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Abstract——Among different types of breast cancers
(BC), triple-negative BC (TNBC) amounts to 15% to
20% of breast malignancies. Three principal character-
istics of TNBC cells are (i) extreme aggressiveness,
(ii) absence of hormones, and (iii) growth factor

receptors. Due to the lack or poor expression of the es-
trogen receptor, human epidermal growth factor re-
ceptor 2, and progesterone receptor, TNBC is resistant
to hormones and endocrine therapies. Consequently,
chemotherapy is currently used as the primary
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approach against TNBC. Expression of androgen recep-
tor (AR) in carcinoma cells has been observed in a subset
of patients with TNBC; therefore, inhibiting androgen
signaling pathways holds promise for TNBC targeting.
The newAR inhibitors have opened upnew therapy pos-
sibilities for BC patients carrying AR-positive TNBC
cells. Our group provides a comprehensive review of the
structure and function of the AR and clinical evidence
for targeting the cell’s nuclear receptor in TNBC.We up-
dated AR agonists, inhibitors, and antagonists. We also
presentedanewera of geneticmanipulatingCRISPR/Cas9

and nanotechnology as state-of-the-art approaches
against AR to promote the efficiency of targeted ther-
apy in TNBC.

Significance Statement——The lack of effective treat-
ment for triple-negativebreast cancer is ahealth challenge.
The main disadvantages of existing treatments are their
side effects, due to their nonspecific targeting. Molecular
targeting of cellular receptors, such as androgen receptors,
increased expression inmalignant tissues, significantly im-
proving the survival rate of breast cancerpatients.

I. Introduction

According to the World Health Organization, in 2021,
there were 2.3 million women diagnosed with breast can-
cer (BC) and 685,000 deaths globally. This makes BC the
most prevalent malignancy in women around the world
(https://www.who.int/news-room/fact-sheets/detail/breast-
cancer; also see Nigam, 2013; Gomari et al., 2021). Het-
erogenicity and diverse molecular and clinical features are
the hallmarks of BC, leading to the need for various drugs
to control this type of cancer (Shah et al., 2013). Triple--
negative BC (TNBC) is defined as any type of BC that
lacks the expression of the estrogen receptor (ER), proges-
terone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) genes. This makes treatment more
challenging because most hormone therapies target one of
the three receptors (Qiu et al., 2021). Because of its ag-
gressive biologic features and lack of effective therapeutic
choices compared with other subtypes of BC, TNBC has
been associated with a poor prognosis. As a result, the dis-
covery of innovative TNBC therapeutics is critical. Re-
cently, numerous investigations have revealed that
additional types of hormone receptors, such as the andro-
gen receptor, are expressed in TNBC (Gerratana et al.,
2018; Traina et al., 2018; Elghazawy et al., 2021; Sridhar
et al., 2022).
The design and development of new generation andro-

gen inhibitors for control of and targeting androgen recep-
tors (ARs) have raised hopes for effective targeting of
AR-positive TNBC cells. AR-targeted drugs have been ap-
proved with positive outcomes in clinical trials for the
treatment of TNBC patients (Anestis et al., 2020; Yuan
et al., 2021). Molecular and immunohistochemical analy-
ses revealed that AR-expressing TNBC cases were effi-
ciently targeted using AR inhibitors (Liu et al., 2018). The
main focus of this review is the new promising targeted
therapies against AR-positive (AR1) TNBC subtypes,

focusing on monotherapy, combination therapy, CRISPR/
Cas9 gene editing, and nanotechnology.

II. TNBC Subtypes and Their Clinical
Characteristics

BC is classified into four molecularly distinct sub-
types based on genetic profile, treatment response,
and disease prognosis (Eroles et al., 2012). These BC
malignancy subtypes are distinguished as luminal A,
luminal B, HER21 enriched, and basal-like or TNBC
(Ades et al., 2014; Tsang and Tse, 2020). Typically,
these three biomarkers, including the ER, PR, and
HER2�/neu, are the main indicators to examine the
molecular category of BC. Ki-67 is a tumor grade pre-
dictor, which is sometimes included in BC classifica-
tion (Karangadan et al., 2016; Nazari et al., 2021)
(Table 1).
TNBC malignancy was first introduced by Brenton

et al. (2005) with an incidence rate between 12% to 20%
(Howard and Olopade, 2021; Zimmer, 2021). TNBC is
the most aggressive type BC with a high risk of recur-
rence and metastasis (Qin et al., 2019). As its nomencla-
ture implies, the absence or poor expression of BC
biomarkers PR, ER, and HER2/neu is commonly consid-
ered the main clinical characteristic of TNBC (Afghahi
et al., 2017). The lack of expression of these biomarkers
strongly correlates with poor clinical prognosis (Elbaz
et al., 2015). ER, PR, and HER2 are related to drug re-
sistance and the high rate of cancer-associated death oc-
currence in TNBC patients; targeting BC cancer cells by
employing these receptors has attracted attention in
recent years (Anders and Carey, 2008; Dogan and
Turnbull, 2012). The latest available data showed that
about 83% of the BC-related death belong to TNBC
patients; however, this subtype of BC only accounts for

ABBREVIATIONS: AR, androgen receptor; AR-AF-1, androgen receptor activation function subdomain-1; AR-FL full-length androgen re-
ceptor; BC, breast cancer; BL1, basal-like 1; BL2, basal-like 2; CDK4/6, cyclin-dependent kinases 4 and 6; CRPC, castration-resistant pros-
tate cancer; CYP17A1, cytochrome P450 c17; DBD, DNA binding domain; DHT, dihydrotestosterone; EMT, epithelial–mesenchymal
transitions; Enza, enzalutamide; ER, estrogen receptor; GT, gemcitabine and paclitaxel; HER2, human epidermal growth factor receptor 2;
HSD3b1, human 3-beta-hydroxysteroid dehydrogenase/delta5-4 isomerase type 1; HSP90, heat shock protein 90; IM, immunomodulatory;
LAR, luminal androgen receptor; LBD, ligand-binding domain; mTOR, mechanistic target of rapamycin; NTD, N-terminal domain; PI3K,
phosphatidylinositol-3-kinase; PC, prostate cancer; PR, progesterone receptor; SARMs, selective androgen receptor modulators; siRNA,
small interfering RNA RNA; T, testosterone; TAUs, transactivator units; TNBC, triple-negative breast cancer; ZFN, zinc-finger nucleases
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15% to 20% of the BC malignancies (Kim et al., 2014;
Wein and Loi, 2017) (Fig. 1).
Chemotherapy medications such as tamoxifen, pacli-

taxel, cisplatin, and anthracycline are the first prescribed
treatments given to patients with TNBC. However, the
effectiveness of chemotherapeutics intervention due to
rapid early tumor progression and drug resistance was
overshadowed in TNBC patients (Kim et al., 2014; Najafi
et al., 2014; Elbaz et al., 2015; Takai et al., 2016; Afghahi
et al., 2017; Jhan and Andrechek, 2017; Wein and Loi,
2017). Given the high heterogeneity of tumor cells in
TNBC, many efforts have been made to develop effective
diagnostic and therapeutic approaches to control this
type of BC.
Among numerous available systems (Weigman et al.,

2012; Abramson et al., 2015; Takai et al., 2016; Gong
et al., 2021; Jiang et al., 2021), the model developed by
Lehmann et al. (2011) is regarded in our investigation
and has employed for TNBC classification. Gene ex-
pression analysis and clinicopathological variables help
classify TNBC for accurate pathologic diagnosis and

therapy selection (Bando et al., 2021). The basic of the
Lehmann model was gene expression profile and ontolo-
gies. In this model, TNBC was categorized into six dis-
tinct subtypes, including basal-like 1 (BL1), basal-like 2
(BL2), mesenchymal, mesenchymal stem-like, immuno-
modulatory (IM), and luminal androgen receptor (LAR;
see Table 2 for their characteristic features) (Lehmann
et al., 2011; Abramson et al., 2015). Owing to the intri-
cacy of the many histologic landscapes in tumor tissues,
in the second investigation, Lehmann et al. employed
histopathological quantification and laser-capture micro-
dissection to demonstrate that IM and mesenchymal
stem-like transcripts were provided by infiltrating lym-
phocytes and tumor-associated stromal cells, respectively.
Therefore, they refined TNBC molecular subtypes from
six into four tumor-specific subtypes (BL1, BL2, M, and
LAR; see Fig. 1 for their incidence rates) (Lehmann
et al., 2016).
Both BL1 and BL2 subtypes are distinguished by mu-

tation appearance in BC genes 1 and 2 (BRCA1 and
BRCA2). The BRCA1 and BRCA2 are the two known
BC susceptibility genes that are actively involved in the
sensitivity of malignant cells to platinum-based chemo-
therapies (Dr�ean et al., 2017). Investigation has demon-
strated that inhibition of B-cell lymphoma/leukemia 11A
and histone deacetylase 1 and 2 efficiently induced BL
cells to transform into luminal A cells and enhance ER
expression, resulting in enhanced sensitivity to tamoxi-
fen. In BC patients, high levels of B-cell lymphoma/
leukemia 11A and histone deacetylase 1 and 2 expression

Fig. 1. (A) Incidence rate. BC is classified as luminal A, luminal B, HER21, and triple-negative based on the status of ER, PR, and HER2; (B and C)
TNBC classification by Abramson et al. (2015), Lehmann et al. (2011), and Lehmann et al. (2016), respectively.

TABLE 1
Molecular classification of breast cancer

ER PR HER

Luminal A 1 and/or 1 —
Luminal B 1 and/or 1/�a or —
Luminal B 1 and/or 1/�b or 1
HER1 — — 1
TNBC or basal-like — — —

a PR < 20% 1 Ki 67 > 14%.
b Any PR 1 any Ki 67.
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were associated with a poor prognosis. These findings
highlight systems that regulate BC morphologies and of-
fer the possibility of reprograming basal-like BC cells to
increase their targetability (Choi et al., 2022).
The hallmark characteristic of the mesenchymal and

mesenchymal stem-like subtypes is the enrichment of
genes involved in growth factor-related signaling path-
ways that trigger epithelial-mesenchymal transitions
(EMT). This latter characteristic makes these two BC
subtypes sensitive to EMT inhibitors (Hill et al., 2019).
The capacity to develop vascular-like networks, known
as vascular mimicry, is another feature of the mesenchy-
mal-TNBC subtype that is known to cause metastatic
spread (Liu et al., 2013). Furthermore, some evidence
suggests that the aggressive character of mesenchymal-
TNBC, which correlates with the presence of cancer
stem cells, demonstrates a distinct ability for self-
renewal, tumor initiation, and resistance to typical
cancer therapy (O’Conor et al., 2018). Moreover, it
has been observed that the EMT program and can-
cer stem cell state are tightly linked in numerous
carcinomas and are related to treatment failure,
metastasis, and cancer relapse (Hill et al., 2019).
LAR subtype accounts for about 16% of TNBC

(Lehmann et al., 2016). The remarkable trait of the
LAR subtype is its unique gene profile that makes
cancer cells sensitive to hormone-based therapeutics,
particularly regimen containing AR-targeting agents
(Lehmann et al., 2011; Masuda et al., 2013; Lehmann
et al., 2016) (Fig. 1). Although AR expression is not
restricted to the LAR subtype, this nuclear receptor
expression increased in the TNBC subtype. The LAR
subtype was sometimes classified with the nonbasal-
like TNBC; similar to the nonbasal-like subtype, they
do not express basal-like markers. In comparison to the
other TNBC subtypes, the LAR subtype was accompa-
nied by a low pathologic grade of malignancy and was
more potent for metastasis to the lymph nodes and bone
marrow (Caiazza et al., 2016). Regarding the characteris-
tic features of the LAR subtype, this type of TNBC was

in the spotlight of the prognosis optimization and treat-
ment development programs (Bratthauer et al., 2002;
Gao, 2010; Gerratana et al., 2015; Dogra et al., 2020).

III. Biologic Characteristics of Androgen
Receptor

The AR, also known as nuclear receptor subfamily
3 group C, member 4, is a steroid hormone receptor
(Song et al., 2021). Steroid hormones interact with
four different kinds of hormone receptors, including
the glucocorticoid receptor, estrogen receptor-a, estro-
gen receptor-b, and AR (Norman et al., 2004). Steroid
hormone receptors act as ligand-activated intracellu-
lar transcription factors; hence, it is considered for its
gene regulatory capabilities. Depending on the type of
signaling pathway stimulation, the steroid hormone
receptors may have either or both positive and nega-
tive gene regulation activities to repress or trigger
cellular processes such as proliferation, migration,
and apoptosis (Shah et al., 2013; Bonotto et al., 2014;
Gerratana et al., 2015; Ahn et al., 2016; Pietri et al.,
2016).

A. Gene Profile of the AR in BC Subtypes

The AR is a frequently occurring theragnostic BC
marker expressed in 70% to 90% of all types of breast
malignancies and is even more abundant than ER or
PR (Niemeier et al., 2010; Collins et al., 2011). The
AR can be detected in two different subpopulations of
mammary epithelial cells: invasive metaplastic apocrine
carcinomas and luminal epithelial cells. However, the ex-
pression of the AR has markedly varied between these
two subpopulations (Rahim and O’Regan, 2017). Molecu-
lar apocrine BC is a BC subtype that is very similar to
the LAR subtype; hence, both are associated with a uni-
form expression in the metaplastic ER�/PR- apocrine
cells. These cells are the most common cell population of
the breast tissue (especially the fibrocystic ones).

TABLE 2
Subtypes of TNBC based on gene expression

Subtypes Characteristics

Basal-like 1 � Expression of cell cycle, proliferation, and DNA repair genes
� High expression of ki-67 gene

Basal-like 2 � Enriched in growth factor signaling pathway (epidermal growth factor receptor; the human gene, also
known tyrosine-protein kinase Met; nerve growth factor and insulin-like growth factor-1 receptor)

� Glycolysis and gluconeogenesis
� Expression of myoepithelial

Immunomodulatory � Expression of gene involved in immune cell processes (cytotoxic T lymphocyte-associated molecule-4, IL7,
interleukin 2, B cell, T cell, and natural killer cells)

� Cytokine signaling
Mesenchymal � High expression gene of cell motility and extracellular matrix

� Cell differentiation
� Insulin-like growth factor

Mesenchymal stem-like � Similar to M with enrichment in genes involved in cell motility and extracellular matrix
� Height expression of gene involved in stem cells pathway
� Janus kinases signal transducers and activators of transcription activation

Luminal androgen receptor � Androgen receptor signaling
� Height expression of gene involved in hormonally regulated signaling (steroid synthesis and metabolism)
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In contrast, the luminal epithelial cells typically lack
apocrine differentiation. The AR expression is not uni-
form; only 5% to 30% of this type of mammary epithelial
cell content may contain AR. In these cells, the AR is of-
ten coexpressed with ER and PR (Rahim and O’Regan,
2017). It should be noted that the tumor originated from
two different subpopulations of mammary epithelial cells,
causing two distinct neoplasms with different morphology
and molecular signatures, even if they are identical in the
expression of AR. This fact describes the different efficacy
of the AR-based targeted therapies in these two subpopu-
lations with two other AR-related regulatory mechanisms
and expression levels. Therefore, the therapeutic response
against AR-based targeted therapies is more dependent
on the histologic origin of the BC tumors (either molecu-
lar apocrine tumors or luminal epithelial abnormalities)
(Bratthauer et al., 2002; Safarpour et al., 2014).

B. Structural and Functional Attributes of the Androgen
Receptor

The AR is a nuclear receptor with a dynamic nucle-
ocytoplasmic localization that acts as an intermediate
for the cellular responses to the androgenic hormones
(Nguyen et al., 2009). Like any other nuclear receptor,
the AR is primarily a DNA-binding transcription
factor—that is, in the nucleus and can directly
interact with DNA, mediating a range of DNA-binding-
dependent signaling pathways (Gao, 2010). In physio-
logic conditions and the absence of the androgens, the
free form of AR, which is transcriptionally inactive, is
localized to the cytoplasm. However, upon binding an
androgen molecule, it was translocated into the nucleus,
where it can induce the expression of a specific set of

AR-related genes. On the other hand, the cytoplasmic
concentration of free AR is under control; hence, cyto-
plasmic depletion of the AR acts as a signal that modu-
lates the export of the nuclear AR from the nucleolus to
the cytoplasm (Nguyen et al., 2009).
The AR gene is located on chromosome X (locus:

Xq11–12) (Fig. 2). This gene encodes eight exons, trans-
lated into a full-length protein of 920 amino acids and a
molecular weight of 110 kDa. The AR full-length protein
consists of four distinct functional and/or structural do-
mains, including (i) N-terminal domain (NTD); (ii) DNA
binding domain (DBD), also known as the central do-
main; (iii) a hinge region; and (iv) ligand-binding domain
(LBD) (Anestis et al., 2015) (Fig. 3). The N-C terminals
interaction was a crucial requirement for AR activity.
This interaction activates some of the binding domains
for different ligands and is known as AR self-transactiva-
tion (Monaghan and McEwan, 2016).
The AR’s primary functions serve as a DNA-binding

transcription factor mediated by the AR-NTD (amino
acids 1–559). The AR-NTD is a sizeable regulatory do-
main composed of several more specific functional subdo-
mains that do not adopt a well-defined independent 3D
structure; therefore, they are not structurally well-
separated. A number of the AR-NTD functional subdo-
mains serve as binding sites for transcription factors,
while others bind to the transcription cofactors. These
subdomains actively regulate the expression of the genes
involved in initiating the upstream signaling pathways
linked to the AR (Reid et al., 2003; Anestis et al., 2015).
The AR-NTD is critical for AR transactivation. Most AR
transactivation function is mediated by the AR-NTD’s ac-
tivation function subdomain-1 (also known as AR-AF-1)

Fig. 2. Schematic representation of AR gene and AR protein. Top, the AR gene is found on the Xq11–12 chromosome. Middle, eight exons (exons 1–8)
are separated by seven introns in the AR protein. The lower part of the figure shows the communication between the exon and AR protein domains:
exon 1 coding for N-terminal region (AR-NTD); exons 2 and 3 coding for DNA binding domain (AR-DBD); the 50 area of exon 4 encoded for a hinge do-
main, which contains the nuclear localization signal; and the 30 region of exons 4–8 coding for the AR-LBD.
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(Zhao et al., 2002). The AR-AF-1 is composed of two main
transactivator units (TAUs; TAU-1 and TAU-5. TAU-1
(amino acids 141–338) functions as a ligand-dependent
transactivator, while TAU-5 (amino acids 380–529) acts as

a ligand-independent transactivator. Another distin-
guishable part of the AR-NTD is its flexible five–amino
acid motif (aminoacids 23–27,) which is necessary for
the AR’s N-C terminals interaction. This flexible motif

Fig. 3. Amino acid sequence (A), and 3D structure and its inhibitors (B) of AR. Abbreviations: AF-1, AF-2, DBD, LBD, and NTD.
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is also known as the FxxLF motif (Monaghan and
McEwan, 2016). Considering the determinative crucial
role of the AR-NTD in the AR activities, it is not sur-
prising that mutations located in this region are respon-
sible for most of the AR-related pathogenesis (Gottlieb
et al., 2012; Mohler et al., 2012; Chandrasekar et al.,
2015; Meakin and Clifton, 2019). For example, in 2012,
Gottlieb et al. (2012) found that about 30% of AR receptor
mutations linked with prostate cancer (PC) are mapped
to the AR-NTD.
The central AR-DBD (amino acids 555–636) is a

structurally well-defined region between the AR-NTD
and the AR-hinge. Similar to other DBDs, the AR-DBD
is responsible for DNA recognition. The AR-DBD is a
highly conserved segment of the AR and is composed of
two zinc-finger structural motifs (amino acids 560–580
and 596–620). Each motif consists of an a-helix (D-box
and P-box) primarily composed of hydrophobic amino
acids (see Fig. 3). The D-box (amino acids 560–580 and
596–620) is required for AR dimerization, while the
P-box (amino acid residues 577–581) is essential for rec-
ognizing the DNA-binding elements in the transcription
factor motifs, enhancer regions, and promotors of the
downstream-regulated genes linked to the AR (Monaghan
and McEwan, 2016; Radaeva et al., 2021). Evidence
indicated that central roles in the AR-NTD are involved
in modulating AR-DBD functions; this revealed an in-
tradomain functional dependency in the AR (Brodie and
McEwan, 2005). Like AR-NTD, mutations in the AR-DBD
were also accompanied by several diseases and abnormali-
ties, such as complete androgen insensitivity syndrome
(Chauhan et al., 2018).
The AR-hinge region (amino acids 629–670) is a

flexible segment between the AR-DBD and AR-CTD.
This segment plays a vital role in the translocaliza-
tion of the AR molecule from the cytoplasm into the
nucleus, and vice versa. The AR-hinge region function
is modulated by post-translationally modifications on
the AR-RKLKKL motif, whose sequences are located
from amino acids 629–644. The AR-hinge region was
responsible for the integration of the signals that are
from different pathways. Mutations occurring in the
AR-hinge region were also accompanied by several
abnormalities, such as castrate-resistant disease
(Haelens et al., 2007; Clinckemalie et al., 2012;
Monaghan and McEwan, 2016).
The multifunctional AR-CTD (amino acids 673–918)

is crucial for interaction and recognizing the andro-
genic hormones; it is known as the AR’s main LBD.
The AR-LBD is the main target of androgen and anti-
androgen therapies and is of great interest to clinical
pharmacologists. AR-LBD (amino acids 669–900) has
a well-defined 3D structure composed of 12 a-helixes
and 4 b-sheets. In parallel with the AR-AF-1, which
is located in the AR-NTD, the AR-CTD also contains
an activation function segment known as AR-CTD’s

activation function subdomain-2 (also known as AR-
AF-2). This region located on the surface area of the
AR-CTD 3D structure actively promoted the AR’s N-
C terminals crosstalk. The binding function-3 was
the other main surface pocket of the AR-CTD. It is
believed that the AR-binding function-3 segment is
involved in the allosteric regulation of the AF-2
function via its binding affinity for several agonists
and antagonists. The most central subdomain of the
AR-LBD is its hormone-binding pocket. The AR-hor-
mone-binding pocket comprises hydrophobic resi-
dues that can anchor specific ligands by a strong
network of hydrophobic interactions and hydrogen
bonds (Li et al., 2006; Est�ebanez-Perpi~n�a et al.,
2007; Anestis et al., 2015; Caiazza et al., 2016; Mon-
aghan and McEwan, 2016). Like the other AR do-
mains, mutations in the AR-CTD can also lead to
various diseases and abnormalities, including many
types of cancers. Some AR-CTD mutations may also
lead to resistance against anti-androgens therapies
(Monaghan and McEwan, 2016).
Researchers have shown that many AR-related mu-

tations and abnormalities were involved in the patho-
genesis and progression of TNBC. Many TN cell lines
(e.g., HCC3153, HCC1937, HCC1395, SUM149PT,
SUM1315M02, MDA-MB-436) have been used for ex
vivo evaluation of the AR-related abnormalities. For
example, Moore et al. used the AR1 TNBC (MDA-MB-
453 cell line) to show that androgens modulate essen-
tial biologic mechanisms, such as cell proliferation
(Moore et al., 2012; Nguyen et al., 2009). The function
of androgens in tumor formation and proliferation has
also been demonstrated with research on other cell
lines. In both the MFM223 and SUM185PE cell lines,
a significant decrease in colony formation in culture
was reported when AR was interrupted by (siRNA)
(Lehmann et al., 2011).
Research using the MDA-MB-453 cell line indicates

that AR signaling may play a role in the development of
ER-negative BC cells that have a molecular apocrine
phenotype. MDA-MB-453 demonstrates a molecular apo-
crine differentiation expressed as a mutated type of AR
that occurs following Q865H mutation. This mutant has
a diminished sensitivity to 5-alpha- small interfering
RNA dihydrotestosterone (DHT) and does not react to
AR antagonists or nonandrogenic ligands (Moore et al.,
2012). These findings all indicate that androgens in
TNBC cell lines can excite proliferation.

IV. A Glimpse to Androgen Receptor in Prostate
Cancer

As with BC, AR is an excellent target for treating pros-
tate cancerous cells. PC is one of the most prevalent can-
cers in the male population (Ban et al., 2021). The
incidence rate and mortality risk of PC are strongly age-
dependent and are more pronounced in older populations
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(Rawla et al., 2019). There is a continuous effort to intro-
duce and develop safer and more efficient therapeutics
against PC. Considering the crucial role of AR in the ini-
tiation and progression of PC, it has been in the spotlight
of drug design and development programs over the past
years. Many therapeutic agents for AR-directed targeting
are currently under clinical trial or emerging into the
market (Lokeshwar et al., 2021; Mohler et al., 2021;
Saranyutanon et al., 2019).
The AR-directed therapies are classified into three

main categories: androgen ablation therapies, androgen
deprivation therapies, and AR-targeting therapies (Kim
and Ryan, 2012). Our focus in this study is on androgen
precursor-targeting therapies. Most of the AR antago-
nists (or anti-androgens) were directly bound to the LBD
and inhibited the biologic activity of androgens. Another
strategy was the inhibition of androgen secretion; this
was partly achieved by prostatectomy, which reduces tes-
tosterone levels by 95%. However, androgen hormones
will still produce via the adrenal glands (Helsen et al.,
2014), which points to the growing demand for the devel-
opment of AR-directed therapies.
Steroidal and nonsteroidal anti-androgens are the two

most potent anti-androgens inhibitors. Steroidal anti-
androgens can bind to AR due to their structural similarity
to androgens (Ahmed et al., 2014). Several steroidal anti-
androgens, such as cyproterone acetate, dienogest, meges-
trol acetate, and chlormadinone acetate, are used to inhibit
AR in patients. Currently, several steroidal anti-androgens,
such as cyproterone acetate, dienogest, megestrol ace-
tate, and chlormadinone acetate, are available to inhibit
AR in patients. Cyproterone acetate is a member of ste-
roidal anti-androgens that was widely used to treat PC.
However, many of these steroidal anti-androgens are no
longer recommended due to their insufficient efficacy
and unacceptable side effects (Narayanan, 2020). Com-
pared with steroidal anti-androgens, nonsteroidal andro-
gens were accompanied by fewer adverse side reactions.
Among nonsteroidal anti-androgens, flutamide, bica-
lutamide, and nilutamide are first-generation non-
steroidal anti-androgens, while enzalutamide (Enza)
and apalutamide are the potent second-generation
therapeutics (Table 3).

V. The Androgen Receptor Signaling Pathway
in Triple-Negative Breast Cancer

Unlike ER and PR, AR was expressed in most BC
subtypes. At present, we know that AR is expressed
in about 53% to 80% of all subtypes of the breast’s
cancerous cells. It was estimated that AR was ex-
pressed in about 50% of the triple-negative tumor
cells. The AR elevated expression levels in BC tumor
cells are higher than ER or PR (Gucalp and Traina,
2016; Mina et al., 2017). Compared with ER and PR,
functions, dynamics, and regulation of AR in BC have
not been widely studied. In recent years, we learned

much about the critical roles of AR in the pathogene-
sis and progression of various subtypes of BC; now,
many more studies have focused on the functions and
regulation of AR in BC (McNamara et al., 2013). Nev-
ertheless, more information is needed to describe a ro-
bust correlation between AR expression levels and
the BC theranostics, especially regarding the bulk of
contradictory evidence on the biologic functions of an-
drogens in TNBC (Safarpour et al., 2014).
On the other hand, there are positive and promis-

ing findings on the robustness of the AR targeting
strategies in treating TNBC patients. Besides, several
AR targeting agents are in the early stage of clinical
trials (Anestis et al., 2015). The mechanisms by which
AR signaling pathways affect breast carcinogenesis
and its response to hormone therapies are not fully
understood and need further investigation. We re-
viewed and discussed the recent findings on the effi-
cacy of AR inhibition in treating TNBC. Much more
attention was paid to the clinical data on the anti-
androgen therapies among AR1 TNBC.

VI. Androgen Receptor Targeting in
Triple-Negative Breast Cancer

The lack of known molecular targets in TNBC makes
it ineffective against typical endocrine and HER2 inhibi-
tor drugs. The development of next-generation anti-
androgen drugs to treat PC has sparked an interest in
scientists in using AR inhibitors as a new treatment of
TNBC, which can improve prognosis and limit off-target
effects (Barton et al., 2015). In 1980, the first clinical
trials of AR in BC were performed. In advanced BC,
flutamide was used as an oral anti-androgen with un-
known estrogen, progesterone, and HER2 status. At
that time, scientists did not demonstrate any signifi-
cant behavior related to AR targeting during their re-
search (Rampurwala et al., 2016; Gucalp and Traina,
2017). In recent years, several clinical trials have
shown the activity of anti-androgen therapy in the
treatment of AR1 TNBC (Table 4).

A. Monotherapy Approaches

Given the potential role of AR in TNBC, many at-
tempts have been made to design innovative therapeutic
agents to inhibit its signaling pathways. Currently, sev-
eral clinical trials are being conducted on various experi-
mental monotherapy anti-androgens (Table 4).

1. Bicalutamide. The first registered clinical trial
for targeting ARs was against advanced BC in the
1980s. After that, several investigations were con-
ducted that were aimed at controlling AR pathways
(Perrault et al., 1988; Zhao and He, 1988). For exam-
ple, Gucalp et al. (2013) achieved significant success
for anti-androgen therapy in BC patients. They re-
vealed that bicalutamide dramatically inhibited cancer
cells. In addition, the Translational Breast Cancer
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Research Consortium clinical study reported a simi-
larly successful experience to androgen inhibition in
metastatic BC. This phase II multicenter study assessed
the regular oral bicalutamide efficacy in both locally ad-
vanced (AR1, ER�/PR�) and metastatic BC (Gucalp
et al., 2012). The Food and Drug Administration ap-
proved bicalutamide as a nonsteroidal, pure AR antag-
onist anti-androgen for PC treatment (Ismail et al.,
2020). To treat advanced cases of PC, bicalutamide is
used along with an analog of luteinizing hormone-re-
leasing hormone. It is competitively bonded to AR to
induce the accumulation of the inactivated AR and im-
prove AR degradation (Park et al., 2011) (Fig. 4). Be-
sides PC, many studies showed that AR inhibition
with bicalutamide significantly diminishes prolifera-
tion and migration invasion and increases apoptosis in
LAR and non-LAR TNBC subtypes, mesenchymal-like,
mesenchymal stem-like, and basal-like 2 (Barton et al.,
2015; Zhu et al., 2016).

2. Enzalutamide. Enza, a second-generation AR
antagonist, was supposed to suppress AR’s nuclear
translocation, its DNA binding, and co-activator mobili-
zation (Fig. 4). After receiving docetaxel, a multicenter
placebo-controlled randomized clinical trial showed im-
proved survival of patients with castration-resistant
PC (CRPC). Enza was Food and Drug Administration
approved for patients with metastatic CRPC who had

received docetaxel. It was demonstrated that the me-
dian progression-free survival (PFS) of Enza is longer
than bicalutamide (Bernales et al., 2012; Cochrane
et al., 2012).
Therapeutic outcomes of Enza have been examined in

PR�/ER� BC preclinical models. Treatment with Enza in
the AR1, ER� MDA-MB-453 cell line, and the xenograft
models led to increased apoptosis, reduced AR localiza-
tion, and tumor growth inhibition. A similar effect has
been shown in dihydrotestosterone-induced models of tu-
mor growth (Bernales et al., 2012; Cochrane et al., 2012).
Enza influences the AR signaling pathway at several dif-
ferent levels. Enza’s AR affinity is remarkably higher
than bicalutamide (Cochrane et al., 2014). Fatigue, nau-
sea, and vomiting were the most frequent adverse reac-
tions associated with Enza medication (Traina et al.,
2013; Elias et al., 2016).

3. Abiraterone Acetate. Abiraterone acetate is an
androgen-directed therapy under evaluation to treat
patients with AR1 BC. It is a specific, potent and irre-
versible inhibitor of CYP17A1, the enzyme involved in
the gonadal and adrenal glucocorticoids’ biosynthesis;
thus, it reduces both estrogen and androgen expres-
sion. Currently, this inhibitor is under clinical evalu-
ation (phase II) in monotherapy form (NCT00755885;
NCT01842321) and combined with AR antagonists
(NCT01884285; NCT02580448) (Bonnefoi et al., 2016;

TABLE 3
Current clinical trials targeting the AR-signaling pathway in prostate cancer

Agent
Clinicaltrials.gov

Identifier Phase Mechanism of Action Objectives Ref

Hydroxyflutamide NCT02341404 II Antiandrogen Characterize and quantify the
histopathological changes in the

surgical specimens

(Gupta et al., 2017)

Enzalutamide NCT01927627 II Antiandrogen Evaluating the clinical activity and
safety of Enza in men with high-

risk PC

(Ornstein et al.,
2016)

Apalutamide
(ARN-509)

NCT02770391 II Antiandrogen Determine if neo-adjuvant
leuprolide and ARN-509 have

different effects on DHT levels in
benign prostate tissue. Evaluate the
differential effect of neoadjuvant
leuprolide and ARN-509 on other

androgens

(Al-Salama, 2018;
Smith et al., 2016)

Bicalutamide NCT00846976 III Antiandrogen Check the health of patients
receiving a 200 mg daily dose of

CASODEX.

(Laufer et al., 1999;
Osguthorpe and
Hagler, 2011)

Flutamide NCT00006214 II Antiandrogen Determine the ability of flutamide
to reduce the incidence of PC in

patients with high-grade prostatic
intraepithelial neoplasia

(Eisenberger et al.,
1998)

Darolutamide NCT04157088 III Antiandrogen Compare the effects of the drug
darolutamide and drug Enza on

physical function, including balance
and daily activity, in patients with

castration-resistant PC

(Fizazi et al., 2019)

Galeterone NCT01709734 II Antiandrogen Two-part trial to evaluate the safety
and efficacy of galeterone in CRPC

patients

(Bastos and
Antonarakis, 2016)

Nilutamide NCT00918385 II Antiandrogen Determine the clinical impact of
using a patient-specific genomic

expression signature of AR activity
to determine therapy for patients

with CRPC.

(Dole and
Holdsworth, 1997)
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Gucalp and Traina, 2017) (Table 4). UNICANCER, a
French cooperative team, performed a multicenter
clinical trial (phase II) in women with inoperable lo-
cally advanced or metastatic AR1 TNBC to define
abiraterone acetate’s efficacy and safety along with
prednisone (Gucalp and Traina, 2016). This study
has hopeful outcomes in inhibiting TNBC.
For women suffering from AR1 TNBC, oral adminis-

tration of abiraterone (1000 mg) was given daily, adding
prednisone (5 mg) twice daily to prevent side effects asso-
ciated with elevated mineralocorticoid levels (Gerratana
et al., 2018). Given the action mechanism of abiraterone
acetate as a CYP17 inhibitor, it is reasonable to study its
potential advantage in patients with AR1 TNBC since it
is expected that the levels of androgens are reduced due
to the steroid synthesis pathway upstream inhibition
(Bonnefoi et al., 2016) (Fig. 4).

4. Seviteronel (VT-464). Seviteronel is a new an-
drogen-directed agent for patients with PC. Also, it is
under examination for treating patients with AR1

TNBC. Seviteronel is an oral CYP17-L inhibitor,

selective, as well as an AR antagonist reducing andro-
gen production, and hence may be potentially benefi-
cial for AR TNBC patients (Gucalp and Traina, 2016)
(Fig. 4). Seviteronel showed an approximately
10-fold higher selectivity for inhibition of CYP17 ly-
ase compared with CYP17 17-alpha hydroxylase. In
addition to being a better selection for CYP17 lyase
than abiraterone (Rafferty et al., 2014), it is a com-
petitive antagonist to the mutations leading to re-
sistance to Enza and abiraterone (Norris et al.,
2017).
Seviteronel inhibited the progression of several BC

subtypes, both in vivo and in vitro. Currently, seviter-
onel completed a phase II clinical trial examination
for men suffering from advanced CRPC as well as
women and men suffering from advanced ER1 or
TNBC (Table 4). The tolerability and safety of seviter-
onel was confirmed for women with AR and ER
TNBC and men with CRPC from the phase II trial
(NCT02580448 and NCT02130700) (Bardia et al., 2018;
Gupta et al., 2018).

Fig. 4. Representation mechanisms of blockade of AR in TNBC subtype. The enzyme CYP17A1 is responsible for converting the androgen precursors
to dehydroepiandrosterone, whereas HSD3b1 performs dehydroepiandrosterone conversion to androstenedione, aldo-keto reductase family 1 member
C3 performs androstenedione conversion to T. Abiraterone acetate is an inhibitor of CYP17. Also, seviteronel (VT-464) is a CYP17A1 inhibitor. Seviter-
onel directly inhibits AR activity in the preclinical models. Following cytoplasm entrance, T was reduced to DHT using 5a-reductase. Heat shock pro-
teins release AR, and it is activated through DHT binding. Enza and bicalutamide are AR antagonists binding to the AR ligand site, preventing
ligands from binding to AR. Enza inhibits AR nucleus translocation and prevents AR-mediated transcription.
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B. Combination Therapy

According to clinical and preclinical studies, AR stimu-
lates HER21 BC or TNBC growth. Some combination
therapies are directly engaged in the cell cycle’s progres-
sion (CDK4/6 inhibitors), whereas others (MEK, phos-
phoinositide 3-kinase, and Ras inhibitors) are involved in
regulating the most critical intracellular circuits leading
to drug escape survival, proliferation, and invasiveness.
Thus, the optimal results can be achieved using combi-
nation therapies, including AR antagonists and the men-
tioned pathway inhibitor (Bianchini et al., 2016; Robles
et al., 2016) (Table 4).

1. Combination of CDK4/6 and Androgen Receptor
Inhibitors. Studies demonstrated that, compared with
mesenchymal and basal-like subtypes, LAR TNBC cell
lines show particular susceptibility to CDK4/6 inhibitors,
similar to ER1 MCF7 cell line (Asghar et al., 2017). As a
CDK4/6 antagonist, palbociclib inhibits cell proliferation
by stopping the cell cycle in the G1-phase (Fry et al.,
2004). Preclinical evidence suggests that palbociclib’s
greatest activity is in the luminal profile tumors with ele-
vated Rb protein and cyclin D1 (CCND1) expression and
p16 reduced expression. Rb protein is intact in AR1

TNBC, a potent target for palbociclib. It has been shown
that palbociclib represses the cell growth in the MDA-
MB-453 cell line (AR1 TNBC) by decreasing Rb phos-
phorylation and preventing the thymidine incorporation
into the DNA of RB1 BC (Finn et al., 2009). A recent
preclinical investigation has shown that abemaciclib,
an inhibitor of the cell cycle CDK4/6, in combination
with seviteronel, an agent that targets both androgen
biosynthesis and AR activity, demonstrated synergy in
an AR1 TNBC model compared with each drug alone
(Christenson et al., 2021).
A limited number of studies have been conducted us-

ing CDK 4/6 in patients with metastatic TNBC. DeMi-
chele et al. (2015) evaluated the effect of palbociclib in
37 patients (phase II clinical trial) with RB1 wild-type
metastatic BC, including four TNBC patients. Two clini-
cal trials (NCT03090165 and NCT02605486) on AR1

TNBC patients are currently underway, including the
combination of palbociclib/bicalutamide and ribociclib/
bicalutamide, respectively. The results of these studies
refer to the remarkable inhibiting of CDK4/6 and AR in
treated patients (Asghar et al., 2015; Rampurwala et al.,
2016) (Table 4).

2. Combination of P13k and Androgen Receptor Inhib-
itors. Among the introduced targets against BC,
phosphatidylinositol-3-kinase (PI3K), which is known
as a potent inhibitor (Koboldt et al., 2012; Cuenca-
L�opez et al., 2014) and involved in Akt and mechanis-
tic target of rapamycin (mTOR) pathways.
The rate of PIK3CA mutation among AR1 BC is

greater (approximately 40%) compared with the AR�

BC (4%) (Lehmann et al., 2014). PI3K inhibitors are
promising to be effective for patients with TNBC. For

example, alpelisib, a PI3K inhibitor, has been fruitful
for patients with HR1/HER2� BC, according to the
SOLAR-1 trial (Norris et al., 2017).
A preclinical study combined AR inhibitors therapy

with PI3K antagonists demonstrated a synergistic ap-
optotic effect on the AR1 TNBC cell line (Cuenca-
L�opez et al., 2014). In addition, the combination of AR
inhibitors with PI3K/mTOR antagonists showed syn-
ergistic action on the TNBC AR1 models (Lehmann
et al., 2014). Based on the phase I outcomes of clinical
trials (NCT01884285 and NCT03207529), which were
performed to evaluate the effectiveness of the combi-
nation of AR inhibitors with PI3K/mTOR antagonists
in patients with metastatic TNBC and AR1/PTEN
low TNBC, respectively, it was determined that com-
bination therapy significantly promoted the effective-
ness of cancer therapy in BC.

C. Novel Androgen Receptor Inhibitors

LBD inhibitors, chaperone inhibitors, and selective
AR modulators are the newly developed inhibitors
against AR-related signaling pathways.

1. Ligand-Binding Domain Targeting Using Next-
Generation Androgen Receptor Inhibitors. For pa-
tients carrying LBD mutants, it was expected that
targeting other domains could be helpful. Apaluta-
mide (ARN-509), as the next-generation AR antago-
nist (Clegg et al., 2012), irreversibly and selectively
binds to AR’s ligand-binding domain with high affin-
ity, resulting in AR’s conformational change inhibiting
the receptor complex’s translocation to the nucleus; as
a result, DNA binding and the concentration of AR
accessible to bind androgen response elements are re-
duced, eventually inhibiting AR-mediated transcrip-
tion (Clegg et al., 2012; Smith et al., 2016; Isaacsson
Velho et al., 2021). It was thought that the activity of
apalutamide was slightly higher compared with Enza,
and it caused fewer seizurogenic side effects com-
pared with Enza (Smith et al., 2018). Compared with
bicalutamide, apalutamide has a 7- to 10-fold greater
affinity for directly binding the AR (Isaacsson Velho
et al., 2021). Preclinical results for ARN-509 indicated
antitumor effects in the MDA-MB-453 cell line as
AR1 TNBC, but the research has not progressed past
the preclinical level (Clegg et al., 2012; Speers et al.,
2017).
Darolutamide is another second-generation AR an-

tagonist with a unique molecular structure that tar-
gets LBD (Yu et al., 2019). It exhibits more binding
potency for wild-type AR compared with Enza. It in-
hibits translocation to the nucleus and does not ex-
hibit an agonist effect in case of AR overexpression,
thus preventing or limiting possible seizurogenic ef-
fects (Moilanen et al., 2013), It was established as
ODM-201 by Orion Pharmaceuticals and further de-
veloped by Bayer (Fizazi et al., 2019).

320 Choupani et al.

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


Darolutamide inhibits AR variations such as W741L,
T877A, H874Y, and F876L mutants competitively, binds to
AR-LBD, and greatly reduces the development of
enzalutamide-resistant PC cells in vivo (Yu et al., 2019).
To date, no study has reported the use of this drug in BC.
Darolutamide was recently approved in the United States
for the treatment of males with nonmetastatic CRPC on
the basis of favorable findings from the phase III ARAMIS
study (Fizazi et al., 2019; Markham and Duggan, 2019).

2. Chaperone Inhibitors. AR’s normal activity de-
pends on the binding of the ligand and the interaction
between the chaperone proteins and co-activators. In
the absence of the ligand, the AR is found in the cyto-
plasm and is bound to the heat shock proteins (HSPs)
as well as the rest of the inactive co-chaperones
(Osguthorpe and Hagler, 2011). Molecular chaperones
such as Hsp90 are engaged in protein folding, AR ac-
tivation, transcription, and trafficking in the AR sig-
naling pathway. Exposed Hsp90 inhibitors lead to AR
degradation in TNBC cells (Agyeman et al., 2016).
Onalespib (AT13387) and ganetespib (STA-9090) are

the inhibitors of Hsp90 and OGX-427. An inhibitor of
Hsp27 was developed in both BC and PC (Proia et al.,
2014; Spiegelberg et al., 2020). Hsp90 repression by ona-
lespib leads to proteasomal degradation and inhibition of
several signal transduction pathways, such as the full-
length AR (AR-FL) pathway (Slovin et al., 2019). In PC
cell lines, onalespib decreases AR-FL protein in a concen-
tration and in a time-dependent manner, regardless of
the AR-FL status (i.e., wild-type or mutant). Onalespib
affects the splicing of at least 557 genes in PC cells,
including AR, according to bioinformatic analysis of tran-
scriptome-wide RNA sequencing data (Ferraldeschi et al.,
2016). To date, no information has been reported on the
use of onalespib alone in BC patients. However, the com-
bination of this drug with paclitaxel is being investigated
in TNBC (phase Ib clinical trial) (Wesolowski et al., 2019).
Ganetespib, as a next-generation Hsp90 inhibitor,

is a triazolone molecule with improved anticancer effi-
cacy and safety profile compared with first-generation
Hsp90 inhibitors. The interaction between Hsp90 and
co-chaperone p23, which is necessary for an effective
chaperone function, is disrupted by ganetespib bind-
ing. Ganetespib inhibits the expression of HIF-1 tar-
get genes that contribute to the progression of TNBC
(Wesolowski et al., 2019). Ganetespib induced the
powerful and simultaneous disruption of the epider-
mal growth factor receptor, AKT, and mTOR signaling
pathways in TNBC cell lines, resulting in low
nanomolar cytotoxicity values in vitro and significant
tumor growth reduction in xenograft models (Xiang
et al., 2014). Ganetespibsignificantly decreases the size
of MDA-MB-231(TNBC cell)-derived xenograft tumors,
both alone and combined with several conventional che-
motherapeutics (Proia et al., 2014). Also, ganetespib
suppressed the growth of MDA-MB-231 and MCF-7

xenografts and, in the BT-474 model, led to tumor re-
gression (Friedland et al., 2014).

3. Selective Androgen Receptor Modulators. Since
their discovery in the late 20th century (Dalton et al.,
1998), selective androgen receptor modulators (SARMs)
have been considered potential androgen therapies. SARMs
were expected to radically transform the field of androgen
therapy because they have the satisfaction and ability to ex-
tend androgen therapy to patients with BC without viriliz-
ing adverse effects (Negro-Vilar, 1999; Narayanan et al.,
2014). Compared with DMSO-treated tumors, SARMs sup-
press the proliferation of AR1 TNBC and decrease tumor
growth and weight by more than 90%. Through its effects
on AR, SARM therapy prevents the intratumoral expres-
sion of genes and pathways that encourage the develop-
ment of BC (Narayanan et al., 2014). SARMs include a
class of underdeveloped drugs; contrary to the androgen
synthesis inhibitors, they function as selective agonists of
androgens and are promising as a possible treatment ap-
proach for BC. Enobosarm (GTx-024) is the most advanced
drug in this category in clinical research; it exhibits an ago-
nistic activity preventing BC progression in certain patients.
Preclinical outcomes demonstrated GTx-024 antitumor ac-
tivity in AR1 stable expressions of MDA-MB-231 (TNBC)
and MCF-7 (ER1) cell lines subcutaneously implanted in
the nude mice (Dalton et al., 2013).
SARMs are small molecule compounds produced by

chemical engineering, selectively used for various de-
grees of antagonist and agonist effects on AR in the
different body tissues. SARMs’ entrance to the cyto-
plasm is similar to androgens, and they can bind to
the AR. The SARM-AR complex functions as a tran-
scriptional regulator when translocated to the nu-
cleus. It recruits the co-regulatory proteins and co-
factors to modulate the AR complex’s transcriptional
response (Solomon et al., 2019; Christiansen et al.,
2020). Phase 1 clinical trial showed RAD140 a novel
SARM, has an acceptable safety profile as well as pre-
liminary indications of target engagement and anti-
cancer efficacy in the treatment of AR1/ER1/HER2
metastatic BC (LoRusso et al., 2022). Thus, it appears
SARMs’ signaling ability via AR depends on the inter-
action between specific conformations, AR’s functional
domains, the method of interaction between those
domains, and the cellular regulatory environment
for targeting DNA expression. Since SARM-AR com-
plexes show diverse conformations and particular
AR expression patterns in tissues, transcriptional
regulation, and co-regulatory protein levels, it can refer
to tremendous diversity and capability of action.

VII. Genome Editing Against Androgen
Receptor-Positive Cells: CRISPR/cas9 Enters

the Scene

In recent years, many genome-editing approaches
have introduced rational changes in the genome, and
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CRISPR (clustered regularly interspaced short palin-
dromic repeats) is one of them. Compared with other
genome editing techniques—namely, zinc-finger nucle-
ases and transcription activator-like effector nuclease—
the CRISPR/Cas9 method has more advantages in per-
formance, repeatability, and accuracy. The CRISPR/Cas9
method has the potential to influence AR expression
theoretically via two main pathways mediated by tar-
geting the AR gene and mRNA modulation. At the
DNA stage, the AR silencing gene could be achieved by
being knocked out/in, and at the mRNA level, changes
in splicing, expression, and polyadenylation can be
considered (Fig. 5). When the CRISPR system knocks
out the AR gene, the cells are deprived of AR and be-
come insensitive to androgens. Studies showed that
when AR is partially knocked out, the CRISPR system
inhibits the growth and proliferation of LNCaP cancer
cells (Wei et al., 2018). Given androgen receptor en-
hancer activity like the Cis-regulatory element, the
CRISPR interference selectively inhibits annotated Cis-
regulatory elements and quantifies the impact on AR-
mediated gene expression (Huang et al., 2021). Another
application of the CRISPR/CAS method could be re-
garded in Kounatido et al. (2019). They derived a valu-
able model for the study of receptor splice variants and
introduced a stop codon into exon 5 of the AR locus by
CRISPR/Cas9 -mediating knock-in that leads to the
CRISPR-derived FL-AR knockout CWR22Rv1 cell line,

which is called CWR22Rv1-AR-EK (Kounatidou et al.,
2019).
Resistance to AR-targeted treatments is a severe

concern in PC and BC. Changes that occur at the ge-
nome or mRNA level in the AR gene cause different
variants of the gene (Fig. 5). For example, deletion of
exons 5 to 7 in the AR-FL genome results in the AR-
V12 (ARv567), which lacks the LBD domain at the
protein level and thus resistance to next-generation
drugs such as Enza, which binds to the LBD domain.
Variations due to different splicing and polyadenyla-
tion at the mRNA level create AR-V7 and AR-V9 var-
iants. These variants lack the second LBD at the
protein level and are insensitive to next-generation
drugs that bind to the domain. Expression of AR-V1,
AR-V7, and AR-V12 increased in hormone-refractory
PC and metastasis, which increasd resistance to Enza
and androgen deprivation therapy and also induce
an invasive adenocarcinoma and EMT in vivo (Ware
et al., 2014; Radaeva et al., 2021). CRISPR can pre-
vent exon deletion by targeting the desired sequence
in the AR gene and modifying this sequence, as well
as prevent the development of resistant variants by
different splicing and polyhadilation at the mRNA
level (Yong et al., 2017).
SF3B2 plays a crucial role in splicing AR-FL and cre-

ating AR-V7. Studies showed that different splicing due
to overexpression of SF3B2 is one of the mechanisms of

Fig. 5. Mechanism of CRISPR activity to target AT in BC and PC. AR gene expression can be changed in two ways using the CRISPR system. First,
knocked out; expression of the AR gene is blocked in this manner. As a result, the cells are entirely depleted of AR, effective in inhibiting cancer cell
growth and proliferation, and also show insensitivity to androgens. Second, changes in splicing and expression by editing the genome.
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PC progression and resistance to treatment. These stud-
ies proposed SF3B2 as a therapeutic target candidate for
the treatment of cancer patients (Kawamura et al.,
2019). CRISPR technology could be a good option for
treating cancer patients by targeting SF3B2 and pre-
venting the development of resistant androgen receptor
variants. Another study examined the role of the hetero-
geneous nuclear ribonucleoprotein A1 as a splicing factor
and found that the factor played an important role in in-
creasing AR-V7 expression (Tietz and Dehm, 2020). By
knocking down heterogeneous nuclear ribonucleoprotein
A1 in cancerous cells and thereby reducing AR-V7 ex-
pression, these cells lost resistance to Enza. CRISPR/
Cas9 proved successful in targeting AR in PC. It is pre-
dicted that the same method will also work in TNBC, al-
though studies in this area are limited.

VIII. Overcoming Drug Resistance in
Triple-Negative Breast Cancer by

Nanotechnology

Despite many advances in well-known treatment
protocols such as chemotherapy and radiation ther-
apy (Mahmoudi Gomari et al., 2021), cancer therapy
is still far from a favorable state. Nonspecific distribu-
tion, low drug concentrations at the tumor site, high
toxicity, off-target activity, and drug resistance are
the most common obstacles in the field of drug deliv-
ery against malignant cells. Therefore, developing ef-
ficient technologies for targeted therapy in cancer is a
principal issue (Misra et al., 2010). In recent years,
advances in nanotechnology have introduced new ap-
proaches for drug delivery against cancer cells (Jin
et al., 2020). By designing diverse nanoparticles for tar-
geted therapy, nanotechnology promises solutions to
several current barriers against cancer. Nanoparticles
are particles at the nanoscale (1–100 nm) composed of
materials such as metals, polymers, and ceramics and
have different morphologies depending on the fabrica-
tion method (Wang et al., 2008; Aghamiri et al., 2019;
Rostami and Davarnejad, 2021). Nanoparticles have
been considered in the treatment of BC, especially
TNBC, due to their small size, high drug-loading capac-
ity, high circulating half-life, low systemic toxicity, effi-
cient permeability to tumor tissue, and controlled release
(Thakur and Kutty, 2019).
Liposomes are well-known nanoparticles about

400 nanometers in size. A commercial form of liposome
containing doxorubicin is currently available for BC
therapy (Franco et al., 2018). Daei et al. (2014) designed
a liposome that efficiently targets TNBC. This liposome
was successfully implemented to deliver doxorubicin
and sorafenib. In another study, Andey et al. (2015) de-
signed a liposome attached to estrogen derivatives and
showed anticancer activity in mice with TNBC xeno-
graft tumors. In a similar study, Dreaden et al. (2012)
showed that anti-androgen gold nanoparticles bound an

androgen receptor with 5- to 11-fold greater affinity
than free antiandrogens and per particle bound the an-
drogen receptor with an affinity superior to endoge-
nous androgens, allowing for further improved therapy
effectiveness.

IX. Conclusions and Future Perspectives

Many experimental treatments are being developed
to conquer mechanisms that cause resistance to AR
antagonists in PC. The function of the AR and its
pathways is not well known in TNBC. However, ex-
perimental studies found that inhibition of AR activ-
ity in patients with AR1 TNBC can be considered an
option in BC therapy protocols. Early androgen sig-
naling inhibitors were first studied as regular andro-
gen deprivation therapy for PC. Wong and Xie (2001)
examined the correlation between androgen exposure
and BC in rat models. They demonstrated androgens
inducing histologic transformation reversed with the
androgen-blocking agent flutamide. Many preclinical
studies confirmed that AR could be a druggable thera-
peutic target for BC patients; in particular, the
ER�/PR�/AR1 subtype inhibition of the AR pathway
may be helpful against TNBC (Ahn et al., 2016).

• Some of the most important reasons that AR in-
hibitor drugs have not been used as a targeted
therapy for BC patients as much as in PC pa-
tients are listed as follows:

• As a result of a lack of information on the signaling
pathway and the role of ARs in BC, no drugs have
been developed to inhibit this receptor in the past.
Nevertheless, in recent years, as our understanding
of ARs and BC has grown, numerous drugs have been
designed, and most are in the clinical trials stage.

• The standard ARs expression assay for PC is
well known; however, in BC, there is no defini-
tive method.

• After AR-directed therapy for PC, the predictive
utility of ARs in tumor response has been clearly
shown; however, its predictive function in the
treatment of TNBC is still unknown.

• ARs antagonists are being studied in both preclinical
and clinical study for treatment of TNBC; however,
currently, no reliable biomarker has been found to
predict treatment efficacy (Witzel et al., 2019;
Sridhar et al., 2022).

Based on the reported data, it is proposed that the sig-
naling cascades involved in AR�–related pathways have
fundamental roles in TNBC initiation and progression.
For example, anti-AR, PI3K, and CDK4/6 exhibit high
activity against the TNBC LAR subtype (Lehmann
et al., 2011). Available evidence indicates that in AR1

TNBC patients, the combinatorial targeting of the AR
with CDK4/6 or PI3K pathways would be of clinical
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benefit (Lehmann et al., 2014; Gucalp and Traina, 2016).
The evaluation of combination therapy protocols such as
anti-AR with CDK4/6, mTOR, P13k, and immune check-
point inhibitors should be further examined to increase
the effectiveness of the therapy. Targeting more than one
signaling pathway involved in carcinogenesis seems to
be promising, provided that suitable targets are chosen
and the most effective and less toxic combinations of
agents are employed.
CRISPR and nanotechnology raise hopes for targeting

cancerous cells in TNBC patients as two newly emerging
approaches. Targeting different regions of the AR gene us-
ing the CRISPR system is a potential gene-editing method
to control expression. Studies revealed that knocking out
the AR gene using the CRISPR method attenuates cancer
cell growth and proliferation (Wei et al., 2018). Different
AR splicing variants that confer resistance to new drugs
can be overridden by editing the AR genome in TNBC
cells using CRISPR technology if tumor-specific delivery
can be achieved.
The efficiency of TNBC therapy can be considerably

improved by nanotechnology. In addition to enhancing
drug toxicity, targeted therapy, and timely drug release,
nanoparticles may be used, as CRISPR promotes genome
editing accurately in TNBC models. Many studies have
been performed on AR suppressors by nanoparticles in
PC (Lee et al., 2012, 2016; Yamamoto et al., 2015; Zhang
et al., 2017) However, in the context of TNBC, there has
been no evaluation of nanoparticles suppressing the AR
gene. Therefore, the use of nanocarriers for suppression
and targeted therapy of AR in TNBC is warranted for fu-
ture studies.
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