multiple sclerosis
(Minagar et al., 2008). Tissue plasminogen activator
is the only FDA-approved treatment of patients with
ischemic stroke; however, the neurotoxic side effects
of tissue plasminogen activator are in part mediated
by MMP9 upregulation, which can limit its therapeu-
tic potential. Combined therapy with selective MMP9
specific inhibitors that can cross the BBB may be able
to address complications caused by tissue plasmino-
gen activator (Tsuji et al., 2005; Gooyit et al., 2012).
For MMP-targeted therapies to be effective, the tim-
ing of intervention should be carefully considered. In
MS, MMP inhibition may be therapeutic during in-
flammatory phases of the disease, as blocking MMPs
may decrease activation of proinflammatory factors
and limit infiltration of immune cells into the CNS.
On the other hand, promoting MMP activity later in

740 de Almeida et al.

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


the disease course may help facilitate tissue repair
postinjury by clearing debris and other factors that
inhibit remyelination processes within the lesion en-
vironment. It is tempting to speculate that MMPs in-
hibitors would only be useful during acute injury or
early in the pathology of neuroinflammatory diseases;
however, inhibiting the beneficial effects of MMPs
during wound healing may impart more damage (Hsu
et al., 2006). Future studies should consider investi-
gating these complex time-dependent functions of
MMPs in health and neuroinflammatory diseases.

E. Bacterial and Viral Infections

The host immune response to a pathogen must be
carefully coordinated to clear the infection while also
sufficiently preserving tissue function. Although some
MMPs play a critical role in remodeling the ECM and
coordinating the immune response during early infec-
tion, uncontrolled MMP activity during late or chron-
ic stages of infection may cause host tissue damage
and even death (Chopra et al., 2019). The role of
MMPs in bacterial or viral infection has been chal-
lenging to characterize, as they play both beneficial
and detrimental roles. Early in infection, MMPs facil-
itate leukocyte recruitment via processing cytokines
and chemokines and remodeling the ECM (Houghton
et al., 2009; Marchant et al., 2014; Chopra et al.,
2019). However, unregulated MMP activity may con-
tribute to immunopathology during chronic phases of
the disease. For example, MMPs play a central role in
tissue remodeling and fibrosis in patients with chron-
ic infections such as pulmonary tuberculosis. Pharma-
cological inhibition of phosphodiesterases has shown
promise in dampening inflammation and reducing
fibrosis, partly by downregulating MMPs in several
disease models, including mycobacterium tuberculosis–
infected rabbits (Subbian et al., 2016) and chorioamni-
otic infection that contributes to preterm premature
rupture of fetal membranes (Oger et al., 2005).
Severe influenza pneumonia can lead to acute re-

spiratory distress syndrome and death. Doxycycline, a
broad-spectrum and unspecific MMP inhibitor, de-
creased the activity of MMP2 and -9 in a mouse model
of virulent H3N2 influenza virus (Ng et al., 2012).
Doxycycline treatment decreased the expression of po-
doplanin (or T1a, a membrane protein of alveolar type
I epithelium) and thrombomodulin (an endothelial
protein) in the bronchoalveolar lavage fluid. More-
over, it diminished inflammation and protein leakage
in the lungs and reduced lung damage measured by
histopathologic analyses (Ng et al., 2012). This sug-
gests that inhibiting MMPs may protect against lung
injury in severe influenza infection; however, the
timepoint of MMP inhibition should be carefully test-
ed, as MMPs may also play a critical role in control-
ling the early stages of infection. Recruitment of
immune cells to the site of infection is essential for

the clearance of a pathogen, but infiltrating immune
cells may generate excessive inflammatory responses
that cause collateral tissue damage. Talmi-Frank
et al. (2016) identified MT1-MMP as an ECM-degrad-
ing protease expressed by infiltrating myeloid cells in
a model of influenza virus. Inhibition of MT1-MMP
using a selective allosteric inhibitory antibody pre-
served lung tissue integrity by maintaining an abun-
dance of collagen type I fibers and laminin during
infection. Importantly, anti–MT1-MMP treatment did
not modulate the immune response but protected
against tissue destruction (Talmi-Frank et al., 2016).
Moreover, secondary bacterial infections are the lead-
ing cause of mortality in high-risk populations with
influenza, and treatment using Tamiflu, an antiviral
drug for influenza, does not reduce mortality rates
when given postinfection. However, in mice coinfected
with influenza virus and Streptococcus pneumoniae,
preventative or therapeutic combined application of
Tamiflu and MT1-MMP inhibition protected mice
against sepsis by maintaining basement membrane
integrity (Talmi-Frank et al., 2016). This suggests
that selectively inhibiting MMPs could be an effective
drug target in infection if their inhibition does not im-
pair viral clearance and supports tissue resilience to
limit infection-related immunopathology. In response
to a primary infection, the integrity of epithelial bar-
riers may be compromised to allow for immune cells
to enter tissues. However, failing to resolve this mem-
brane postinfection may leave the tissue susceptible
to secondary infections.
MMPs can also cleave transmembrane proteins to

release soluble fragments that may exert independent
functions. For example, membrane-bound CD100
(mCD100) is abundantly expressed on immune cells
such as CD4 T cells, CD8 T cells, and natural killer
(NK) cells and is increased upon cell activation.
MMP-mediated proteolytic cleavage results in the
shedding of a 120-kDa fragment corresponding to the
extracellular domain of CD100, known as soluble
CD100 (sCD100), which can act as a ligand to modu-
late the immune response. Altered mCD100/sCD100
ratios have been observed in viral infections such as
hepatitis B virus (HBV). Patients with chronic HBV
infection have increased mCD100 expression on T
cells, decreased serum sCD100 levels, and low serum
MMP2 compared with healthy controls, suggesting in-
sufficient cleavage of mCD100 from T cell membranes
in patients with chronic HBV. In mice, inhibiting
MMP2 and -9 activity during HBV infection using the
synthetic peptide CTTHWGFTLC (Koivunen et al.,
1999) resulted in decreased serum sCD100 levels and
delayed viral clearance (Yang et al., 2019), possibly
due to attenuated intrahepatic anti-HBV CD8 T cell
responses.
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Human immunodeficiency virus (HIV) infection has
been associated with increased MMP9 levels in the
cerebrospinal fluid (CSF) (Sporer et al., 1998), and it
also induces MMP expression in macrophages, caus-
ing neurotoxicity within the CNS (Yong et al., 2001).
Conant et al. (2004a) showed that HIV-1 protein
transactivator of transcription (Tat) increased the re-
lease of MMP1 and active MMP2 in mixed human
neuron/astrocyte cultures and induced MMP3 and -13
expression in primary murine astrocyte culture (Boz-
zelli et al., 2019). HIV-1 Tat also increased the expres-
sion of MMP9 in the human astrocyte cell line CRT-
MG (Ju et al., 2009). Increased MMPs in the brains of
patients with HIV infection may be one of the factors
contributing to neurologic complications such as HIV-
associated encephalitis and dementia. Tat can still be
constitutively expressed by HIV-infected cells despite
effective antiretroviral therapy; thus, pharmacological
inhibition of Tat may be a therapeutic avenue to pre-
vent HIV-associated neurocognitive disorders and re-
duce viral reservoirs (Sgadari et al., 2019; Joshi et al.,
2020). However, depending on the specific MMP and
stage of infection, MMPs may play both protective
and pathogenic roles. For example, primary human
macrophages expressing a Tat sequence derived from
a patient with HIV-associated dementia increased
MMP2 and -7 release and activation, and superna-
tants from these cells caused significant neuronal
death. Interestingly, this effect is Tat sequence depen-
dent as brain-derived Tat from patients without HIV-
associated dementia did not induce the same MMP
upregulation. Neurotoxicity was inhibited by anti-
MMP2 or -7 antibodies, suggesting that these MMPs
are implicated in pathogenesis (Johnston et al., 2001).
However, another study suggested that MMP1 can
enzymatically degrade Tat and decrease Tat-mediated
neurotoxicity as well as HIV transactivation (Rum-
baugh et al., 2006). Thus, the protective or pathogenic
fate of viral-host interactions is MMP specific. Fur-
thermore, MT1-MMP was demonstrated to be elevat-
ed on the neuronal cell surface, resulting in
proMMP2 activation from HIV-infected macrophages/
microglial cells (Zhang et al., 2003). Upon activation
of proMMP2 by MT1-MMP, active MMP2 was demon-
strated to switch receptor binding specificity from
CXCR4 to CXCR3 via a four amino acid cleavage of
the chemokine CXCL12/stromal cell-derived factor 1
(SDF1), resulting in neurotoxicity (McQuibban et al.,
2001; Vergote et al., 2006). As an example of the syn-
ergy between HIV and bacterial infections, females
with bacterial vaginosis present with an altered mi-
crobiota, which colonizes the female reproductive
tract and increases female susceptibility to HIV
infection.
Increased levels and activity of MMPs, particularly

MMP1, -10, and -13, are detected in cervicovaginal fluid

from women diagnosed with bacterial vaginosis com-
pared with healthy women. In vitro coculture experi-
ments show that endocervical epithelial cells increase
the expression of MMPs, particularly MMP7 and -10, in
response to challenge with the bacterial vaginosis-associ-
ated bacterium Atopobium vaginae when compared with
Lactobacillus species present in healthy vaginal microflo-
ra (Cherne et al., 2020). Further, the combination of
MMP10 and -13 have been implicated in increasing
HIV-1 transmigration through the endocervical epitheli-
um (Cherne et al., 2020). Therefore, the role of MMPs in
barrier dysfunction may be one factor that influences
one’s susceptibility to concomitant or secondary infections.
The crosstalk between pathogen-derived factors and host
MMPs needs to be further characterized to understand
how specific bacteria or viral agents may modulate the
host immune response and contribute to pathology.

1. Cytokine and Chemokine Processing. In addition
to ECM substrates, MMPs process multiple cytokines
and chemokines to drive the recruitment of inflamma-
tory cells and either promote or resolve inflammation
at the site of infection (McQuibban et al., 2000;
Cauwe et al., 2007; Dean et al., 2008; Starr et al.,
2012b; Proost et al., 2017; Young et al., 2019). Impor-
tantly, the localization and activation of MMPs is a
critical factor that dictates their function. In the anti-
viral response against coxsackievirus type 3 or respi-
ratory syncytial virus, intracellular MMP12 was
demonstrated to mediate NF-jB transcription, result-
ing in IFNa secretion and host protection (Marchant
et al., 2014) (Fig. 5). However, extracellular MMP12
was shown to cleave the IFNa receptor 2 binding site
of systemic IFNa to regulate or resolve the antiviral
response (Marchant et al., 2014). The selective
MMP12 inhibitor RXP470.1 was demonstrated to in-
hibit extracellular MMP12 from inactivating IFNa
but spare the beneficial activity of intracellular
MMP12 and, in turn, dramatically increase systemic
IFNa levels and decrease viral load in coxsackievirus
type B3-infected mice (Marchant et al., 2014) (Fig. 5).
Thus, studies testing MMP inhibitors should consider
the differential role that intracellular and extracellu-
lar MMPs may play in immune responses. Designing
specific MMP inhibitors that account for differences
between intracellular and extracellular enzyme activ-
ity may prove to be more efficacious.

F. Sepsis

Sepsis is defined as a dysregulated host response to
an infection leading to organ dysfunction and ulti-
mately organ failure (Singer et al., 2016). Sepsis re-
mains one of the major causes of mortality in
intensive care unit (ICU) patients and a leading cause
of death from infection (Genga and Russell, 2017). De-
spite its importance and increasing global prevalence,
safe and effective therapeutics for sepsis are lacking.
Understanding the pathophysiology behind sepsis is
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complicated by the fact that infections can be caused
by a broad range of pathogens, including bacteria, vi-
ruses, and fungi (Dolin et al., 2019). Several factors
have been identified that contribute to the multiple
organ dysfunction characteristically observed in pa-
tients with sepsis. For example, a prominent feature
of sepsis is a strong proinflammatory response result-
ing in increased levels of circulating leukocytes, cyto-
kines, chemokines, and other mediators of tissue
damage (Gyawali et al., 2019). A second prominent
feature of sepsis is injury and dysfunction of the mi-
crovasculature, leading to extravascular fluid leakage
and tissue edema (Arpino et al., 2016).

1. Metalloproteinase Expression in Sepsis. Sepsis
has been found to alter the expression of multiple
MMPs. For example, a group of ICU patients with se-
vere sepsis presented with plasma levels of MMP3, -7,
-8, and -9 that were elevated more than 3-fold com-
pared with healthy controls (Yazdan-Ashoori et al.,
2011). Another study found markedly elevated levels
of active MMP1 in the plasma of human sepsis pa-
tients versus healthy controls (Tressel et al., 2011).
Altered expression of TIMPs has also been identified
in sepsis. Severe sepsis patients admitted to the ICU
were found to have elevated levels of TIMP1, TIMP2,
and TIMP4 relative to healthy controls (Yazdan-
Ashoori et al., 2011). Conversely, TIMP3 protein and
mRNA levels appeared to be decreased in pulmonary
endothelial cells after treatment with a mix of clini-
cally relevant septic cytokines (Arpino et al., 2016).
Similarly, IL1b and TNFa, two proinflammatory cyto-
kines in sepsis, were determined to synergistically re-
press the expression of Timp3 and increase the
expression of Timp1 in mouse brain microvascular en-
dothelial cells (Bugno et al., 1999). Importantly, these
changes in the expression of certain MMPs and
TIMPs during sepsis have shown to be diagnostic or
prognostic, providing useful insights for both re-
searchers and clinicians. For example, several studies
have reported that lower levels of MMP9, higher lev-
els of TIMP1, and a higher TIMP1/MMP9 ratio are
associated with greater disease severity in patients
with sepsis (Lorente et al., 2009; Lorente et al., 2014;
Bojic et al., 2018). Moreover, MMP9 and TIMP1 have
been associated with circulating cytokine levels, coag-
ulation state, organ dysfunction, and mortality in sep-
sis (Bojic et al., 2018).

2. Metalloproteinases and Septic Barrier Dysfunc-
tion. Septic microvascular barrier dysfunction results
from injury and dysfunction of the microvascular endotheli-
al cells, leading to extravascular leakage of protein-rich
edema and leukocyte influx into the tissue (Arpino et al.,
2016). MMPs have been shown to regulate vascular perme-
ability and barrier function and thus have been examined
for their role in the pathophysiology of sepsis. Disruption of
microvascular endothelial intercellular junctions, including

adherens and tight junctions, occurs during sepsis and con-
tributes to a loss of barrier function (Jayawardena et al.,
2019). VE-cadherin, a critical adhesion molecule of adhe-
rens junctions, is known to be disrupted during sepsis via
mechanisms including VE-cadherin phosphorylation and
cleavage by proteases such as MMPs and ADAMs (Jaya-
wardena et al., 2019). Cleavage of VE-cadherin results in
the release of soluble VE-cadherin (sVE-cadherin) frag-
ments into the circulation, and plasma levels of sVE-cad-
herin have been shown to positively correlate with sepsis
severity (Zhang et al., 2010). MMP7, which is increased un-
der septic conditions, is known to be capable of cleaving
VE-cadherin (Ichikawa et al., 2006; Yazdan-Ashoori et al.,
2011). These findings indirectly point to a potential role for
MMPs in the breakdown of endothelial intercellular junc-
tions during sepsis.
MMP1 may also contribute to increased vascular

permeability during sepsis (Tressel et al., 2011). Spe-
cifically, the mouse ortholog of MMP1, MMP1a, was
released from endothelial cells of septic mice and
cleaved protease-activated receptor 1 (PAR1), result-
ing in its activation (Tressel et al., 2011). PAR1 acti-
vation leads to vascular leakage and leukocyte
extravasation as a result of Rho GTPase activation
and actin skeleton-dependent contraction of endothe-
lial cells (Vandenbroucke et al., 2011). The adminis-
tration of an MMP1 inhibitor successfully reduced the
increase in lung vascular permeability observed dur-
ing sepsis, thereby suppressing endothelial barrier
disruption (Tressel et al., 2011). The MMP1 inhibitor
also suppressed the proinflammatory cytokine re-
sponse, reduced disseminated intravascular coagula-
tion, and improved survival in septic mice (Tressel
et al., 2011). Further investigation into this MMP1/
PAR1 axis may uncover a new therapeutic target in
sepsis.
The BBB is vital for maintaining normal brain

function and can be compromised during sepsis, re-
sulting in cerebral edema and potentially sepsis-asso-
ciated encephalopathy (Chaudhry and Duggal, 2014).
Patients with sepsis-associated encephalopathy pre-
sent with neurologic dysfunction, altered mental sta-
tus, and higher mortality rates (Nwafor et al., 2019).
MMP2 and -9 may have a role in mediating the in-
creased vascular permeability observed in the brain
during sepsis. Using a cecal ligation and perforation
(CLP) preclinical model of sepsis, BBB permeability
in Wistar rats increased in parallel with levels of
MMP2 and -9 in the microvessels of the hippocampus
and cortex (Dal-Pizzol et al., 2013). This increase in
permeability was successfully reversed by an MMP2
or MMP9 inhibitor (Dal-Pizzol et al., 2013). Although
the exact mechanism remains to be determined,
MMP2 and MMP9 are both capable of cleaving tight
junction proteins, which are crucial in maintaining
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BBB integrity and are disrupted during sepsis (Q Li
et al., 2009; Feng et al., 2011).
The integrity of the intestinal epithelial barrier can

also become compromised during sepsis, with leakage
of intestinal components resulting in enhanced sys-
temic inflammation and organ dysfunction (Vanden-
broucke et al., 2013). MMP7 and -13 have both been
implicated in regulating the permeability of the intes-
tinal epithelial barrier during sepsis (Vandenbroucke
et al., 2013, 2014). Specifically, Mmp13�/� mice have
reduced mortality in both LPS and CLP models of
sepsis (Vandenbroucke et al., 2013). This protective
effect was partly attributed to the ability of MMP13
to proteolytically cleave and activate membrane-
bound TNF into soluble TNF. Soluble TNF is bioac-
tive and can induce disruption of intestinal epithelial
tight junctions via caveolin-mediated endocytosis
(Vandenbroucke et al., 2013). In another study,
Mmp7�/� mice were protected against endotoxin-in-
duced increases in intestinal permeability and trans-
location of bacteria to the mesenteric lymph nodes
(Vandenbroucke et al., 2014). Collectively, these studies
provide evidence that MMPs are important in mediating
intestinal barrier disruption and that inhibiting them
may result in protection against sepsis-induced organ
dysfunction.

3. Metalloproteinases and the Septic Inflammatory
Response. Activation and tissue infiltration of im-
mune cells such as neutrophils are an important ele-
ment of the host’s inflammatory response to sepsis
(Rahman et al., 2012). CD40L, a molecule expressed
on the surface of platelets, appears to be released into
the circulation during abdominal sepsis and subse-
quently promotes infiltration of neutrophils into the
lung, leading to increased tissue edema and damage
(Rahman et al., 2009). A recent role has been pro-
posed for MMPs in regulating the shedding of CD40L
during sepsis. Administration of GM6001/ilomastat
(Fig. 6), a broad-spectrum MMP inhibitor, reduced
CD40L shedding from platelets, macrophage-1 anti-
gen (Mac-1) upregulation on neutrophils, and produc-
tion of CXC chemokines in the lung in a preclinical
mouse sepsis model (Rahman et al., 2012). Moreover,
it led to decreased neutrophil infiltration and less
lung damage. Further studies using Mmp9�/� mice
determined that MMP9 regulates the shedding of
CD40L from platelets and the consequent neutrophil
accumulation in the lung during abdominal sepsis
(Rahman et al., 2013). Previous work has shown that
inhibiting neutrophil recruitment can be protective
against septic pulmonary damage (Asaduzzaman
et al., 2008). Therefore, targeting the activity of
MMP9 may prove to be beneficial in regulating the in-
flammatory response during sepsis.
MMP8 has also been identified as a critical regulator

of the inflammatory response in sepsis. MMP8 mRNA

expression was significantly increased in pediatric pa-
tients with sepsis and septic shock versus healthy con-
trol patients (Solan et al., 2012). Moreover, the level of
MMP8 appeared to correlate with sepsis severity, with
increased MMP8 mRNA expression found in septic shock
nonsurvivors compared with survivors (Solan et al.,
2012). In a preclinical CLP model of sepsis, Mmp8�/�

mice had reduced early infiltration of neutrophils into
the lung and reduced circulating levels of proinflamma-
tory cytokines IL6 and IL1b (Solan et al., 2012). Further-
more, pharmacological inhibition of MMP8 activity by
treating septic mice with (3R)-(1)-[2-(4-methoxybenzene-
sulfonyl)-1,2,3,4-tetrahydroisoquinolone-3-hydroxamate]
significantly reduced mortality (Fig. 6, MMP8 inhibitor)
(Solan et al., 2012). In the same study, using an in vitro
approach, MMP8 was found to directly activate NF-jB,
an important macrophage proinflammatory transcription
factor, pointing to a potential mechanism to be further
explored (Solan et al., 2012). Collectively, these four lines
of evidence suggest that MMP8 plays an important role
in modulating the inflammatory response during sepsis
and that inhibiting MMP8 activity may be a potential
therapeutic strategy.
As TIMPs regulate the activity of MMPs, it is not sur-

prising that they can impact the host’s response to sepsis.
For example, levels of TIMP3 have been shown to be de-
creased under septic conditions. (Arpino et al., 2016). In a
CLP preclinical model of sepsis, researchers examined
the impact of a TIMP3 null mutation on lung structure
and function (Martin et al., 2003). Timp3�/� septic mice
showed an increase in lung compliance accompanied by
increased MMP2 and MMP9 activity, as well as de-
creased levels of collagen and fibronectin (Martin et al.,
2003). It was proposed that the observed septic lung ab-
normalities were enhanced by increased MMP degrada-
tion of ECM components. Alveolar macrophages, a major
inflammatory cell population in the lung, were deter-
mined to be critical for mediating the lung changes in
Timp3�/� septic mice (Martin et al., 2007). Timp3�/�

mice depleted of alveolar macrophages were protected
from the sepsis-induced alterations in lung mechanics
(Martin et al., 2007). Moreover, MMP7 abundance was
attenuated after macrophage depletion, suggesting that it
may be partially involved in this process (Martin et al.,
2007). Overall, these studies demonstrate how changes in
TIMP levels during sepsis can alter the MMP/TIMP bal-
ance and thus impact the net metalloproteinase activity.

V. Pharmacological Inhibitors of Matrix
Metalloproteinases

A. Clinical Trials for Cancer Treatment

The first generation of MMP inhibitors was in-
spired by mechanistic aspects of peptide hydrolysis.
The mechanism by which all MMPs cleave substrates
is driven by acid-base catalysis via a Zn21 ion in the
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active site (Nagase and Woessner, 1999; Visse and Na-
gase, 2003; Maskos, 2005). In the 1990s, MMP inhibi-
tors were designed based on the logical, but at the
time unproven, concept that cancer cells require
MMPs to degrade ECM (predominantly collagens) to
facilitate cell migration, invasion, and metastasis.
The first generation of MMP inhibitors were peptide
and peptide-like compounds mimicking backbone fea-
tures of P1, P1’, and P2’ and capable of binding Zn21

ion that resembled collagen (Zucker et al., 2000). The
goal was to develop competitive and potent reversible
broad-spectrum inhibitors of MMP activity, and the
first class of compounds was the hydroxamic acid
zinc-binding group (Zucker et al., 2000). The first
compound tested in preclinical rodent cancer models
and entered into clinical trials was batimastat or BB-
94 (developed by British Biotech; Fig. 6), which dis-
plays broad specificity in inhibiting multiple MMPs
while sparing other proteases. Batimastat was tested
on lung colonization and spontaneous metastasis of
the HOSP.1P rat mammary carcinoma. Intraperitone-
al administration of six doses of 30 mg/kg batimastat
inhibited 80% of lung metastases (Eccles et al., 1996).
When batimastat was initiated 2 days prior to surgi-
cal removal of the tumors, 100% of treated animals
survived to 120 days, whereas the control animals all
died before day 100 (Eccles et al., 1996). In a mouse
model of ovarian cancer, the combination of batima-
stat and cisplatin resulted in delayed tumor growth
and increased the survival time of the mice compared
with cisplatin alone (Giavazzi et al., 1998). In the
RIP1-Tag2 model of pancreatic islet cell carcinogene-
sis, batimastat reduced angiogenesis by 49% in a pre-
vention trial and by 83% in an intervention trial with
no effect on invasive tumors (Bergers, 1999). Preclini-
cal studies using batimastat for cancer treatment
were successful, resulting in human phase I and II
clinical trials. However, as batimastat was not soluble
and had poor bioavailability, it had to be administered in-
traperitoneally and intrapleurally to patients, which re-
sulted in sustained plasma concentrations and was
found to act as a depot (Nelson et al., 2000). The reported
side effects included nausea, fatigue, low-grade fevers,
abdominal pain when injected intraperitoneally, and
pain at the injection site when injected intrapleurally
(Nelson et al., 2000). Thus, clinical trials using batima-
stat were terminated, and other MMP inhibitors were
further tested (Zucker et al., 2000; Overall and Kleifeld,
2006b; Dufour and Overall, 2013).
Marimastat (BB-2516; Fig. 6) was developed after

batimastat in an attempt to make the drug more bio-
available and was also a broad-spectrum MMP inhibi-
tor (Nelson et al., 2000). Phase I and II trials in patients
with advanced cancers demonstrated that marimastat
was well tolerated, and side effects included fatigue and
cumulative inflammatory polyarthritis that was reversible

when treatments were stopped (Wojtowicz-Praga et al.,
1998; Nelson et al., 2000; Zucker et al., 2000).
Prinomastat (AG3340; Fig. 6) was developed by

Agouron Pharmaceuticals based on information ob-
tained with X-ray crystallographic analysis of human
MMPs and is a picomolar inhibitor of MMPs. Prino-
mastat was developed to be more specific than previ-
ous inhibitors and was aimed to selectively inhibit
MMP2, -9, -13, and MT1-MMP (Nelson et al., 2000).
In a preclinical model of brain cancer, U87 glioma
cells were implanted in severe combined immunodefi-
ciency/nonobese diabetic (SCID/NOD) mice for 3
weeks before being treated with 100 mg/kg of prino-
mastat or vehicle intraperitoneally (Price et al.,
1999). In the prinomastat-treated mice, tumor volume
was decreased by 78% compared with the vehicle-
treated mice, resulting in less invasive and prolifera-
tive tumors and a 2-fold increase in survival time
(Price et al., 1999). In an NCI-H460 orthotopic lung
cancer model, treatment with prinomastat in combi-
nation with carboplatin resulted in longer survival
compared with vehicle-treated animal, prinomastat,
or carboplatin alone (Liu et al., 2003). When prinoma-
stat was tested in clinical trials, similar side effects to
previous MMP inhibitors were identified, such as
time- and dose-dependent musculoskeletal stiffness
and pain (Nelson et al., 2000). Although there were
benefits of combination therapy in preclinical animal
models, importantly, a human phase III clinical trial
for advanced stage non–small-cell lung cancer that
compared standard chemotherapy with or without the
addition of prinomastat did not result in increased
survival between the two groups (Bissett et al., 2005).
Tanomastat (BAY 12-9566; Fig. 6) was developed by

Bayer Corporation and is a nonpeptidic biphenyl in-
hibitor with a Zn21-binding carbonyl group and was
demonstrated to have a long terminal plasma half-life
ranging from 90 to 100 hours (Gatto et al., 1999). Ta-
nomastat is a butanoic acid derivative that could ac-
count for distinct selectivity as it cannot inhibit
MMP1, -8, and -13 (Nelson et al., 2000). Tanomastat’s
distinct chemical features could be responsible for dif-
ferent side effects from other MMP inhibitors; there
was no musculoskeletal toxicity in the phase I trial in
patients with advanced tumors, but new symptoms
were identified, including an asymptomatic increase
of hepatic enzymes and thrombocytopenia (Nelson
et al., 2000). Importantly, patients with metastatic
small-cell lung cancer taking tanomastat resulted in
a worse disease, suggesting that we lacked a clear un-
derstanding of specific MMP functions in cancer
(Overall and Kleifeld, 2006a; Dufour and Overall,
2013). MMP inhibitors were also tested in combina-
tion with known cancer drugs such as gemcitabine,
carboplatin, or paclitaxel, but no additional benefit
was clearly demonstrated (Nelson et al., 2000). The
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failure of MMP inhibitors in randomized phase III
clinical trials has generated numerous updated gener-
ations of different inhibitors to directly or indirectly
inhibit MMPs (Das et al., 2020).

B. Clinical Trials for Inflammatory Diseases
Treatment

MMP inhibitors were also tested in various rodent
models of inflammation. For example, in a model of
autoimmune inflammatory arthritis in rats using
complete Freund’s adjuvant, injection of the com-
pound N4-hydroxy-2-(2-methylpropyl)-N1-[2-[[2-(mor-
pholinyl)ethyl]-,[S- (R*,S*)] (GI168) via osmotic
minipumps from days 8 to 21 significantly diminished
ankle swelling in addition to bone and cartilage de-
struction (Conway et al., 1995). In another study of ad-
juvant-induced arthritis, rats were treated for 21 days
with 50 mg/kg of tanomastat (BAY 12-9566; Fig. 6) or
vehicle (Hamada et al., 2000). The severity of arthritis
in this model was determined by measuring an arthrit-
ic index indicated by paw volume, urinary pyridino-
line, and deoxypyridinoline; by examining joint
inflammation; and by microscopic morphometry of ar-
ticular cartilages. In this adjuvant-induced arthritis
model, tanomastat was demonstrated to suppress in-
flammation and reduce cartilage destruction (Hamada
et al., 2000).
Multiple MMPs have been implicated in cardiovas-

cular diseases as having both beneficial and detrimen-
tal roles (Bassiouni et al., 2021). For example,
myocardial specific overexpression of constitutively
active murine MMP2 resulted in cardiac defects, in-
cluding increased troponin I proteolysis, mitochondri-
al dysregulation, left ventricular remodeling, and
heart failure even in the absence of external stimula-
tion or injury (Wang et al., 2006; Bergman et al.,
2007). Using selective MMP12 phosphinic peptide in-
hibitor RXP470.1 (Fig. 6), atherosclerotic plaques
cross-sectional area was diminished by over 50% in
both male and female apolipoprotein E knockout mice
fed on a Western diet (Johnson et al., 2011). In hu-
mans, when batimastat was coated onto drug-eluting
stents for the treatment of obstructive coronary ar-
tery disease, no clinical benefits were demonstrated,
suggesting that a better understanding of the role of
individual MMP is required (Sousa et al., 2003).
In the EAE mouse model of MS, ilomastat (GM6001;

Fig. 6) was demonstrated to suppress the development
of EAE in a dose-dependent manner (Gijbels et al.,
1994). Another MMP inhibitor, D-penicillamine, signif-
icantly reduced the mortality and morbidity rates in
the EAE mouse model (Norga et al., 1995). However,
when tested in humans in a double-blind, placebo-con-
trolled pilot trial with D-penicillamine and metacy-
cline, side effects were detected and the trial was
stopped (Dubois et al., 1998). Next, minocycline, a tet-
racycline derivative containing some MMP9-inhibitory

activity, was tested and was demonstrated to be highly
effective in the EAE model (Popovic et al., 2002). In a
human randomized and controlled trial, 100 mg of
minocycline taken twice a day was tested to see if it
was able to reduce the risk of conversion from a first
demyelinating event (also termed clinically isolated
syndrome) to MS. In 142 patients with multiple sclero-
sis, it was demonstrated that minocycline treatment
significantly reduced the risk of conversion from a clin-
ically isolated syndrome to MS compared with the pla-
cebo groups (Metz et al., 2017). All changes detected
on magnetic resonance imaging (MRI) were significant
at 6 months but not at 24 months (Metz et al., 2017).
Some of the side effects reported in the minocycline-
treated group included rash, dizziness, and dental dis-
coloration (Metz et al., 2017). It is important to men-
tion that minocycline is not a selective MMP9 inhibitor
but rather results in downregulation of MMP9 activity
and likely additional MMPs.
Another approved MMP inhibitor in the clinic is

Periostat (doxycycline hyclate) for the treatment of
periodontitis (Golub et al., 1990, 2001; Golub and Lee,
2020). Seminal work by Lorne Golub and colleagues
(1984) demonstrated that tetracyclines (minocycline)
reduced gingival collagenolytic activity in periodontal
disease. Clinical studies have shown that doxycycline
administered orally, at doses below those needed for
antimicrobial efficacy, to adult patients with periodon-
titis resulted in significantly reduced collagenase ac-
tivity in gingival crevicular fluid and in extracts of
inflamed gingival tissues (Golub et al., 1990, 2001).
Seventy-five patients with pathologic levels of peri-
odontal attachment and with positive collagenase ac-
tivity in gingival crevicular fluid were treated with
subantimicrobial-dose doxycycline (Periostat) in a pla-
cebo-controlled, double-blind, parallel-group study.
Periostat administered at subantimicrobial doses led
to improvements in disease parameters (Golub et al.,
2001). Additional clinical trial studies for Periostat were
conducted and resulted in FDA approval (Caton and
Ryan, 2011; Golub, 2011; Gu et al., 2012). Despite a suc-
cessful approval, there are other effective approaches to
treat periodontitis and Periostat is not always a first-line
therapy.

C. Potential Reasons for the Failure of MMP
Inhibitors

Over the past two decades and since the various
clinical trials of MMP inhibitors, multiple lessons
have been learned: 1) MMPs can be both drug targets
and antitargets depending on cell/tissue localization,
type of disease, or stage of the disease; 2) MMP inhib-
itors are likely to be more effective for short-term dos-
age as opposed to long-term dosage; and 3) broad-
spectrum versus selective inhibition must be carefully
examined for a particular disease [reviewed in Over-
all and Kleifeld (2006b); Dufour and Overall (2013);
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Young et al. (2019)]. It has been demonstrated that
MMPs have biologic functions other than ECM re-
modeling: �31% of their substrates are ECM proteins,
and �69% are non-ECM proteins (Fig. 4; Supplemental
Table 1). Therefore, it is likely that the role that MMPs
play in diseases is different from what the inhibitors
were intended to block during the cancer clinical trials
(Dufour and Overall, 2015). Most MMP inhibitors test-
ed were broad spectrum and able to inhibit multiple
MMPs in addition to ADAMs and ADAMTSs for some
inhibitors. Paradoxically, treating human HT-1080 fi-
brosarcoma cells with the broad-spectrum MMP inhibi-
tor GI129471 increased MMP9 expression (Maquoi
et al., 2002). Additionally, MMP inhibitors can prevent
autolytic degradation of MT1-MMP, resulting in an en-
hancement of proMMP2 activation and MMP2 activity
(Toth et al., 2000). Overall, toxicities associated with
MMP inhibitors were related to musculoskeletal pain
and were assumed to be due to their poor selectivity;
however, this has not been fully confirmed yet (Zucker
et al., 2000; Skiles et al., 2004; Fingleton, 2008; Devy
and Dransfield, 2011). Therefore, it is believed that
more selective inhibitors would likely be more effective.
In the past decade, several small synthetic inhibitors
selectively targeting the MMP active site have been de-
signed with some significant success for MMP2, -9, -12,
and -13 (Devel et al., 2010; Mahasenan et al., 2017;
Fields, 2019).
Specifically, a significant gain in selectivity was

achieved by exploring zinc-binding groups other than
the hydroxamate function, as well as other side
chains interacting within the MMP specificity loop
(S1’ cavity). For example, MMP408 with a carboxylate
function and an optimized P1’ side to fit within a deep
S1’ cavity (W Li et al., 2009) (Fig. 6) has been reported
as a selective inhibitor of MMP12. In the same vein,
the phosphinic pseudopeptide displayed a high poten-
cy and selectivity for this protease (RXP470.1; Fig. 6)
(Devel et al., 2006). In this case, it was demonstrated
that the excellent selectivity of this inhibitor mainly
relied on three critical features: the presence of two
glutamate residues facing the MMPs’ S2’ and S3’ sub-
sites (Devel et al., 2006), a long and hydrophobic P1’
side chain inserting within the large S1’ cavity of
MMP12 (Czarny et al., 2013), and the chemical na-
ture of the zinc-binding moiety. On this last point, the
RXP470.1 analogs with either a hydroxamate or a
carboxylate function to chelate the catalytic zinc ion
are much less selective for MMP12 than the parent
molecule with a phosphinate moiety, highlighting the
key role played by the zinc-binding group in subtly
tuning inhibitor selectivity (Rouanet-Mehouas et al.,
2017). The phosphinate function was also incorporated
within the structure of triple-helical peptide mimicking a
specific region of collagen (Lauer-Fields et al., 2007),
thus resulting in inhibitors displaying inhibition constant

(Ki) values in the low nanomolar range for MMP2 and
-9. In those two examples, the high potency of phosphinic
pseudopeptides was attributed to the capacity of the
phosphinate function to reproduce the transition state
during peptide bond hydrolysis, making those com-
pounds potential transition-state analogs (Georgiadis
and Dive, 2014). In the field of small synthetic com-
pounds, selectivity for a given MMP or a restricted set of
MMPs can also be obtained by selectively targeting the
S1’ cavity of MMPs. In this respect, two compounds with
no zinc-binding moiety were able to target MMP8/13 (Po-
chetti et al., 2009) (Fig. 6) and MMP13 (Engel et al.,
2005) (Fig. 6) with high potency and selectivity. In these
cases, the inhibitors bind deeply in the S1’ cavity and ex-
tend into an additional side pocket only present in
MMP8 and -13.
Many of these inhibitors have been assessed in pre-

clinical models of inflammatory diseases and cancer,
but none have been validated in human studies to
date. There is also a need to better characterize the
role of individual MMPs in a specific disease to estab-
lish if a specific MMP is detrimental; currently, at
least 10 MMPs have been found to have protective
functions and should not be inhibited (Overall and
Kleifeld, 2006b; Dufour and Overall, 2013; Brkic
et al., 2015; Chopra et al., 2019).
The broad expression of multiple MMPs in various

cell types (e.g., epithelial, cancer, immune, fibroblast,
and others) could also imply that a local/targeted de-
livery is likely necessary. Also, the timing of drug de-
livery is important. MMPs have been shown to have
opposite roles in different stages of viral infections.
For example, early on, nuclear MMP12 was shown to
be protective via its promotion of IFNa but was dem-
onstrated to generate a negative feedback loop by
cleaving extracellular IFNa at later timepoints
(Marchant et al., 2014). Therefore, treatment with a
selective MMP12 inhibitor could result in unintended
effects depending on the timing of drug treatment.
The clinical use of MMP inhibitors has been more
complex than initially thought. Alternatives other
than inhibitors that target MMP active sites exist to
inhibit and control the biologic functions of MMPs.
These options are now being examined in various pre-
clinical models.

D. Alternative Strategies To Inhibit MMPs

The catalytic domains of MMPs are highly con-
served, whereas other domains are not present in all
MMPs or they are divergent in terms of amino acid
similarities. For example, targeting MMPs exosites,
the hemopexin domain, or the cytoplasmic tail could
result in more selective compounds. Peptides mimick-
ing the amino acid sequences of the hemopexin do-
mains of MMPs have been designed for MMP9 to
inhibit cell migration (Dufour et al., 2010), MMP12 to
inhibit bacterial functions (Houghton et al., 2009),
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and MT1-MMP to inhibit cell migration and invasion
(Zarrabi et al., 2011). Small molecule inhibitors tar-
geting the hemopexin domain of MMP9 (Dufour et al.,
2011) and MT1-MMP (Remacle et al., 2012) were de-
signed, and both demonstrated antitumor growth ac-
tivity in murine models of cancer. However, the
binding affinity of exosite domains is typically much
lower than the catalytic domain; therefore, it creates
a new set of challenges for these types of inhibitors
(Overall and Kleifeld, 2006a; Dufour and Overall,
2013; Young et al., 2019).
Other than peptidomimetic or small molecule inhibi-

tors, monoclonal antibodies (mAbs) have been designed
with the purpose of selectively inhibiting a single MMP.
For example, Irit Sagi and collaborators injected a Zn-tri-
pod to elicit an immune response against a synthetic zinc-
imidazole motif, resulting in the production of mAbs that
recognized MMP9 (Sela-Passwell et al., 2011a). Two of
them generated the mAbs suppressors of defective silenc-
ing (SDS)3 and SDS4, which inhibited MMP2 and -9 (Ki

values were 1 ± 0.01 lM for SDS3 and 0.05 ± 0.006 lM
for SDS4) (Sela-Passwell et al., 2011a). In a murine model
of dextran sulfate sodium–induced colitis, both prophylac-
tic and therapeutic treatment with SDS3 prevented body
weight loss, prevented colon shortening, decreased diar-
rhea, and improved colonic damage (Sela-Passwell et al.,
2011a). Using the Zn-tripod approach, an MMP7 selective
antibody (GSM-192) was recently developed and was
demonstrated to induce apoptosis and reduce CFPAC-1
cell migration in vitro (Mohan et al., 2021). Using a differ-
ent approach to generate an antibody-based inhibitor
against MT1-MMP called LEM-2/15, mice were immu-
nized using a cyclic peptide of the V-B loop of MT1-MMP
comprising amino acid residues 218 to 233 (Udi et al.,
2015). The MT1-MMP antibody LEM-2/15 was demon-
strated to protect against influenza virus infection and, in
combination therapy with oseltamivir (Tamiflu), displayed
a synergistic effect and resulted in complete recovery of
influenza-infected mice (Talmi-Frank et al., 2016). Anoth-
er selective MT1-MMP inhibitor, DX-2400, was developed
using a human antigen-binding fragment (Fab) displaying
phage library (Devy et al., 2009). Using a breast cancer
xenograft model with MDA-MD-231 cells, DX-2400 was
demonstrated to reduce tumor growth, invasion, and me-
tastasis (Devy et al., 2009). In the intravenous injection of
the metastatic model using mouse B16F1 melanoma cells,
DX-2400 was shown to diminish the number of lung nod-
ules and reduce metastasis (Devy et al., 2009). Additional-
ly, DX-2400 was demonstrated to reduce tumor growth in
the 4T1 and E0771 syngeneic BALB/c mouse model, re-
ducing TGFb and SMAD2/3 signaling (Ager et al., 2015).
Currently, BT1718, a hemopexin-binding MT1-MMP se-
lective inhibitor developed by Bicycle Therapeutics con-
taining a bicyclic peptide, a linker, and a toxin moiety
is in clinical trials for the treatment of solid tumors,
projected to end in 2022 (ClinicalTrials.gov identifier:

NCT03486730). BT1718 was demonstrated to be effec-
tive in reducing tumor volume in xenograft mouse
models using HT-1080 cells (Harrison et al., 2017).
Recent and ongoing MMP clinical trials include the

testing of andecaliximab (GS-5745), an MMP9 human-
ized monoclonal antibody designed for the treatment of
cancer and inflammatory diseases by Gilead Sciences
(Marshall et al., 2015). In a phase III study, andecalixi-
mab in combination with modified oxaliplatin, leuco-
vorin, and fluorouracil (mFOLFOX6) were recently
tested in patients with gastric or recurrent gastro-
esophageal junction (GEJ) adenocarcinoma (Clinical-
Trials.gov identifier: NCT01803282); however, the
addition of andecaliximab to mFOLFOX6 did not im-
prove overall survival of patients (Shah et al., 2021).
Importantly, there was no associated toxicity in pa-
tients that took andecaliximab (Shah et al., 2018). An-
decaliximab has also been evaluated in combination
with gemcitabine and nab-paclitaxel in patients with
advanced pancreatic adenocarcinoma and was well toler-
ated (Bendell et al., 2020). There is also an ongoing re-
cruitment of patients for the evaluation of andecaliximab
as a treatment of glioblastoma (ClinicalTrials.gov identifi-
er: NCT03631836).
Andecaliximab has also been tested in inflammatory

diseases such as RA (ClinicalTrials.gov identifier:
NCT02176876), UC (ClinicalTrials.gov identifier:
NCT02520284), CD (ClinicalTrials.gov identifier:
NCT02405442), and chronic obstructive pulmonary
disease (ClinicalTrials.gov identifier: NCT02077465).
In patients with RA, andecaliximab was administered
as three infusions over 29 days and was generally safe
and well tolerated (Gossage et al., 2018). However,
only 15 patients were given andecaliximab and three
were given the placebo; therefore, studies in larger pa-
tient cohorts and also of increased treatment duration
are needed to better characterize the efficacy of ande-
caliximab (Gossage et al., 2018) (ClinicalTrials.gov
identifier: NCT02176876).
In a phase II/III study in patients with moderately to se-

verely active UC, subjects were randomized (1:1:1) to re-
ceive placebo, 150 mg andecaliximab every 2 weeks, or 150
mg andecaliximab weekly via subcutaneous administration
(Sandborn et al., 2018). Although andecaliximab was
well tolerated, 8 weeks of treatment with 150 mg ande-
caliximab did not induce clinical remission or response
in patients with UC, and the trial was terminated early
(Sandborn et al., 2018) (ClinicalTrials.gov identifier:
NCT02520284).
In a phase II study in patients with moderately to

severely active CD, subjects were randomized (1:2:2:2)
to receive subcutaneous injections of placebo weekly,
150 mg andecaliximab every 2 weeks, 150 mg andeca-
liximab weekly, or 300 mg andecaliximab weekly
(Schreiber et al., 2018). Similar to the patients with
UC, andecaliximab was well tolerated in the patients
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with CD, but no clinically meaningful symptomatic or
endoscopic response was observed, and the trial was
terminated due to lack of efficacy (Schreiber et al.,
2018) (ClinicalTrials.gov identifier: NCT02405442).
Another interesting strategy is to use the biologic

functions of MMPs as a treatment (Gabrielli et al.,
2009). For example, the combination of FCX-013 and
veledimex is currently being used in clinical trials for
the treatment of localized scleroderma, a disease that
hardens the skin and connective tissues (Gabrielli
et al., 2009) (ClinicalTrials.gov identifier: NCT03740724).
This approach uses FCX-013, a human fibroblast geneti-
cally modified using a lentivirus vector encoding for
MMP1, whose expression is dependent on an agonist.
This therapy consists of injecting FCX-013 subcutaneous-
ly at the location of the fibrotic lesions. The goal is that
the MMP1 producing fibroblasts will break down excess
collagen accumulation. In combination with FCX-013,
patients will also orally take veledimex (INXN-1001) to
induce MMP1 from the injected cells. Veledimex (INXN-
1001) is an oral activator and promoter for the gene ther-
apy system (Chiocca et al., 2019). Once the fibrosis is re-
solved, the patient stops taking veledimex (INXN-1001),
which stops MMP1 production. Therefore, the biologic
activity of certain MMPs could also potentially be used
as a therapeutic to resolve fibrosis in specific diseases
(Leong et al., 2021). This approach further supports that
a better characterization of the roles of individual MMPs
in inflammation and fibrosis could result in the develop-
ment of novel therapeutics.
Another novel approach to treating cancer could be

the use of antibodies derived from patients with can-
cer as a diagnostic or therapeutic approach. The tu-
mor microenvironment contains antibody-secreting
cells that are associated with a favorable prognosis in
various cancer types (Zaenker et al., 2016; Helmink
et al., 2020; Petitprez et al., 2020). For example, in
patients with high-grade serous ovarian carcinoma, it
was demonstrated that somatic hypermutations pro-
moted antibody antitumor reactivity against certain
surface autoantigens (Mazor et al., 2022). By using
antibody-secreting cells within these tumors, cells were
mutated and clonally expanded, resulting in the produc-
tion of tumor-reactive antibodies against MT1-MMP
(Mazor et al., 2022). MT1-MMP has been demonstrated
to be elevated in ovarian cancer compared with healthy
tissues and, using multiple validation ELISA assays, a
strong and reproducible antibody reactivity was de-
tected in all tested patients (Mazor et al., 2022). This
work suggests a novel approach to the use of patient-de-
rived antibodies either by selectively targeting MT1-
MMP or as a drug delivery vehicle to tumors. In addi-
tion, this could become an effective strategy for cell-me-
diated therapy such as chimeric antigen receptor
(CAR)-T cell therapy using MT1-MMP as a target.

Finally, a better characterization of the role of indi-
vidual MMPs could result in novel approaches to in-
hibit MMP functions or, alternatively, to use the
proteolytic activity of MMPs to help treat multiple
diseases such as localized scleroderma. Importantly,
as MMPs are expressed in various tissues and im-
mune cell types, it is important to analyze and identi-
fy local and systemic side effects according to each
disease. With many MMPs having beneficial roles, it
is key to analyze whether these protective functions
will or will not be affected by the specific MMP inhibi-
tor being tested. Furthermore, antibodies, peptidomi-
metic inhibitors, or small molecule inhibitors are
likely to generate different side effects that need to be
carefully monitored. Despite decades of MMP re-
search, there have been multiple failed clinical trials
for cancer and arthritis but also a few successful
ones. For example, Periostat (doxycycline hyclate)
was approved to treat periodontitis (Golub et al.,
1990, 2001; Golub and Lee, 2020), and minocycline
was approved for treating the risk of conversion from
a clinically isolated syndrome to MS (Metz et al.,
2017). Therefore, many opportunities remain for the
use of MMP inhibitors.

VI. Molecular Tools for Targeting Active MMPs

Conventional proteomics approaches aiming at es-
tablishing the relation of MMPs to disease states are
limited by the fact that they take the total protein
amount into account, whereas the protease functional
(active) status is often the unique relevant parameter.
To determine MMPs’ proteolytic activity in biologic
samples, two main molecular tools have been devel-
oped: 1) substrate-based probes that generate a signal
upon proteolytic cleavage and 2) ligand-based probes
that bind selectively to MMPs active form and spare
inactive and inactivated ones. Within the family of li-
gand-derived tools, two classes can be further distin-
guished: 1) MMP inhibitors containing a reporter tag
for imaging purposes and 2) affinity-based probes
with a reactive motif enabling a permanent attach-
ment of the probe to the target MMP for subsequent
analyses. In this section, we will discuss the most sig-
nificant advancements in those three categories of
molecular tools with a special focus on covalent
probes, the sole class of molecular probes capable of
identifying directly and unambiguously the target
MMPs through diverse analytical methods.

A. Substrate-Based Probes for a Cleavage Assay

The design and development of substrate-based
probes have been inspired directly from the peptide
sequence of natural MMP substrates or from combina-
torial libraries of peptides obtained by phage display
or chemical approaches (Knapinska and Fields, 2012).
In this respect, substrate-based probes generally
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consist of a minimum peptide sequence containing six
amino acids that extend their side chains from S3 to
S3’ subsites of MMP catalytic cleft (Fig. 8). Within
most of the sequences, a proline residue is present in
the P3’ position, thus conferring an MMP preference
for peptide sequence, and variations of other side
chains result in motifs targeting a specific subset of
MMPs. A certain selectivity can also be achieved by in-
corporating additional amino acids on both sides of the
minimal P3-P3’ sequence. By relying on such a scaffold,
several types of biosensors have been developed to de-
tect MMP activity (Fig. 8). This mainly includes 1) op-
tical biosensors emitting an optical signal upon
proteolytic cleavage, 2) magnetic or photoacoustic bio-
sensors, or 3) sensors leading to the secretion of syn-
thetic biomarkers specifically detected in urine.
Substrates-based probes emitting a fluorescent sig-

nal upon proteolytic cleavage are the most widely
used optical biosensors and enable the real-time mon-
itoring of MMP proteolytic activity in many different
complex proteomes and in vivo (Scherer et al., 2008;
Knapinska and Fields, 2012; Hu et al., 2014; Lei
et al., 2020). The fluorescence-based biosensors have
been designed by relying on fluorescence self-quench-
ing (Bremer et al., 2001), F€orster resonance energy
transfer (FRET) (Knapinska and Fields, 2012; Hu
et al., 2014), or bioluminescence resonance energy
transfer (BRET) (Lee and Kim, 2015; Nguyen et al.,
2018; Park et al., 2021; Tian et al., 2021). Benefiting
from the enzyme turnover, those activatable probes
detect active MMPs with high sensitivity and, if
the fluorophore possesses an emission wavelength in
the near-infrared (NIR) region, this detection can be
achieved in vivo within deep tissues. For example, the
fluorescence self-quenched probe MMPsense680 with
an organic NIR dye has been used to monitor the ac-
tivity of MMP2 in tumor tissue (Bremer et al., 2001)
and that of MMP2 and -9 in atherosclerosis (Deguchi
et al., 2006). Since these seminal reports, this probe
has been used in several other preclinical models, in-
cluding colon cancer (Hensley et al., 2017), colitis
(Ding et al., 2014), and bacterial infections (Daghighi
et al., 2014). Another example is an NIR probe devel-
oped by Tang et al. (2018) whose fluorescence signal
was self-quenched upon self-assembly into nanopar-
ticles, which enabled the detection of MMP2 activity
in vivo.
Alternatively, several FRET-based activatable probes

have been designed and became the standard in the
real-time monitoring of MMPs’ activity in various bio-
logic matrices and in vivo. In this case, the peptide se-
quence is flanked by both a fluorescence donor and a
fluorescence acceptor/quencher in close proximity.
Upon proteolytic cleavage, the distance between the
two partners increases, and this irreversible spatial
separation induces a ratiometric change in the donor

and acceptor emission spectra, resulting in the appear-
ance of a fluorescent signal. Many different types of
FRET-base probes incorporating either small organic
dyes or nanomaterials as FRET donor/acceptors were
designed to target MMPs in complex proteomes [see
several reviews for additional information: Garland
et al. (2016); Liu et al. (2018); Lei et al. (2020); Olivei-
ra-Silva et al. (2020); Soleimany and Bhatia (2020)].
Despite their high sensitivity and low background to
noise in vivo, the limitation of FRET-based probes with
organic fluorescent dyes used for long-time imaging is
a signal attenuation due to diffusion within the tis-
sues. However, to circumvent these limitations, ultra-
fast-acting activatable probes enabling the
visualization of MMPs expression and inhibition after
only 30 minutes have been designed and validated in a
tumor-bearing mouse model (Zhu et al., 2011). In this
case, the addition of different polyethylene glycol ex-
tensions at the C-terminal end of the peptide sequence
subtly modulated the activation profiles of probes
in vivo.
To limit the diffusion of cleaved fragments tethered to

fluorescent emitter away from the protease active site,
other effective strategies based on activatable FRET
probes connected to cell-penetrating peptides have been
developed (Jiang et al., 2004). Specifically, an MMP-
cleavable peptide sequence was inserted between comple-
mentary polycationic and polyanionic domains. Upon
processing by MMP2 or -9, the polycationic entity as a
cell-penetrating peptide (CPP) connected to an NIR dye
can be released to further bind and enter the cell. Such a
selective delivery of fluorescent emitter to MMP-express-
ing cells by activatable cell-penetrating peptides (ACPPs)
has been explored in different mouse models (Chen
et al., 2017; Hingorani et al., 2017), notably to detect un-
stable atherosclerotic plaques within which certain
MMPs are overexpressed under their active form (Hua
et al., 2015). Interestingly, the ACPP strategy was com-
bined with the MRI technique for identifying plaques at
high risk of rupture. The ACPPs have also demonstrated
excellent ability to direct fluorescence-guided oncologic
surgery in a preclinical model (Metildi et al., 2015) and
have been recently assessed in first-in-human (phase I)
clinical trials to challenge their capacity to improve intra-
operative detection of malignant tissue during breast
cancer operations (Unkart et al., 2017). Following an ap-
proach similar to ACPPs, Schultz et al. developed an
MMP12 selective FRET probe containing a palmitic acid
extension installed at the N terminus end of the peptide
sequence (Cobos-Correa et al., 2009). Such a lipid tail al-
lowed the fragment containing the NIR dye to anchor
onto cell membranes, therefore limiting the diffusion of
the fluorescence signal. The use of FRET probes of nano-
meter size also limits the diffusion fluorescence signal
away from the protease active site (Lei et al., 2020).
These FRET nanoprobes, exploiting the unique optical
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properties of nanomaterials, present several other advan-
tages, including good biocompatibility and stability, high
brightness with limited photobleaching, and the possibili-
ty to perform multiplexing. In this respect and taking ad-
vantage of dopant-dependent multicolor emission of
upconversion nanoparticles, FRET nanoprobes with dis-
tinct emission wavelengths were designed to measure si-
multaneously and independently the activity of MMP2
and -7 (Cao et al., 2018).
Due to the extremely low background and high sensi-

tivity of bioluminescent reporters, BRET probes also pro-
vide great advantages for imaging MMP activity in vivo
(Nguyen et al., 2018; Park et al., 2021; Tian et al., 2021).
In this case (and unlike FRET approaches), no external
light is required, but an enzyme, often luciferase, as a
bioluminescent reporter is essential to emit light upon
the appropriate trigger. When the emission spectrum of
the bioluminescent reporter overlaps with the excitation
spectrum of another fluorophore, the energy transfer re-
sults in the emission of a luminescent signal that can be
associated with a specific proteolytic activity. Based on
this principle, a BRET probe enabling the dynamic moni-
toring of MT1-MMP activity with high temporal and spa-
tial resolution was validated in a preclinical model of
lung cancer (Tian et al., 2021). In this case, a membrane-
bound form of luciferase was used, and the MT1-MMP

recognition peptide was inserted within the sequence of
this enzyme. Upon proteolytic cleavage by MT1-MMP,
two luciferase subdomains get in close proximity, which
results in the appearance of a high luminescent signal.
As biologic matrices have a negligible magnetic

background, several magnetic biosensors for the sen-
sitive detection of MMPs in clinical samples and
in vivo have also been developed (Lei et al., 2020).
Most of these biosensors exploit the properties of
superparamagnetic nanoparticles capable of magnify-
ing the magnetic signal resonance of protons in neigh-
boring water molecules. Upon cleavage by MMPs,
those sensors aggregate, which accelerates the dephasing
of water protons. This change in the nanoparticles’ state
can then be detected by monitoring the variation of pro-
ton relaxation time, which is associated with MMP pro-
teolytic activity (Harris et al., 2006; Schuerle et al.,
2016). Recently and in the same vein of FRET biosen-
sors, a sensor relying on a distance-dependent magnetic
resonance tuning (MRET) has been designed; the varia-
tion of distance between a paramagnetic enhancer and a
superparamagnetic quencher induced the appearance of
magnetic resonance imaging signal, linked to the proteo-
lytic activity of MMP2 in vivo (Choi et al., 2017).
Optical-based sensors can also be conjugated with oth-

er techniques such as photoacoustic imaging, which

A

B

C

Fig. 8. Design of substrate-based sensors from a minimal peptide sequence of six amino acids incorporating a proline in P3’ position. The peptide se-
quence corresponds to a fluorogenic substrate crystallized within the catalytic cleft of an inactive mutant of MMP9 (PDB: 4IJI) (Tranchant et al.,
2014). From this sequence, different substrate-based probes/sensors have been designed. This notably includes (A) optical sensors (e.g., NIR sensors)
with a quencher and emitter of fluorescence, (B) magnetic sensors (e.g., magnetic resonance tuning probe), and (C) synthetic biomarkers, which upon
MMP cleavage are secreted and detected in urine. Key: MMP9 (surface), peptide sequence (pale red stick), catalytic zinc ion (magenta ball); unprimed
(P3, P2, and P1), P1’ and primed (P2’ and P3’) positions are identified in purple, blue, and green, respectively. The cleavage site is marked with red
arrow.
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mainly aims at improving imaging resolution. The devel-
opment of an activatable probe incorporating both a
near-infrared dye and a quencher linked through an
MMP2 peptide substrate has been done (Yin et al.,
2019). Upon cleavage, this probe not only emitted a fluo-
rescence signal but also changed its aggregation state. In
this respect, the responsive probe presented a dramatic
MMP2 concentration–dependent absorption at around
680 nm, whereas that at around 730 nm was MMP2 con-
centration independent. These features allowed detection
of MMP2 activity via both fluorescence and photoacoustic
imaging in vitro and in a model of breast cancer in vivo.
To detect MMPs’ activity in vivo, another effective

approach involving nanosensors capable of generating
synthetic biomarkers upon proteolytic cleavage has
been reported (Soleimany and Bhatia, 2020). In this
case, and unlike in situ imaging sensors, the peptide
fragments resulting from the proteolytic cleavage dif-
fuse away from the protease site, enter circulation,
and are then secreted in the urine. Thus, the subse-
quent detection of those fragments by various analyti-
cal techniques such as mass spectrometry (Kwong
et al., 2013), ELISA (Dudani et al., 2016), paper later-
al flow assay (Warren et al., 2014), or colorimetric test
(Loynachan et al., 2019) is indirectly associated to
MMPs’ proteolytic activity at a pathologic site. Re-
cently, those activity-based nanosensors enabled the
profiling of 15 proteases, including five MMPs simul-
taneously, in a preclinical model of lung cancer (Kirk-
patrick et al., 2020).
In all of those substrate-based strategies and main-

ly due to the highly conserved structural topology be-
tween the different MMPs, the peptide sequence is
rarely cleaved by a single MMP. To address this issue,
an activatable fluorogenic probe with enhanced specif-
icity for MT1-MMP was recently developed (Ji et al.,
2020). In this case, the specificity of the FRET probes
is increased by tethering the MT1-MMP peptide se-
quence to an additional recognition element that
binds away from the catalytic cleft. A long linker of
twelve polyethylene glycol subunits was introduced
between these two motifs, resulting in a significant
optimization of specificity and selectivity of the fluoro-
genic probe for MT1-MMP in vivo. Besides their po-
tential lack of selectivity within the MMP family, the
ability of substrate-based probes to target MMPs ex-
clusively within the pathologic site is also question-
able (Lebel and Lepage, 2014). Indeed, in many
pathologic contexts, circulating active MMPs have
been reported (Roy et al., 2009; Fontana et al., 2012;
Hadler-Olsen et al., 2013; Goncalves et al., 2015; Pee-
ters et al., 2017; Dofara et al., 2020). This may result
in substrate-based probes that are partly cleaved in
the bloodstream, yielding poor target/nontarget con-
trast when imaging diseased tissues. Preliminary
work in the context of lung cancer detection suggests

that a more local delivery of activatable probes, intra-
pulmonary delivery in this specific case, significantly
increases the signal specificity while eliminating off-
target activation (Kirkpatrick et al., 2020).

B. Ligand-Based Probes To Bind to Active MMP

By relying on MMP inhibitors scaffold (see also the
section on MMP inhibitors), numerous imaging agents
have been designed for different types of imaging modali-
ties, including positron emission tomography (PET), sin-
gle photon emission computed tomography (SPECT),
magnetic resonance imaging, and optical imaging (Matu-
siak et al., 2013; Rangasamy et al., 2019). Two types of
imaging probes can be distinguished: those possessing
an imaging reporter of small size (e.g., a radioisotope
such as 18F, 11C, or 123I) that is directly inserted within
the structure of the MMP inhibitors, and those incorpo-
rating a reporter of comparable size to that of the MMP
inhibitor scaffold (e.g., NIR dye, encaged 68Ga or 99mTc).
In this latter case, the imaging reporter is systematically
separated from the MMP binding motif by a spacer to
limit eventual steric clashes (Faust et al., 2008; Razavian
et al., 2010, 2016; Bordenave et al., 2016; Hugenberg
et al., 2017; Toczek et al., 2019; Gona et al., 2020). The
imaging probes contain a binding motif targeting either
a wide range of MMPs or a restrictive set of MMPs.
Within this second class of probes, MMP2/9 probes with
an SB-3CT (2-[[(4-Phenoxyphenyl)sulfonyl]methyl]thiir-
ane) thiirane scaffold (Hohn et al., 2018), MMP12 probes
with either an RXP470.1 phosphinic pseudopeptide (Bor-
denave et al., 2016; Razavian et al., 2016; Toczek et al.,
2019) or a hydroxamate-based scaffold (Gona et al.,
2020), and MMP13 probes have been reported (see Fig. 6
for the structure of the motif selectively targeting the
MMP active site) (Hugenberg et al., 2017).
All of these MMP inhibitor–derived imaging agents

have been assessed in a wide variety of preclinical
models, including cancer, atherosclerosis, myocardial
infarction, aneurysm, RA, and lung inflammation and,
for a rather complete overview of their scope of appli-
cation, see the review by Rangasamy et al. (2019). In
all of those preclinical models, the probes accumulate
within pathologic sites overexpressing active MMPs,
and the spatiotemporal resolution, penetration depth,
and sensitivity are related to the imaging reporter
used. Importantly, unlike the substrate-based probes
benefiting from the enzyme turnover, the imaging
probes bind to MMPs in a stoichiometric manner, with
evident consequences on the detection limit. This may
be particularly critical in the case of MMPs that are
present under their active forms at very low concentra-
tions at a pathogenic site.
Another limitation of the MMP inhibitor–derived

probes relies on their structure. Indeed, most MMP
inhibitors have been designed to target both the hy-
drophobic S1’ subsite and the catalytic zinc ion within
the MMPs’ active site. In this respect, they often
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display several aromatic units and negatively charged
functions, structural features that favor unspecific
binding to abundant plasma proteins (Casalini et al.,
2013; Digilio et al., 2014; Bordenave et al., 2016; Ra-
zavian et al., 2016). Interestingly, in the series of opti-
cal probes with an NIR dye, it has also been shown
that the dye itself can drastically modify the in vivo
detection of the imaging probes (Razavian et al.,
2016). A similar impact of the reporter part has been
observed with radiotracers differing in their 99mTc
chelating groups (Toczek et al., 2019). Besides their
potential unspecific uptake ascribed to their trends to
bind to serum albumin, most probes do not enable the
precise documentation of the activation status of indi-
vidual MMPs. Indeed, most MMP inhibitor–derived
tracers are broad spectrum and only provide a gener-
al overview of the MMPs’ activation pattern. Further,
when a selective probe is used, the part of the whole
signal corresponding to the probe/MMP complex re-
mains difficult to attribute unambiguously, mainly
due to the low concentration of active MMP in vivo.

C. Activity-Based Probes To Crosslink Active MMPs

The concept of activity-based protein profiling (ABPP)
emerged at the end of the 1990s, demonstrated by a
chemical strategy that utilizes active site-directed cova-
lent probes to profile the functional state of enzymes in
complex proteomes and in vivo (Evans and Cravatt,
2006). A typical activity-based probe (ABP) is composed
of 1) an electrophilic “warhead” to react with a catalytic
nucleophile, 2) a targeting motif that imposes selectivity
upon the reactive moiety, and 3) an analytical handle
for subsequent visualization and characterization of the
resulting covalent adduct. Since MMPs use zinc-activat-
ed water molecules rather than a protein-bound nucleo-
phile for catalysis, the ABPs targeting those proteases
are systematically composed of a reversible inhibitor to
which a photolabile group is attached (Geurink et al.,
2011; Garland et al., 2016). Upon photoirradiation, the
photolabile group (diazirine, phenyl azido, or benzophe-
none) is transformed into a reactive intermediate (car-
bene, nitrenes, or ketyl biradical, respectively) that
crosslinks amino acids in close proximity. The resulting
covalently modified MMP could be distinguished from
unlabeled proteins on SDS-PAGE gel or further cap-
tured for identification by mass spectrometry. Based on
this principle, three types of MMP-directed ABPs have
been designed: those targeting the nonprimed region,
those able to crosslink residues within the S’1 cavity,
and ABPs reacting with amino acids present within the
S2’ or S3’ primed subsites (Fig. 9). In 2004, two groups
independently reported the two first ABPs targeting
MMPs in their nonprimed and primed regions, respec-
tively (Chan et al., 2004; Saghatelian et al., 2004). The
“left-handed’’ probe with a C-terminal hydroxamic acid
(Fig. 9A) was able to crosslink MMP9 (Chan et al.,

2004) but had a relatively low binding affinity toward
MMPs, thus limiting its scope of application.
Conversely, the APBs whose structure derived from

marimastat (Fig. 9B) were more effective to covalent-
ly modify the MMPs’ primed subsites. In this respect,
ABPs with a benzophenone facing the S2’ subsite
could crosslink several MMPs, down to 3 ng/50 fmol
of MMP2 spiked into a complex proteome (Saghateli-
an et al., 2004). The N-terminal succinyl-hydroxamate
motif has been further exploited to provide ABPs with
a small clickable handle (alkyne tag) for pulldown of
active proteases from complex mixtures (Sieber et al.,
2006). The goal was to design probes with no bulky
reporter groups (e.g., fluorescent) that might adverse-
ly affect probe-metalloprotease interactions. Interest-
ingly, the use of those probes on several human
cancer cell lines highlighted two major points: the
succinyl hydroxamate warhead could target metallo-
proteases other than MMPs, and no endogenous
MMPs could have been detected, suggesting that
MMPs are often found entirely in zymogen or TIMP-
bound form in cancer cell proteomes. With this type of
ABP, endogenous MMP2 was detected in a zebrafish
model (Keow et al., 2012). More recently, similar
APBs with a cleavable linker were used to character-
ize active MMPs in an in vitro model of early-stage
cartilage degradation in post-traumatic osteoarthritis
(Ravindra et al., 2018). In this study, after pulldown,
Tris (2-carboxyethyl) phosphine (TCEP)-mediated
cleavage, digestion of the released proteases by tryp-
sin, and multidimensional liquid chromatography-
tandem mass spectrometry (LC-MS/MS) analysis us-
ing spectral counting, several endogenous MMPs in-
cluding MMP1, -2, -3, -9, -12, and -13 were detected
(Ravindra et al., 2018). Importantly, the authors also
showed that a significant fraction of the total secreted
MMP was inactive. The marimastat-derived ABPs
were also used to implement a metalloprotease activi-
ty multiplexed bead-based immunoassay as an effec-
tive approach for detecting MMP activity at picomolar
range in conditioned cell culture media, peritoneal
fluid aspirates, menstrual effluent, and uterine biop-
sies (Ahrens et al., 2019).
Complementary to ABPs targeting S2’ and S3’ sub-

sites, photoaffinity probes able to react within the hy-
drophobic S1’ subsite were also developed (David
et al., 2007; Bregant et al., 2009; Geurink et al., 2010;
Nury et al., 2013b). The first one was reported by the
group of Vincent Dive in 2007 (David et al., 2007).
This probe contained a phosphinic pseudopeptide
scaffold and a P1’ side chain with a phenyl azido moie-
ty as a photolabile group and was shown to covalently
react with several MMPs. Importantly, the incorpora-
tion of a radioactive isotope (tritium) within its struc-
ture not only enabled a high detection threshold by in-
gel radio imaging but this also allowed to accurately
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quantitate the crosslinking yield for each of the tested
MMP. In this series of phenyl azido probes and
through further studies, the labeling sites within the
S1’ cavity of MMP12 (Dabert-Gay et al., 2008) and
MMP3 (Dabert-Gay et al., 2009) were also determined.
This enabled a better understanding of the probe’s re-
activity, which resulted in the conception of the second
generation of photoaffinity probes with a diazirine pho-
tolabile group (Nury et al., 2013b) (Fig. 9C).
Compared with the phenyl azido probes, such a

probe reacted efficiently with a larger set of MMPs
and was able to detect endogenous MMP12 in bron-
choalveolar lavage fluids (Nury et al., 2013a). More
widely, ABPs targeting the S1’ subsite are more effec-
tive than those targeting the S2’ and S3’ subsites. This
was particularly well illustrated by the work of Geur-
ink et al. (2010), which compared photoaffinity probes
with a diazirine moiety in P1’ or P2’ position. Interest-
ingly, the probe with the photolabile group in P1’
crosslinked all of the tested MMPs (MMP1, -2, -3, -7,
-8, -9, -10, -11, -12, and -13), whereas the probe with
the same group in P2’ only efficiently reacted with
MMP9 and -10. This observation has been rational-
ized by the fact that the P2’ photolabile group was
more exposed to solvent than in P1’, which significant-
ly reduced its reactivity toward protein amino acids.
Although capable of detecting endogenous MMPs
(Ravindra et al., 2018; Ahrens et al., 2019), photoaf-
finity probes display a major limitation related to
their intrinsic reactivity. Indeed, since the photoirra-
diation step is not straightforwardly achieved in vivo,
the use of photoaffinity probes remains restricted to
ex vivo samples.
To address this issue, the group of Matt Bogyo de-

signed ABPs with an alpha-chloroacetamide electro-
phile in P2’ position (Fig. 9D) that can react with a
cysteine residue artificially incorporated with the
MMPs’ catalytic cleft (Morell et al., 2013; Amara
et al., 2018). This approach notably enabled monitor-
ing of the activity of MT1-MMP in cells and in vivo
but required genetic manipulations incompatible with
native conditions. More recently, and inspired by the
ligand-directed chemistry developed by the group of
Itaru Hamachi (Tamura and Hamachi, 2019), a new
type of MMP-directed ABPs has been published (Ka-
minska et al., 2021). The affinity probe harbors a
phosphinic pseudopeptide scaffold and an N-acyl-N-
alkyl sulfonamide cleavable electrophile in P3’ (Fig.
9D), which can react selectively with lysine in close
proximity within the MMP S3’ region. Through this
strategy, MMP12 but also MMP3, -9, and -13 can be
covalently tagged and detected by in-gel fluorescence
imaging. This “photoactivation-free” strategy was also
validated in complex proteomes and on native MMP12
under its active form, paving the way for the development

of ABPs capable of reporting the MMP functional status
in vivo.

VII. Future Perspectives

MMPs were first identified as ECM-degrading en-
zymes but were not recognized as multifunctional pro-
teases that influence cell migration, invasion, adhesion,
signaling, immune responses, among others. Although it
is tempting to inhibit MMPs’ proteolytic activities in dis-
eases, we have learned that they also have protective
functions and participate in more processes than we ini-
tially thought (Sternlicht and Werb, 2001; Overall and
L�opez-Ot�ın, 2002; Dufour and Overall, 2013) (Young
et al., 2019). Despite MMPs’ protective functions, it is
still feasible that an effective MMP inhibitor could be
used to treat human diseases. There are many areas of
MMP research that warrant additional investigation: 1)
better characterization of their nonproteolytic roles; 2)
identification of their non-ECM substrates; 3) studying
the differences between their intracellular and extracel-
lular functions; 4) profiling their posttranslational modifi-
cations; 5) measuring their activity in vivo and ex vivo to
distinguish between proMMP, inhibitor-bound MMP, and
active MMPs; and 6) development of selective activity-
based probes (Fig. 10). Genomics, proteomics, and N-ter-
minomics studies have not yet been performed on all hu-
man MMPs or MMP-deficient mice; therefore, there are
still important basic characterization and discoveries to
be made. Here, we identified six areas of future research
that will be critical to completing our understanding of
MMPs.

A. MMPs and Their Nonproteolytic Roles: Missed in
the Myth?

ProMMPs are also capable of impacting key biologic
functions such as cell migration (Dufour et al., 2008,
2010; Pavlaki et al., 2011), cell survival (Conant
et al., 2004b; Redondo-Mu~noz et al., 2010), branching
morphogenesis (Correia et al., 2013), bacterial killing
(Houghton et al., 2009), and immune regulation (Shi-
mizu-Hirota, et al., 2012; Marchant et al., 2014). The
study of the nonproteolytic roles of MMPs has so far
revealed unexpected functions and is likely to uncover
even more novel roles and possibly generate unique
ways to control MMPs’ biologic functions. Another
therapeutic opportunity could be to develop inhibitors
that interfere with proteins that interact with MMPs’
exosites or target downstream pathways that are im-
pacted by MMPs’ nonproteolytic roles.

B. Non-ECM MMP Substrates

Despite what their name indicates, MMPs can
cleave more non-ECM proteins than matrix proteins
(�69% vs. �31%, respectively; Supplemental Table 1).
MMPs can cleave cell surface proteins, receptors, che-
mokines, cytokines, and other nonmatrix proteins,
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thereby making them more fascinating than initially
thought (Butler and Overall, 2009; Dufour and Over-
all, 2015; Young et al., 2019). N-terminomics ap-
proaches have largely contributed to the identification
of MMPs non-ECM, and there are still several human
and murine MMPs to be characterized and validated
in vivo (Butler and Overall, 2009; Bellac et al., 2014;
Marchant et al., 2014; Mallia-Milanes et al., 2018).

C. Intracellular versus Extracellular Functions of
MMPs

MMPs are secreted proteases, but up to the time of
this publication, 11 MMPs have also been demonstrated
to have intracellular functions [for additional details,
see the review by Bassiouni et al. (2021)]. They can in-
fluence immune regulation via DNA interactions (Shi-
mizu-Hirota, et al., 2012; Marchant et al., 2014),
oxidative stress via contractile dysfunction (Ali et al.,
2011; Fan et al., 2016), mammary epithelial branching
morphogenesis (Correia et al., 2013), neuronal signaling
(Szklarczyk et al., 2007; Miller et al., 2010) and many
others (Bassiouni et al., 2021) (Fig. 5). Intracellular
functions of MMPs have been associated with various
pathologies, including inflammatory disease, bacterial/
viral infections, and cancer; however, there are no spe-
cific ways to selectively target intracellular MMPs, and
still limited mechanistic information is known on how

extracellular MMPs enter inside the cells despite some
mechanisms having been proposed (Koppisetti et al.,
2014; Bassiouni et al., 2021).

D. Posttranslational Modifications of MMPs

The posttranslational modifications (PTMs) of pro-
tease substrates can increase or decrease the rate of
proteolysis (Madzharova et al., 2019). In other instan-
ces, PTMs can protect protease substrates such as ly-
sine methylation (Wigle et al., 2010), glycosylation
(King et al., 2018), or phosphorylation (Dix et al.,
2012; Turowec et al., 2014). For example, MMP9 sub-
strate alpha-fetoprotein (FETA) was demonstrated to
be impacted by polypeptide N-acetylgalactosaminyl-
transferase 2 (GalNAc-T2) O-glycosylation, and multi-
ple additional MMP9 substrates were identified as
being involved in a complex interplay between prote-
olysis and O-glycosylation (King et al., 2018). Inter-
estingly, MMP9 itself is also N- and O-glycosylated
and contains a 64 amino acid residue linker domain
implicated in orienting the hemopexin domain for in-
hibition by TIMP1 and regulating its interaction with
cargo receptors (LRP1 and megalin) for internaliza-
tion (Van den Steen et al., 2006; Rosenblum et al.,
2007). Mutant MMP9 lacking the O-glycosylated link-
er region (OG domain) diminished MMP9’s ability to
increase cell migration (Dufour et al., 2008). Lack of

Fig. 9. Activity-based probes (ABPs) directed to the MMP catalytic cleft. From the MMP catalytic domain (PDB: 4IJI) (Tranchant et al., 2014) in sur-
face representation, three regions were distinguished: the S subsites marked in purple, the S1’ subsite in blue, and the primed subsites in green. To
each subsite is associated an ABP capable of crosslinking it. Probe A targets the S subsites; probe B, D, and E the S’ subsites; and probe C the S1’ sub-
site. For each probe, the zinc-chelating group is marked in magenta, the photolabile group or reactive electrophile is associated to the color of site with-
in which it reacts, and the analytical tag is in red.
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glycosylation also impacts the role of MMP9; for
example, MMP9 lacking glycosylation at Asn38 re-
sults in an amino acid–dependent interaction with
calreticulin, likely impacting its release toward the
secretory pathway (Duellman et al., 2015). MMP9
can also be citrullinated by peptidyl arginine dei-
minases (PADs), resulting in a higher affinity for
gelatin and hyperactivation compared with the un-
citrullinated counterpart; citrullinated MMP9 was
detected in neutrophil-rich sputum samples of pa-
tients with cystic fibrosis, suggesting a key role for PTMs
in human disease (Boon et al., 2021). The functions of oth-
erMMPs are alsomodulated by glycosylation (Boon et al.,
2016;Madzharova et al., 2019). For example, glycosylated
MMP1 (e.g., GalNacb1,4-(Fuca1,3)GlcNAcb1,2) has high-
er levels of interactionwith selectin on the cell surface, in-
creasing cell migration (Saarinen et al., 1999; Boon et al.,
2016).MMP2, -3, -13, andMT4-MMPalso contain several
glycosylated sites, yet little is currently known about the
impact on their functions.

MMPs have been demonstrated to be phosphorylat-
ed, but the biologic significance of this PTM on MMP
functions still needs to be characterized. For example,
MMP2 contains 29 potential phosphorylation sites,
but only five (S32, S160, Y271, T250, and S365) have
been validated by mass spectrometry so far (Madzhar-
ova et al., 2019). Although little is known, it appears
that dephosphorylated MMP2 contains higher enzy-
matic activity compared with phosphorylated MMP2
due to a conformational change (Sariahmetoglu et al.,
2007; Jacob-Ferreira et al., 2013). The phosphorylation
of MT1-MMP at nine potential sites also impacts its
biologic function, specifically cell migration and invasion
(Garc�ıa-Pardo and Opdenakker, 2015). Substitution of
MT1-MMP’s cytoplasmic domain Thr567 by an alanine
residue resulted in an elevation of MT1-MMP levels at
the cell surface, diminished internalization, and re-
duced cell migration and invasion (Williams and Cop-
polino, 2011). Additionally, several MMPs (MMP1, -12,
-13, -14, -16, -24, and -27) can be phosphorylated extra-
cellularly on tyrosine residues located in their hemopexin

Fig. 10. Topics for MMP research to be studied in the next decade. Schematic representation of six areas of MMP research that warrant further investi-
gation: the nonproteolytic roles of MMPs, their non-ECM substrates, the difference in their intra- and extracellular roles, their posttranslational modi-
fications (PTMs), their activity, and the development of new activity-based probes.
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domains by the vertebrate lonesome kinase (VLK) (Bor-
doli et al., 2014; Tagliabracci et al., 2015).
Furthermore, oxidative and nitrosative stress that

increases the activation of MMPs and has been linked
to cardiac and neuronal pathologies should be investi-
gated in additional diseases (Cheung et al., 2000; Gu
et al., 2002; Wang et al., 2002). Despite numerous ex-
amples of how PTMs impact MMPs, there are still
multiple PTMs that have not been examined in the
context of MMP functions, constituting an important
area of future MMP research.

E. Measuring MMP Activity and Diagnostic
Applications

As MMPs are present under their active form in
several diseases, molecular probes to monitor MMPs
activity must be rationally designed with this in
mind, and they must be thoroughly validated in dif-
ferent biologic fluids and preclinical models. From the
perspective of developing efficient diagnostic tools,
their validation in human samples will also be neces-
sary. This will certainly require optimizing not only
their specificity but also their capacity to simulta-
neously detect several MMPs (multiplexing) in many
different types of human matrices, this last point being
essential for precision diagnostic. To this aim, micro-
fluidic chips and microarray (Lei et al., 2020) allowing
automation and high throughput could constitute at-
tractive options for the parallel analysis of multiple
samples containing several MMPs. In any case, this
will generate a large set of data that will need to be
classified and interpreted. In such a scenario, it will
become critical not only to provide robust data with a
high degree of confidence but also to exploit the resour-
ces of artificial intelligence and machine learning for
predictive classification (Kirkpatrick et al., 2020). All
of those efforts would result in a new generation of ac-
tivity-based diagnostics suitable for many human pa-
thologies within which active MMPs are dysregulated.

F. The Future of MMP-Directed Molecular Probes

Despite numerous signs of progress in the develop-
ment of molecular probes for MMPs in the last two
decades, some issues and limitations still need to be
addressed to determine the MMPs’ activation status
accurately and unambiguously both in ex vivo biologic
fluids and in vivo. In the case of substrate-based
probes, identifying a peptide sequence cleaved exclu-
sively by MMPs with no interferences with off-target
proteases remains quite challenging. The recent efforts
made to document MMPs’ endogenous substrates and
to identify eventual cooperativity between subsites
within the catalytic cleft (Schlage and auf dem Keller,
2015; Eckhard et al., 2016a,b) would facilitate the de-
sign of sequences with high selectivity. However, due
to the high homology among the different members of
the MMP family, identifying substrate sequences

capable of discriminating every single MMP seems dif-
ficult to achieve. As recently reported for MT1-MMP
(Ji et al., 2020), such a limitation can be partly over-
come by combining the MMP cleavable sequence with
a binding motif interacting away from the catalytic
cleft. In principle, and benefiting from recent studies
pointing out the presence of discriminating allosteric
sites within several MMPs (Sela-Passwell et al., 2010;
Udi et al., 2015; Tokmina-Roszyk and Fields, 2018),
this strategy should be readily expandable to a larger
set of MMPs. A high degree of selectivity for a single
MMP can also be obtained when the peptide sequence
is installed on nanostructures. In this respect, a recent
report showed that the morphology and size of a nano-
structure have to be finely tuned to yield a nanosensor
with improved selectivity (Son et al., 2019). Specifi-
cally, the authors showed that the global charge of
MMP (MMP9 in this study) ruled its electrostatic in-
teraction with the nanostructure, stressing the need to
take this parameter into account during the develop-
ment of nanosensors. New selective MMP activatable
probes could also be identified using an unbiased ac-
tivity-profiling strategy with no a priori knowledge
of the targeted MMP. This might consist of screening
combinatorial substrate library directly on relevant
pathologic tissues, as recently validated on sub-
strate-based probes targeting cathepsins (Tholen
et al., 2020).
Through the development of the first chemical

probes able to covalently modify active MMPs with no
photoactivation (Kaminska et al., 2021), a major step
has been taken, and the proteomic profiling of active
MMPs in vivo should become amenable. However, to
limit the background labeling and to expand this ap-
proach to a larger set of MMPs, several adjustments
in the structure of activity-based probes will probably
be necessary. This might require optimizing the struc-
ture of the binding motif as well as the positioning of
the electrophile warhead within the MMP catalytic
groove. In this respect, the phosphinic pseudopeptide
scaffold that can project chemical residues on both
sides of the MMP cleavage site would turn out to be par-
ticularly valuable. In addition, other types of biorthogonal
chemistry could be implementedwithin theMMPcatalyt-
ic cleft to further improve the probes’ specificity and their
crosslink efficiency. For instance, recent approaches en-
abling the chemoselectivemodification of carboxyl groups
in proteins (Mart�ın-Gago et al., 2017; Ma et al., 2020)
could be adapted to target the MMP catalytic glutamate,
which may result in ABPs capable of crosslinking a very
broad set ofMMPs.
Beyond the selectivity aspects and having in mind

that MMPs under their active form are often present
in low amounts in biologic matrices, the sensitivity of
the MMP-directed molecular probes could also be im-
proved. This is particularly true in the series of
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ligand-based probes that do not benefit from the sig-
nal amplification due to enzyme turnover. In this se-
ries, a multistep process involving affinity capture,
on-bead digestion, and a mass spectrometry analysis
remains the standard to reach a high sensitivity of
detection (Sieber et al., 2006; Ravindra et al., 2018).
However, the recent progress made in mass spectrom-
etry approaches, particularly in the development of
derivatization strategies with mass tags to improve
the detection of peptides and proteins in complex bio-
logic matrices (Qiao et al., 2014; Sejalon-Cipolla et al.,
2021; Zhou et al., 2021), could enable simplifying the
analytical procedure. Specifically, by relying on the
capacity of ABPs to selectively transfer mass tags to
MMPs and by using shotgun proteomics approaches
(Zhang et al., 2013), it should be possible to imple-
ment a targeted proteomic approach with a minimum
of handling steps while maintaining a high sensitivity
threshold. Furthermore, this would reduce potential
changes coming from variabilities in sample manipu-
lation, thus increasing the robustness of the generat-
ed data.

VIII. Conclusions

After several decades of MMP research, there are still
many MMPs that have been minimally investigated and
remain largely uncharacterized. MMPs have been demon-
strated to be implicated in several autoimmune diseases,
inflammatory diseases, cancer, and host-microbe interac-
tions. However, a small number of MMP inhibitors are in
use in the clinic or effectively treat human diseases. Sever-
al questions remain to be answered: 1) Will selective MMP
inhibitors be substantially more effective than broad-
spectrum inhibitors? 2) Can MMP activity be monitored
in vivo or ex vivo and correlated with disease activity?
3) Are there other posttranslational modifications that reg-
ulate MMP activity? 4) Will pharmaceutical companies
continue to develop MMP inhibitors despite past failures
in clinical trials? 5) Are the biologic roles of intracellular
MMPs more important than we initially thought? Major
gaps left in our understanding of MMP biologic functions
under healthy conditions and human diseases are still in
place, hindering our ability to answer the proposed ques-
tions. This panorama is destined to change in the next de-
cade, as we continue to find additional and unexpected
functions that MMPs play. With new technologies come
novel ways to characterize MMPs’ functions in human dis-
eases, making these proteases even more exciting to study.
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