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ABSTRACT 

An increasing number of commonly prescribed drugs are known to interfere with mitochondrial 

function, which is associated with almost half of all FDA black box warnings, a variety of drug 

withdrawals and attrition of drug candidates. This can mainly be attributed to a historic lack of sensitive 

and specific assays to identify the mechanisms underlying mitochondrial toxicity during drug 

development. In the last decade, a better understanding of drug-induced mitochondrial dysfunction has 

been achieved by network-based and structure-based systems pharmacological approaches. Here, we 

propose the implementation of a tiered systems pharmacology approach to detect adverse mitochondrial 

drug effects during preclinical drug development, which is based on a toolset developed to study 

inherited mitochondrial disease. This includes phenotypic characterization, profiling of key metabolic 

alterations, mechanistic studies, and functional in vitro and in vivo studies. Combined with binding 

pocket similarity comparisons and bottom-up as well as top-down metabolic network modeling this 

tiered approach enables identification of mechanisms underlying drug-induced mitochondrial 

dysfunction. After validation of these off-target mechanisms, drug candidates can be adjusted to 

minimize mitochondrial activity. Implementing such a tiered systems pharmacology approach could 

lead to a more efficient drug development trajectory due to lower drug attrition rates and ultimately 

contribute to the development of safer drugs. 
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SIGNIFICANCE STATEMENT 

Many commonly prescribed drugs adversely affect mitochondrial function, which can be detected using 

phenotypic assays. However, these methods provide only limited insight into the underlying 

mechanisms. In recent years, a better understanding of drug-induced mitochondrial dysfunction has been 

achieved by network-based and structure-based system pharmacological approaches. Their 

implementation in preclinical drug development could reduce the number of drug failures, contributing 

to safer drug design.
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I | MITOCHONDRIAL DYSFUNCTION AS A MAJOR DETERMINANT 
IN ADVERSE DRUG REACTIONS 

Mitochondria are well-known for their classical role in cellular energy production, as they harbor many 

central metabolic pathways, including the tricarboxylic acid (TCA) cycle and the oxidative 

phosphorylation (OXPHOS, Figure 1). Consequently, they generate the majority of cellular adenosine 

triphosphate (ATP) (Galluzzi et al., 2012a; Galluzzi et al., 2012b). When cellular energy demand is high, 

such as in renal proximal tubule and heart muscle cells, fatty acids (FA) are used as preferred substrate 

for ATP production via β-oxidation. In the cytosol, FAs are converted into acyl-CoA and transferred 

into the mitochondrial matrix by the carnitine/acylcarnitine carrier (CAC), driving β-oxidation and 

leading to the production of acetyl-CoA that fuels the TCA (Figure 1). Although fatty acid β-oxidation 

(FAO) is the most efficient ATP-producing mechanism, this pathway implies a high oxygen request, 

and will therefore be limited to such conditions, whereas other substrates might be used when high 

oxygen requirement cannot be fulfilled.   

The compartmentalized structure of mitochondria provides the required microenvironment for these and 

many other metabolic pathways located within the mitochondrial matrix, such as heme biosynthesis, 

iron-sulphur cluster assembly, part of gluconeogenesis, ketogenesis, part of amino acid metabolism and 

calcium storage (Galluzzi et al., 2012b). Additionally, mitochondria play a pivotal role in cellular life, 

stress and death, and are more recently implicated in the initiation and propagation of inflammatory 

responses (Galluzzi et al., 2012b; Riley and Tait, 2020; Tiku et al., 2020; Weinberg et al., 2015). 

Combined with their metabolic roles, this led to the inevitable association with many common diseases, 

for instance neurodegenerative disorders (i.e., Alzheimer’s and Parkinson’s disease), type II diabetes, 

several cancers and cardiovascular disease (Alam and Rahman, 2014; Galluzzi et al., 2013; Murphy and 

Hartley, 2018; Rao et al., 2014; Sivitz and Yorek, 2010; Walters et al., 2012; Weinberg and Chandel, 

2015). Hence, mitochondria have gained much interest as therapeutic targets (Lanzillotta et al., 2019; 

Patel et al., 2019; Roth et al., 2020; Seo et al., 2019). 

In addition, an increasing number of commonly prescribed drugs are known to interfere with 

mitochondrial function (e.g., cholesterol-lowering and anti-diabetic drugs, antibiotics, 
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chemotherapeutics and immunosuppressants). Accordingly, these drugs often affect tissues with a high 

energy demand, including central nervous system, skeletal muscle, heart, liver and kidneys (Amacher, 

2005; Begriche et al., 2011; Montaigne et al., 2012; Pessayre et al., 2012; Rolo et al., 2004; Schirris et 

al., 2015a; Wallace et al., 2020). The relevance of mitochondrial toxicity as targets for adverse drug 

effect is exemplified by the observation that approximately 50 percent of all FDA black box warnings 

are associated with drug-induced mitochondrial dysfunction (a representative overview for 

cardiovascular, renal and hepatic toxicity of drugs is shown in Table 1) (Dykens and Will, 2007; 

Nadanaciva and Will, 2009; Pereira et al., 2009). A screen of 676 unique compounds demonstrated that 

73 percent negatively affected mitochondrial function (e.g., inhibition of the mitochondrial electron 

transport chain and mitochondrial uncoupling) in an in vitro assay using primary renal proximal tubule 

cells (Wills et al., 2015). Although drugs could interfere with the protein binding pocket and thereby the 

function of all ~1200 mitochondrial proteins (Calvo et al., 2016), off-target mechanisms are generally 

categorized as: (I) inhibition of multi-subunit OXPHOS complexes (Fosslien, 2001; Schirris et al., 

2015a), (II) respiratory uncoupling (Madiraju et al., 2014), (III) permeability transition pore opening, 

(IV) suppression of fatty acid β-oxidation and carnitine shuttling pathways for several drugs, including 

diclofenac, ibuprofen and zidovudine (Console et al., 2020; EI-Gharbawy and Vockley, 2018; Massart 

et al., 2013), (V) mitochondrial transporter inhibition (Divakaruni et al., 2013; Dolce et al., 2001; 

Kalghatgi et al., 2013), and (VI) affected mitochondrial DNA replication, transcription or translation 

(Brinkman et al., 1998; Chan et al., 2005; Dykens, 2008; McGill et al., 2012; Payne et al., 2011). 

Functionally, these mechanisms are often associated with reduction of oxygen consumption, increased 

levels of reactive oxygen species (ROS) or changes in mitochondrial substrates (e.g., reduced 

nicotinamide adenine dinucleotide, NADH), decreased ATP levels or increased oxygen consumption 

with uncouplers, as well as disturbed calcium homeostasis. Although many compounds are “mito-

active” in vitro (and thus have an intrinsic mitochondrial hazard), it is important to emphasize that not 

all result in mitochondrial toxicity in vivo (i.e., pose a mitochondrial toxicity risk) and in some cases the 

activity is central to a drug’s pharmacology. Translation of in vitro hazard to in vivo risk is determined 

by multiple factors but predominant are potency, exposure (including to specific sensitive tissues) and 

the target tissue’s ability to adapt to the metabolic challenge. 
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As alluded to, for some drugs the potential to perturb mitochondrial function contributes to its 

therapeutic efficacy (Lin et al., 2015). The anti-diabetic effect of the commonly used drug metformin 

has, for example, been reported to act through inhibition of mitochondrial glycerol-3-phosphate 

dehydrogenase and mitochondrial complex I activity at micro- and millimolar concentrations, 

respectively. The consequent reduced pyruvate and increased adenosine monophosphate (AMP) levels 

result in a decreased hepatic gluconeogenesis, via respective positive feedback signaling and AMP-

activated protein kinase (AMPK) activation, explaining its use as first-line therapy in type II diabetes 

mellitus (Madiraju et al., 2014; Owen et al., 2000). The ability of metformin to inhibit mitochondrial 

function also led to the exploration of its potential use in several cancer types (Kheirandish et al., 2018; 

Thakur et al., 2018; Viollet et al., 2012). In addition, drug-induced mitochondrial dysfunction has been 

associated with the therapeutic efficacy of many other anticancer drugs, including etoposide (cell death 

induction via the mitochondrial-dependent p53 pathway), doxorubicin (inhibition of OXPHOS 

complexes, respiratory uncoupling, suppression of FA and TCA associated protein expression, 

inhibition of topoisomerase II and reduction in mitochondrial DNA; mtDNA content), taxol (opening of 

the mitochondrial permeability transition pore; mPTP), thapsigargin (opening of the mPTP) and apicidin 

(apoptosis via mitochondrial-dependent caspase cascade) (Babaei et al., 2020; Canta et al., 2015; 

Dykens, 2008; Jamil et al., 2015; Kwon et al., 2002; Lebrecht et al., 2010; Quintanilla et al., 2013; Swain 

et al., 2003; Yadav et al., 2015).  

The impact of drug-induced mitochondrial toxicity can be very significant as emphasized by the market 

withdrawal of a number of commonly prescribed drugs due to serious mitochondrial adverse effects, 

such as troglitazone-induced severe liver injury (respiratory uncoupling and opening of the mPTP), 

cerivastatin-induced rhabdomyolysis (respiratory uncoupling, inhibition of glutamate-driven respiration 

and induction of ultrastructural changes) and fatal lactic acidosis by phenformin and buformin (Bova et 

al., 2005; Bridges et al., 2014; Dykens, 2008; Furberg and Pitt, 2001; Kaufmann et al., 2006; Masubuchi 

et al., 2006; Seachrist et al., 2005; Segawa et al., 2018; Tirmenstein et al., 2002; Totten et al., 2021; 

Westwood et al., 2005). Although the withdrawals of phenformin and buformin date from the 1970s, it 

was only over the last two decades that mitochondrial activity of drugs gained more attention (Amoedo 
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et al., 2017; Bellance et al., 2020; Dykens, 2008; Meyer et al., 2018; Rana et al., 2019). A comprehensive 

overview of novel cases of mitochondrial toxicity, including enhanced insights into the underlying 

pathomechanisms, have been reviewed by others (Leuthner and Meyer, 2021; Will et al., 2019; Wu et 

al., 2020). To understand the physiological effects of a drug or compound on mitochondrial function 

and correlate this mechanistic, biological, and chemical information with clinically relevant toxicity, an 

extensive mitochondrial toxicity database (MitoTox) has recently been established (Lin et al., 2021). It 

combines pharmaceutical information with experimental data of over 1400 small molecules and drugs 

and aims to integrate knowledge on mitochondria-related toxicants and their targets. Molecules related 

to mitochondrial toxicity are classified according to their action on the target, including membrane 

potential (e.g., depolarization, hyperpolarization, uncoupling and redox cycling), function of 

mitochondria (e.g., oxidative phosphorylation and glucose/lipid/amino acid metabolism), organization 

of mitochondria (e.g., morphology, mass, biogenesis, mitophagy, fission and fusion), movement of 

mitochondria (e.g., mitochondrial transport and motility), oxidative stress (e.g., ROS generation, 

antioxidants and scavenger of mitochondrial superoxide), mtDNA (e.g., mtDNA replication, 

maintenance and mutation), cell death (e.g., apoptosis, necroptosis and autophagy) and signaling (e.g., 

mTOR, AMPK and MAPK), as summarized in figure 2A (Lin et al., 2021). In this review, we will focus 

on specific mitochondrial characteristics that explain why mitochondria are particularly prone to adverse 

drug effects (Figure 2). These include the lipid abundance of both mitochondrial membranes that 

facilitates accumulation of lipophilic drugs. Second, the inner mitochondrial membrane contains high 

levels of the phospholipid cardiolipin, required for proper functioning of many proteins embedded in 

this membrane (e.g., OXPHOS complexes). Cardiolipin’s negative charge, however, enhances 

interactions with cationic drugs (de Wolf et al., 1993; Parker et al., 2001). Such interactions exacerbate 

membrane fluidity, which together with drug accumulation can eventually result in mitochondrial 

dysfunction (Unsay et al., 2013). Third, mitochondrial transport proteins and channels, such as the 

mitochondrial calcium uniporter (MCU), allow accumulation of drugs in the mitochondrial matrix and 

specifically metal ions (e.g., lithium) that interact with essential proteins or disturb the redox cycle 

(Pathak and Trebak, 2018; Salimi et al., 2017). Fourth, the highly negative electrochemical membrane 

potential (~120-180 mV) (Griffiths, 2000) over the mitochondrial inner membrane facilitates a strong 
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accumulation (~300- to 500-fold) of lipophilic and amphiphilic cationic drugs (Boelsterli and Lim, 2007; 

Meyer et al., 2013). Fifth, mitochondrial DNA repair mechanisms are limited (Meyer et al., 2013) and 

mtDNA is more vulnerable to drug-induced damage compared to nuclear DNA, which is explained by 

the difference in DNA packing by protective histones; although recent studies have suggested that 

mtDNA is less ‘naked’ than previously anticipated and packed in histone-like nucleoids (Bogenhagen, 

2012; Campbell et al., 2012; Gilkerson et al., 2013; Meyer et al., 2013). Increased mtDNA vulnerability 

to drug exposure compared to nuclear DNA is especially relevant in the elderly. Both mitochondrial 

function and mtDNA content decline with age, while simultaneously an increase in age-related diseases 

and a consequent higher use of medication in the elderly is observed, which is expected to lead to an 

increase in drug-induced mitochondrial dysfunction (Will et al., 2019). Sixth, mtDNA is closely located 

to major cellular ROS generation sites and the scarcity of non-coding sequences that are particularly 

involved in regulation of gene expression prevents this control, thereby increasing vulnerability to 

potentially harmful substances, including drugs (Boelsterli and Lim, 2007; Meyer et al., 2013). The 

functioning of mtDNA is also influenced by other factors, as shown by recent developments in 

environmental exposure assessment, linking environmental toxicants, including airborne pollutants, 

heavy metals and therapeutic drugs, to impaired mitochondrial epigenetics, e.g., reduced mtDNA 

methylation, leading to altered expression patterns of mtDNA-coding proteins. Since the interaction 

between these and nuclear proteins is required for maintenance of cellular health and homeostasis, as 

well as mitochondrial metabolic pathways, epigenetic perturbations have been linked to a variety of 

conditions such as cancer, neurodegenerative disorders, disturbed cellular metabolism and alterations in 

circadian rhythm (Meyer et al., 2018; Meyer et al., 2017; Ramachandran et al., 2018; Sharma et al., 

2019; Zhou and Huang, 2018; Zhou et al., 2020). Seventh, mitochondria harbor several cytochrome 

P450 (CYP) enzymes that can convert certain drugs into toxic metabolites that could damage 

mitochondrial proteins, DNA, and lipids (Hartman et al., 2017; Orhan et al., 2021). Finally, the interplay 

of biogenesis, fission, fusion and mitophagy makes mitochondrial morphology highly dynamic 

(Bereiter-Hahn and Voth, 1994), which may further increase mitochondrial vulnerability to adverse drug 

effects. The dynamic character arises from sequentially switching between fusion of two separate 

mitochondria or budding off smaller structures from a single mitochondrion (fission). This enables the 
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adequate coordination of mitochondrial metabolism in response to cellular demands (Ramachandran et 

al., 2021; Tilokani et al., 2018). Elongated mitochondria are generally associated with conditions in 

which ATP production is increased, therefore, mitochondrial fusion presumably stimulates the 

distribution of these high-energy molecules throughout the cell (Mishra and Chan, 2016; Mitra et al., 

2009; Ramachandran et al., 2021). Stability and replication of mtDNA and tolerance to mtDNA 

mutations are also thought to be fusion-dependent, as it was found in skeletal muscle that these events 

appear to be linked to proteins that regulate the inner and outer mitochondrial membrane fusion, e.g., 

mitofusin (MFN) 1 and 2 (Chen et al., 2010; Sidarala et al., 2022; Silva Ramos et al., 2019). In cells 

undergoing stress, mitochondrial fission seems to be the predominant dynamic event, and it is suggested 

to occur as an adaptive mechanism and a necessary step for the induction of mitophagy, in which 

dysfunctional or severely damaged mitochondria are directed to Parkin-mediated lysosomal 

degradation, as has been reviewed in detail (Ni et al., 2015; Ramachandran et al., 2021; Tilokani et al., 

2018). 

It has been shown that after challenging cells to various toxic conditions, mitochondrial dynamics induce 

changes in organelle number and morphology to maintain cell viability (Karbowski and Youle, 2003). 

These changes are linked to the regulation of mitochondrial metabolism and have been shown to 

influence each other, e.g., for cardiac and muscle cell contraction (Abdelwahid, 2017; Mishra and Chan, 

2016; Wai and Langer, 2016). Consequently, mitochondrial biogenesis, typically occurring in response 

to loss of functional mitochondria is fundamental to maintain cellular homeostasis and regeneration. 

Especially after exposure to toxic compounds, controlled mitochondrial biogenesis, mediated by the 

upregulation of the transcription factor PGC1α, enables recovery of cellular function by maintaining 

respiration and other vital processes. This coordinated action is regulated between mitochondria on the 

one hand and nuclear transcription and translation on the other, to ensure proper functioning of newly 

synthesized mitochondria (Ramachandran et al., 2021). 

An example involving drug interference with mitochondrial dynamics is cardiotoxicity induced by 

doxorubicin (Kuznetsov et al., 2011; Tang et al., 2017). In vitro exposure to doxorubicin has been shown 

to decrease the mitochondrial fusion proteins optic atrophy (OPA) 1 and MFN1/2, and to increase 
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phosphorylation of dynamin-1-like protein (DRP) 1, which is a fundamental component of 

mitochondrial fission, resulting in inhibition of fusion and promotion of fission (Li et al., 2014; 

Osataphan et al., 2020; Tang et al., 2017). In addition, etoposide (OXPHOS inhibition, dissipation of 

the mitochondrial membrane potential and ROS elevation), zidovudine (nucleoside reverse transcriptase 

inhibitor – OXPHOS inhibition, opening of mPTP, dissipation of the mitochondrial membrane potential; 

MMP, inhibition of ATP/ADP carrier, antioxidant enzyme and DNA polymerase) and remdesivir 

(antiviral – OXPHOS inhibition) have also been identified as disruptors of mitochondrial dynamics, 

thereby promoting their fragmentation (Kwok et al., 2022; Nemade et al., 2018; Nomura et al., 2017; 

Tang et al., 2022). Moreover, in liver injury it has been demonstrated that exposure to acetaminophen 

(analgesic - inhibition of OXPHOS complexes by toxic metabolite, opening of the mPTP and respiratory 

uncoupling) to primary mouse hepatocytes resulted in spheroid-shaped mitochondria before progressing 

to pathological irreversibly fragmented mitochondria (Hanawa et al., 2008; Hu et al., 2016; Kon et al., 

2004; Umbaugh et al., 2021). On the other hand, liver regeneration after acetaminophen-associated 

toxicity could be induced by facilitating mitochondrial biogenesis, which is in line with the observation 

that impaired biogenesis contributes to age-dependent liver damage in experimental sepsis (Du et al., 

2017). Since mitochondrial biogenesis restores oxidative metabolism in bacterial sepsis, it is considered 

an important and early pro-survival factor (Haden et al., 2007). Sustained cellular stress could also lead 

to mitochondrial remodeling, as alterations in morphology and biogenesis are thought to shift 

mitochondrial homeostasis to support cell survival. This is a phenomenon observed in various processes 

associated with hepatic, cardiovascular and metabolic diseases, for instance insulin resistance in non-

alcoholic fatty liver disease (Gottlieb and Bernstein, 2016; Shannon et al., 2021). It is well established 

that mitochondrial dynamics underlie cellular homeostasis and that its dysregulation is inseparable from 

pathophysiological conditions. 

Previous drug withdrawals highlight the historic lack of sensitive and specific assays to detect 

mitochondrial toxicity during drug development. The standard battery of in vivo toxicology studies 

mandated during drug development rely on healthy animals which have a high metabolic reserve 

capacity and can easily adapt to moderate metabolic challenge without showing adverse signs or 
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pathology. This contrasts with many patient groups who are subject to comorbidities, comedications, 

lifestyle choices, age and genetic factors which can all erode their metabolic reserve capacity. As part 

of an alternative approach, systems pharmacology has proven to be effective to pinpoint mitochondrial 

off-target effects (Bisson et al., 2007; Fannin et al., 2010; Lee et al., 2013; Schirris et al., 2015b; Wagner 

et al., 2008). This review aims to provide an overview of these strategies. We propose implementation 

of a tiered systems pharmacology approach to aid identification of mechanisms underlying 

mitochondrial dysfunction of existing and new drugs under development.  
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II | CURRENT METHODS TO IDENTIFY DRUG-INDUCED 
MITOCHONDRIAL DYSFUNCTION 

Regularly applied assays to evaluate drug-induced mitochondrial dysfunction include measurements of 

OXPHOS complex enzyme activities, mitochondrial membrane potential, lactate and cellular ATP 

generation, mtDNA and calcium levels (Dykens, 2018). Most of these parameters are determined as an 

endpoint observation. Screening of cellular oxygen consumption rates (i.e., using Seahorse extracellular 

flux analysis or a fluorescent oxygen sensor) has been introduced and is widely applied to detect 

mitochondrial activity (Beeson et al., 2010; Hynes et al., 2006; Hynes et al., 2009). The importance of 

measuring respiratory capacity of the mitochondrial energy generating system is based on the notion 

that virtually all mitochondrial bio-energetic pathways converge in the OXPHOS system. Moreover, 

OXPHOS complexes are often observed as important off-targets involved in adverse effects of drugs 

(Hargreaves et al., 2016; Nadanaciva et al., 2007) and their adequate function depends on the presence 

of an electrochemical membrane potential. Consequently, measuring respiratory rates instantly provides 

information about a variety of mitochondrial functional parameters. A reduced oxygen consumption rate 

and decreased OXPHOS function is associated with increased reductive stress. The resulting surplus of 

electrons may react with cellular oxygen to produce excessive ROS. A gamut of intracellular molecular 

probes to sense ROS (Forkink et al., 2010) or detect ROS-induced damage (i.e., lipid- and protein-

peroxidation) are increasingly applied in the investigation of drug-induced mitochondrial damage 

(Belousov et al., 2006; Forkink et al., 2010; Kalyanaraman, 2011). These fluorescent compounds include 

small molecules such as hydroethidine, CM-H2DCFDA, dihydrorhodamine 123 and C11-BODIPY that 

require incubation to get into the cell. On the other hand, protein-based reporter molecules, which can 

be introduced into the cell by stable or transient transfection, can be used to detect cellular ROS levels, 

including circularly permuted yellow fluorescent protein (cyYFP), HyPer and reduction-oxidation 

sensitive green fluorescent protein (roGFP). It is important to note, that each of these probes can be used 

to get insight into the formation of ROS molecules, which are known to have different origins. For 

example, the primary mitochondrial ROS molecule O2˙־ results from electron reduction of O2 and is 

generally detected by HEt. The importance of these experimental approaches to distinguish between 
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ROS types is emphasized by the notion that ROS molecules can also serve as cellular signaling 

molecules. Low levels of ROS and downstream products are key to cellular health and have beneficial 

effects, for example in the defense against microbial agents (Valko et al., 2007). Consequently, 

distinguishing different ROS molecules is useful in separating oxidative stress-related toxic mechanisms 

from beneficial signaling events  (Forkink et al., 2010).  

Although phenotypic assays have proven to be very powerful in the detection of drug-induced 

mitochondrial dysfunction (Wills et al., 2015), these do not provide information about the exact 

mitochondrial off-target. Furthermore, whether a drug directly affects mitochondria or whether 

mitochondrial function is influenced secondary to other cellular mechanisms is difficult to distinguish.  

The introduction of high-content imaging with mitochondria-selective fluorescent and phosphorescent 

dyes has facilitated the evaluation of mitochondrial function, morphology and mitochondrial biogenesis 

using live-cell imaging (Dussmann et al., 2017; Ferrick et al., 2008; Iannetti et al., 2016; Wagner et al., 

2008; Zhang et al., 2017), which enables monitoring of drug effects over prolonged time courses. 

Besides overcoming the limitation of phenotypic endpoint assays, it also allowed the simultaneous 

determination of multiple parameters using multiple probes. Recently, spectral unmixing (e.g., linear 

unmixing) methods have further advanced high-content imaging, as it allows scientists to analyze 

fluorescent probes with overlapping excitation and emission spectra (Megjhani et al., 2017; Valm et al., 

2016). This application has increased the number of fluorescent labels up to 120 for live-cell imaging. 

Moreover, combining imaging techniques with machine learning made it particularly amenable to 

disentangle the effects of drugs on mitochondrial function and morphology (Blanchet et al., 2015; 

Iannetti et al., 2019; Iannetti et al., 2016). These methods have enabled the successful unbiased 

identification of beneficial drug effects on primary cells with a genetically encoded mitochondrial defect 

and of drug-induced mitochondrial dysfunction (Leonard et al., 2015; Zahedi et al., 2018). They have 

also significantly aided in the screening of large drug libraries for mitochondrial activity. Importantly, 

the sensitivity to detect drug-induced mitochondrial dysfunction has been shown to increase in such 

assays with multiple parameters (Wagner et al., 2008; Wills et al., 2015). The high costs of fluorescent 

live cell imaging and rather low capacity, however, limit their use to late-phase compound 
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characterization (Haney et al., 2006; Smith et al., 2012). Clearly, the identification of therapeutic targets 

and pharmaceutical drug development finally requires in situ complementation studies and even in vivo 

validation of lead compounds to exclude any potential compound-associated (mitochondrial) toxic 

hazard and verify safety in a physiological system, as described in more detail in section 4, tier 4. 

Even though these advanced methodologies have increased the capability to detect drug-induced 

mitochondrial dysfunction, they still predominantly measure the phenotypic consequences, rather than 

identifying the primary target being affected. In addition, the large number of possible pathways 

regulating mitochondrial function limits the use of traditional research techniques that are based on an 

a priori hypothesis about the mechanisms involved. Only a subset is represented, which is expected to 

hamper the detection of relevant off-target mechanisms. Consequently, there is a great need for an 

unbiased systems analysis in which the complete network of cellular metabolic processes and pathways 

is considered. This, however, will depend on the availability of large data sets collected without an a 

priori hypothesis, to avoid inherent selection bias of known pathways (Go et al., 2018).  
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III | APPLICATION OF SYSTEMS PHARMACOLOGY TO 
INVESTIGATE DRUG-INDUCED MITOCHONDRIAL DYSFUNCTION 

In contrast to hypothesis-driven strategies as described above, systems biology integrates data on 

multiple levels, including experimental (e.g., mechanistic studies), omics and predictive bioinformatics 

datasets. This enables an overall understanding of mechanisms underlying mitochondrial dysfunction 

on a systems level, which opens up opportunities for targeted investigations of adverse events.  

Integrative and unbiased observations from big databases allow the examination of global fluctuations 

in cellular metabolism, instead of studying the effects on a smaller scale (e.g., single genes, proteins) 

(Fasano et al., 2016). However, to understand these metabolic effects, gene expression and metabolite 

concentrations need to be mapped on cellular metabolic networks to connect all individual reactions. 

The feedback inhibition of amino acid biosynthetic pathways was one of the first metabolic networks 

constructed more than 60 years ago. Despite this, a clear definition of systems biology is lacking, but it 

is generally considered to be an integrative approach at the level of full organism, tissue, or cell. It is 

aimed to understand the physiology and pathology using complex molecular response networks (Klipp 

et al., 2009). Systems biology is based on a holistic methodology combining all possible targets and 

pathways involved. The classic systems biology cycle is initiated by data acquisition at a patient, animal 

or cell model level, as described in Figure 3. Types of data include clinical phenotypes, cellular 

responses, ‘omics’-derived data (e.g., genomics, transcriptomics, proteomics and metabolomics), 

biochemical reactions or pathways and drug-related data on pharmacodynamics, pharmacokinetics and 

toxicity. Clinical samples for example, use patient-derived body fluids (e.g., blood or plasma) for RNA 

sequencing and mass-spectrometry-based untargeted metabolomics (e.g., next-generation metabolic 

screening), as increasingly applied in diagnostic screening for Inborn Errors of Metabolism (IEM) and 

mitochondrial disease (Bonte et al., 2019; Buzkova et al., 2018; Coene et al., 2018; Hoegen et al., 2021; 

Miller et al., 2015; Tebani et al., 2016a; Tebani et al., 2016b; Thistlethwaite et al., 2022). By measuring 

as many metabolites as possible, a metabolic fingerprint can be generated that is representative of a 

biochemical phenotype, thereby offering novel opportunities for diagnostic screening (Hoegen et al., 

2021). The next step is to integrate data by incorporating the obtained knowledge of biochemical 
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pathways, molecular interactions and omics-derived data into a computer database coupled to correct 

ontology terms, used for interpretation of a given pathway or process. A similar systematic approach 

has previously been applied to build the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, 

which collects, combines and maintains data on genetics (KEGG GENES database), biochemistry 

(KEGG PATHWAY database), molecular and cellular biology (KEGG LIGAND database) (Kanehisa, 

1997; Ogata et al., 1999). Computational methods are then employed to model various experimental 

conditions, including gene functions in terms of gene networks and molecules, reconstruction of 

biochemical pathways and prediction of biological systems. The three modeling approaches that are 

characteristically applied are discussed in detail in figure 4 and below. Computational models are 

typically validated with experimental data ranging from in vitro (cells), in vivo (animal) to clinical 

studies investigating mitochondrial function, e.g., OXPHOS enzyme activities, cellular ATP levels and 

mtDNA as described above in section II. If model refinement is needed, the cycle is reinitiated. Systems 

biology typically employs top-down, bottom-up, or middle out models (Figure 4). The top-down 

approach applies a coarse-grained model of an entire system, which is often refined using large-scale 

omics data, including proteomic, interactomic (viz. all interactions between and among proteins and 

molecules within a cell and their consequences), transcriptomic, genomic or metabolic data (Bludau and 

Aebersold, 2020; Rolland et al., 2014; Wan et al., 2015). The use of these ‘omics’ datasets enables the 

construction of biological networks that represent interactions between genes, transcripts, proteins and 

metabolites and aids in the identification of novel pathophysiological mechanisms, as well as new 

biomarkers and therapeutic targets, as extensively discussed by Maldonado et al. (Maldonado et al., 

2019; Suomalainen et al., 2011). These network models represent interacting molecules by nodes, e.g., 

genes or proteins, and edges, e.g., chemical transformations such as biochemical reactions or regulatory 

relationships (Albert, 2007). Nodes that interact with several others are referred to as hubs that split the 

network into isolated clusters upon loss, whereas node disruption does not cause major loss of 

connectivity (Albert, 2007; Maldonado et al., 2019). In the context of mitochondrial disease, these 

network-based approaches are powerful in studying mitochondrial (dys)function as numerous 

interactions can be explored, enabling the elucidation of integrative mitochondrial functions that may 

have been missed using traditional experimental techniques (Maldonado et al., 2019). These top-down 
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network models are generally holistic by their nature as they involve an in-depth investigation of the 

whole system. As an example, a top-down workflow applied in mitochondrial research involves sample 

(e.g., patient-derived) collection, processing by high throughput methods (e.g., ‘omics’) and analysis by 

bioinformatics tools to gain a better understanding of function (Maldonado et al., 2019).  

Bottom-up models rely on mechanistic hypothesis-driven studies of molecular interactions. In contrast 

to the top-down strategy, it is typically based on (database or literature-driven) experimental data and 

described by a smaller number of interactions involved. Processes are studied individually and integrated 

into a model, such as certain metabolic pathways, including glycolysis and catabolism (Cortassa et al., 

2019; Klipp et al., 2009; Marin-Hernandez et al., 2020; Teusink et al., 2000) mitochondrial malate-

aspartate and citrate-pyruvate shuttles (Korla et al., 2015), mitochondrial messenger RNA translation 

(Korla and Mitra, 2014), ROS generation in the mitochondrial matrix (Korla, 2016), and more 

comprehensive mitochondrial (Wu et al., 2007) and cellular models (Grass et al., 2022). Interestingly, 

such bottom-up dynamic metabolic models have recently been further refined with the inclusion of 

circadian cellular patterns, as time-dependent changes in metabolic activity (Rowland Adams and 

Stefanovska, 2020). The construction of genome-scale metabolic models (GEMs) using pre-existing 

databases combined with literature input are also powerful in modeling biological systems, as they aim 

to fully encompass all interactions within a system. Especially in the context of mitochondrial disorders, 

generation of these metabolic models has contributed to the assessment of the functional consequences 

of genetic changes or to the identification of therapeutic targets facilitating the design or repurposing of 

drugs (Brunk et al., 2018; Maldonado et al., 2019; O'Brien et al., 2015). As described above for the use 

of a top-down strategy in mitochondrial research, the bottom-up workflow can be characterized by 

identification and collection of molecular data (e.g., database-driven data on glycolysis), formatting this 

into a model (e.g., GEM), followed by prediction of solutions to gain a better understanding of the 

underlying mechanisms (Maldonado et al., 2019). 

While bottom-up models are built on the individual kinetic equations describing biochemical reactions, 

such as the Michaelis-Menten kinetics for enzyme activity, the top-down model is designed to represent 

a good global fit of the in vivo behavior (Klipp et al., 2009). Nevertheless, it is clear that integration of 
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different data types is key in creating a complete representation of biology, but although the available 

integrative tools are expanding they are still scarce and complex to use (Maldonado et al., 2019). As 

previously reviewed, studying the mechanisms underlying mitochondrial diseases benefits from a 

multidisciplinary approach that combines clinical, molecular, and computational research to achieve 

better diagnostics and improve the development of therapeutic agents (Maldonado et al., 2019). Recent 

developments in multi-omics approaches have already demonstrated to be a valuable tool in improving 

patient care (Maldonado et al., 2019). However, as the integration of large omics datasets can lead to 

modelling problems, methods such as similarity network fusion (SNF) have been developed to aggregate 

and analyze multiple complex omics datasets on a genomic scale (Wang et al., 2014). xMWAS is an 

approach that identifies associations and correlations between molecules based on multi-omics data and 

allows integration of more than two datasets (Hu et al., 2020; Uppal et al., 2018).  Expansion of these 

knowledge bases, including xMWAS and MitoCarta, is an essential next step towards more efficient 

integration of multi-omics data for providing deeper insights into specific mitochondrial network 

responses. (Hu et al., 2020).  

In practice, the data types used are the ones that are sufficiently available from various experimental 

conditions and models, often applying a combination of bottom-up and top-down methodologies, known 

as the middle-out strategy. This method aims to integrate data from different levels of complexity using 

a dynamic network modeling approach. Here, the biological network of interactions connects to the 

dynamic behavior of a system and has proven powerful in effectively integrating experimental and 

literature data to gain a holistic understanding of complex biological systems (Albert, 2007; Sun et al., 

2018) (Figure 3). A similar systems biology approach has been applied successfully to identify 

Alzheimer’s disease (AD)-related genes and to discriminate molecular regulatory networks and 

pathways associated with healthy and diseased states in AD (Hu et al., 2017). Moreover, aberrant 

function of cellular metabolic pathways has been associated with phenotypic disease characteristics in 

AD using multiple high-throughput technologies, including genomics, transcriptomics, proteomics and 

even interactomics (Kristensen et al., 2012; Ng et al., 2017; Soler-Lopez et al., 2011; Wang et al., 2018; 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 10 January 2023 as DOI 10.1124/pharmrev.122.000568 This article

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


  

 
 

22

Zhang et al., 2014). Such integrative approaches benefit the construction of interpretable and predictive 

models. 

Over the last 20 years, systems biology analyses were also applied in pharmacological and toxicological 

research (Hartung et al., 2017; Kongsbak et al., 2014; Turner et al., 2015; Yahya et al., 2021). To 

evaluate the dynamic interaction between drugs and biological networks, physiochemical-based 

macromolecular structure modeling has been incorporated in experimental data-driven and 

mathematical-based pharmacokinetic and pharmacodynamic models (Ward et al., 2013; Xie et al., 

2014). Combined with pharmacogenomic data these models typically represent a systems pharmacology 

approach that allows deeper insight into mechanisms underlying both beneficial and adverse drug effects 

(Xie et al., 2014) and predict personalized drug responses.  

Systems pharmacology can methodologically be categorized in either pathway and network-based 

approaches or proteome-wide exploration of drug targets using binding pocket similarity comparison. 

Successful identification of drug-induced metabolic network perturbations has been demonstrated using 

relatively simple pathway models. However, more extensive genome-scale metabolic networks 

combined with metabolomic or proteomic data have the potential to detect drug-induced mitochondrial 

dysfunction. The use of metabolomics as a comprehensive analysis strategy of metabolites and low 

molecular weight molecules in a biological specimen goes beyond the scope of standard clinical 

laboratory techniques and allows precise analyses of hundreds to thousands of compounds. Application 

of techniques like liquid/gas-chromatography and mass-spectrometry (L/GC-MS) provide an objective 

lens to view the complex link between physiology and external conditions and measure responses to 

perturbations such as those associated with disease. In addition, as metabolomics allows detailed 

characterization of metabolic phenotypes, these techniques are valuable for discovering new therapeutic 

targets and biomarkers used to diagnose disease or monitor effects of therapeutic compounds (Clish, 

2015). Unraveling drug-induced alterations in biochemical pathways because of mitochondrial 

dysfunction has benefited from using metabolomic approaches, as previously illustrated for 

acetaminophen and troglitazone (Fannin et al., 2010; Lee et al., 2013).    

Recently, systematic evaluation of the effects of electron transport chain (ETC) inhibitors on both 
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mitochondrial and cellular signaling identified that the induction of the specific amino acid response 

(AAR) is initiated by ETC inhibition (van der Stel et al., 2022). Combining experimental data with in 

silico methods, including pathway and gene network analysis, proved promising in unraveling 

mechanisms of mitochondrial toxicity. These studies also emphasize the importance of experimental 

data to inform mechanistic computational models enabling the identification of drug-induced 

mitochondrial toxicity (van der Stel et al., 2020; van der Stel et al., 2022). In parallel, significant progress 

has been made in the development of a bottom-up description of mitochondrial metabolism. 

Comprehensive dynamic models of one or more mitochondrial metabolic pathways, like the OXPHOS 

system, the TCA cycle, or metabolite transport, have been constructed (Bolaji O, 2018; Heiske et al., 

2017; Wu et al., 2007). Recently, the application of mathematical modeling of time-dependent high 

content imaging data has shown great promise in obtaining a quantitative understanding of 

mitochondrial adaptation upon exposure to a set of known ETC inhibitors (Yang et al., 2021). By 

modeling the dynamics of the mitochondrial membrane potential and integrating this with the 

pharmacokinetics of the studied compounds, it was concluded that data-driven computational modeling 

is a powerful tool to unravel experimental complexities, such as drug-induced mitochondrial toxicity 

(Yang et al., 2021). These types of dynamic models benefit from the combined application of system-

level metabolic responses and flux stimulations, which is not possible with general metabolic pathway 

databases such as the KEGG, and the BioPlanet database (Huang et al., 2019; Kanehisa, 1997).  Over 

the years, more human metabolic network models have become available, like Edinburgh Human 

Metabolic Network (EHMN; (Ma et al., 2007)), Human Metabolic Reaction (HMR; (Agren et al., 2012)) 

and Recon1/2, the latter being a comprehensive consensus-based network (Thiele et al., 2013). A 

reconstruction of the human metabolic network has recently also been applied to predict drug-induced 

mitochondrial dysfunction of 18 steatogenic drugs (AbdulHameed et al., 2019). Such molecular 

networks have also been applied to identify gene ontologies, as for example in the development of the 

Ingenuity Pathway Analysis software, which applies algorithms to infer omics networks based on 

functional similarity (Calvano et al., 2005). Recently, Recon3D was developed to functionally 

characterize disease-associated mutations and identify metabolic responses upon exposure to drugs, 

using three-dimensional metabolite and protein structure data (Brunk et al., 2018). 
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In addition to network-based approaches, the use of structure-based off-target predictions has acquired 

a central position in the field of systems pharmacology and toxicology. These are based on the notion 

that virtually all drugs are promiscuous and bind multiple targets (i.e., poly-pharmacology). Drug-

network studies estimated that the average number of drug targets can be as high as 6.3, if therapeutic 

and predicted drug targets are included (Mestres et al., 2008; Schenone et al., 2013). Hence, various in 

silico techniques were developed to explore similarity between structural features of primary drug-

binding pocket and other binding pockets to reveal drug off-targets (Ferreira et al., 2015; Xie et al., 

2011). Although all examine binding pocket similarity, different methods are applied, like comparison 

of the protein binding pocket itself, e.g., ProBiS (Konc and Janezic, 2012), SMAP (Ren et al., 2010), 

comparison of binding pocket pharmacophores, e.g., KRIPO (Ritschel et al., 2014), or ligand 

comparison, e.g., SEA (Keiser et al., 2007). These algorithms were successfully applied to identify 

(mitochondrial) targets, including anti-microbial activity of several drugs, i.e. fosfomycin, sulfathiazole, 

and trimethoprim; (Chang et al., 2013), mitochondrial complex III inhibition by statins (Schirris et al., 

2015a), mitochondrial ADP/ATP exchange inhibition (Schirris et al., 2015b), inhibition of heat shock 

protein 27 (Heinrich et al., 2016), and β-secretase (i.e. BACE-1) by gefitinib (Niu et al., 2014). More 

recently, application of deep-learning, i.e., DeepDrug3D and BionoiNet (Pu et al., 2019; Shi et al., 

2020), and artificial intelligence has further advanced these techniques, which increased their accuracy 

by accommodating for specific binding characteristics, like involvement of hydrogen-bond acceptor and 

donor sides, as well as aromatic and hydrophobic contacts. 

Other strategies adapted from drug design methodology have been used to systematically search for off-

targets based on drug promiscuity and target similarity, like inverse virtual screening (Salentin et al., 

2014). In parallel, several experimental techniques to search for protein-small molecule interactions 

have been described that have developed into proteome-wide target identification. A powerful example 

is provided by stable isotope labeling of amino acids in cell culture (SILAC), combined with affinity 

chromatography and mass spectrometry (MS) (Ong et al., 2009; Xie et al., 2011). Although these are 

robust methods to identify drug off-targets, they can also be used in a more targeted manner to validate 

in silico structural off-target predictions described above. 
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Finally, efforts in the field of systems toxicology contributed to the development of a global 

toxicological network that spans various hierarchical levels of biological organization and drug-induced 

perturbations of physiologic mechanisms (Bai and Abernethy, 2013). Using genomic, transcriptomic, 

and adverse phenotypic data, interrelated network models on drug-protein, protein-pathway, pathway-

organ, and organ-phenotype interactions have been constructed. Data sources provided to these models 

can be experimental, literature-based, or adverse event reporting databases, which most optimally are 

organized according to ontology terms. In this respect, the recently developed, online available, fully 

searchable database MitoTox integrates comprehensive information on mitochondrial toxicity-related 

molecules and their targets. Over 1,400 small-molecule compounds, 870 mitochondrial targets and more 

than 4,000 mitochondrial toxin-target associations described in scientific journals and electronic 

databases are included (Lin et al., 2021). It correlates chemical, biological and mechanistic data on 

clinically relevant mitochondrial toxicity and provides applications that include toxicity classification, 

prediction, reference and even education. Moreover, a recent study combined metabolic networking 

with pharmacokinetic models to construct whole-body physiologically-based pharmacokinetic (PBPK) 

models, which demonstrated phenotype-specific cases of drug-induced metabolic perturbations (Cordes 

et al., 2018). Lastly, integration of data from experiments, modelling prediction, and exposure 

assessment in adverse outcome pathways (AOPs) has aided toxicological risk assessment, and 

demonstrated to be promising in replacing animal studies for these purposes (Hecker and LaLone, 2019). 

The use of AOP-based testing strategies in exploring the opportunities to flag chemicals and structurally 

related substances for potential mitochondrial respiratory chain-mediated neurotoxicity hazards was 

described by van der Stel et al. (Van der Stel et al., 2021). This shows that practical application of AOPs 

integrated with new approach methods, including in silico docking and in vitro assays, could be a 

promising strategy for drug safety assessment (Van der Stel et al., 2021). 

In summary, various applications of systems pharmacology have demonstrated great potential to identify 

drug off-targets. Knowledge about off-target actions is potentially providing a rationale for novel 

interventions to attenuate drug adverse effects, for example by stimulation of metabolic compensatory 

pathways. Second, a newly identified off-target effect could indicate novel susceptibility factors, such 
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as genetic variation of the off-target drug binding site. Lastly, expanding knowledge on off-target effects 

can be valuable in the construction of toxicological networks, in which combinations of drugs and targets 

are integrated with other relevant parameters of different levels of complexity.  
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IV | A TIERED APPROACH TO IMPLEMENT MITOCHONDRIAL 
SYSTEMS PHARMACOLOGY IN DRUG DEVELOPMENT  

Efforts in the field of systems pharmacology and toxicology have successfully contributed to elucidating 

the mechanisms underlying adverse drug effects, including drug-induced pertubation of mitochondrial 

function (Watkins, 2020; Yang et al., 2015). Consequently, these strategies hold great promise to detect 

drug-induced mitochondrial dysfunction in early-stages of drug discovery. In view of the large number 

of drugs having a mitochondrial liability (Wills et al., 2015) and the serious consequences if this 

translates into mitochondrial toxicty (Nadanaciva and Will, 2009; Pereira et al., 2009), the early 

understanding of drug actions on mitochondria is expected to help reduce drug attrition during late-stage 

drug development. Currently, systems pharmacology methods are still labour intensive, making their 

application most suitable when a smaller number of compounds (i.e., 5-10) is evaluated, like lead 

development stages. Here, we propose a tiered evaluation of drug-induced mitochondrial dysfunction in 

pre-clinical drug development, with a key position for systems pharmacology approaches during lead 

development. This approach is based on a toolset developed for the clinical investigation of inherited 

mitochondrial disease, as described below, in Figure 5 and Table 2. It is important to note that the 

proposal below is set out in such a way that the resource required at each stage matches the stage of 

development of the compound(s). However, once the capability is built for each tier there are a number 

of elements of the proposal that could be moved progressively earlier as the case-knowledge and 

validation increases to the point where early chemistry decisions can be influenced to remove or 

significantly reduce the intrinsic hazard of mitochondrial activity. 

Tier 1: Phenotypic screening during hit identification 

The first diagnostic phase for mitochondrial diseases is mainly focused on clinical chemistry 

abnormalities, which can be compared with a phenotypic toxicity screening during drug development, 

as both aim to identify most significant phenotypes. Clinically, a broad range of parameters are assessed 

to examine which is most relevant for disease state. Similarly, general measures of mitochondrial 

function could be used to initially flag compounds with a potential intrinsic mitochondrial toxic hazard. 
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Clinical chemistry abnormalities leading to a high suspicion of mitochondrial defects include increased 

blood lactic acid concentrations. However, only 30 percent of mitochondrial diseased children present 

with elevated venous lactate levels (Munnich et al., 1996). Therefore, the suspicion of a mitochondrial 

defect depends on multiple signals and the chance of such a disease increases with the number of 

phenotypic alterations observed. Low suspicion of mitochondrial disease often results from single organ 

system effects (cardiomyopathy, impaired neurodevelopment, exercise intolerance) and reduced ATP 

production (Koopman et al., 2016). In the case of drug-induced mitochondrial dysfunction, reduced ATP 

levels are expected to have a lower predictive value, as cellular ATP levels are maintained by 

compensatory mechanisms (Dykens et al., 2007). For example, phosphagen pools and relevant kinases 

hold ATP at unity by maintaining adenine nucleotide pools. Phosphagens (e.g., phosphocreatine) are 

found in tissues that experience quickly changing energy demands, such as muscles and nerves, and 

function as immediate access reserve of high energy phosphates needed to rapidly generate ATP from 

ADP (Dykens et al., 1996). Therefore, a reduction in cellular ATP levels mostly associate with severe 

and not mild mitochondrial activity (Will and Dykens, 2014). Phenotypic assays for mitochondrial 

activity assessment are not universally incorporated in drug development pipelines at present and where 

they are used the approach taken can vary considerably. One of the more commonly applied early 

screening methods is the glucose-galactose assay, which is based on the observation that cells obtain 

less ATP from glycolysis under galactose conditions (Will and Dykens, 2014). Accordingly, cells rely 

much more on mitochondrial metabolism, which may render them more susceptible to mitochondrial 

toxicants. Nonetheless, only 2 to 5 percent of all mitochondrial toxicants are detected by this assay, 

underscoring its limited predictive value (Hynes et al., 2013) as a stand-alone approach. To improve the 

predictive value, additional assays for mitochondrial activity are required (Wagner et al., 2008; Wills et 

al., 2015). To conclude, a combination of low-cost assays with medium to high-throughput capacity can 

be seen as a first tier of our strategy to demonstrate whether or not mitochondrial function is affected.  

Tier 2: Key metabolic profiling during lead development 

Upon suspicion of a mitochondrial disease, based on clinical signs and symptoms and clinical chemistry 

findings, a more detailed biochemical diagnosis is requested. Here, a combination of conventional and 
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complimentary techniques is used to assess several biochemical features associated with mitochondrial 

diseases. Such histopathological or biochemical analyses are often performed in muscle biopsies in 

specialized laboratories. Histopathological alterations include morphological structural changes and 

altered enzyme-based stainings (e.g., cytochrome C oxidase (COX), NADH reductase, succinic 

dehydrogenase). Biochemical measures most often include determination of ATP production and 

substrate oxidation rates, as well as analysis of the individual activities of the OXPHOS complexes 

(Rodenburg, 2011). Additionally, oxygen consumption and OXPHOS complex assembly can be 

determined as a follow-up strategy. These contribute to a robust insight into whether mitochondrial 

function is truly impaired. The aims are very similar to those of mitochondrial assessment during lead 

development, i.e. to confirm activity and help to identify the most potent compounds (Hughes et al., 

2011) by generating concentration-response curves and subsequent IC50s (inhibitory concentration 50%) 

or MECs (minimal effect concentration). Such a rigorous assessment of mitochondrial function would 

be relevant for those compounds that have demonstrated a mitochondrial activity flag in Tier 1 but are 

still interesting drug candidates for further development by virtue of a favorable profile, e.g., high 

pharmacological potency for the primary target, efficacy in human-derived disease model assays or good 

projected pharmacokinetic properties. Several methods to detect mitochondrial activity described above 

(e.g., mitochondrial membrane potential, ROS, oxygen consumption measurements using the Seahorse 

platform) could also be used to provide initial understanding of the underlying mechanisms. 

Subsequently, more comprehensive techniques can be applied to further define mechanisms, including 

systems pharmacology approaches. Hereinto, we propose to follow the classical systems biology cycle 

(Figure 3), starting with data collection. Which type of data to collect depends on the chosen systems 

pharmacology approach: network-based or structure-based. Data of metabolic networks can consist of 

transcriptomic, proteomic, or metabolomic data of cells exposed to a concentration of the candidate 

compound, which resulted in mitochondrial dysfunction in Tier 1 and 2 assays. Structure-based data 

includes X-ray protein structures, homology models derived from similar structures, or ligand-based 

pharmacophores. Subsequently, the various systems pharmacology approaches described above can be 

applied to explore mitochondrial drug off-targets.  
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Tier 3: Mechanistic studies during lead optimization 

Upon biochemical diagnosis of a mitochondrial disorder, further insight into the disease etiology is 

provided by next generation sequencing. The introduction of genetic screens, including whole exome 

sequencing (WES), resulted in the association of more than 1,500 nuclear genes with mitochondrial 

diseases (Goto et al., 1990; Lodi et al., 2000; McCormick et al., 2013; Panneman et al., 2020; Theunissen 

et al., 2018; Van Goethem et al., 2001; Wallace et al., 1988; Winterthun et al., 2005; Wortmann et al., 

2015). Various gene panels, based on suspected strength of a mitochondrial disease in Tier 1, are used 

(Wortmann et al., 2015). Panels cover variants known to directly disturb activity of the electron transport 

chain (Hallmann et al., 2016; Jonckheere et al., 2013; Koopman et al., 2012; Nouws et al., 2012; van 

den Heuvel et al., 1998), which is most evidently linked to mitochondrial dysfunction (DiMauro et al., 

1999; Dimauro et al., 2004). Moreover, these panels include many other genes associated with 

mitochondrial diseases (Wortmann et al., 2015) encoding for mitochondrial carriers (e.g., SLC25A3, 

MPC1), proteins involved in mtDNA maintenance (e.g., POLG), mitochondrial fission and fusion (e.g., 

OPA1, MFN2) and mitochondrial phospholipid metabolism (e.g., SERAC1). In analogy to these steps 

in the diagnosis of mitochondrial disease, more detailed insights into causal molecular mechanisms 

underlying drug-induced mitochondrial dysfunction are required next. Applying a systems 

pharmacology approach at the end of tier 2 would be a valuable starting point. To validate such etiologic 

relevance of an off-target for the observed mitochondrial activity, various cell biological methods could 

be applied, including the use of a knockout or overexpression model of common mitochondrial off-

targets generated preemptively using techniques like CRISPR-Cas9, or using RNAi-mediated 

knockdown (i.e., siRNA, shRNA) and selected off-the-shelf as required. Ideally, such approaches are 

combined with high-content microscopic imaging to simultaneously investigate various mitochondrial 

and cellular parameters. To integrate these parameters this can be combined with machine learning 

techniques, as described before, along with specific bespoke mechanism of action investigations driven 

by hypotheses derived from the machine learning output. Implications for mitochondrial function can 

be further validated in vivo in Tier 4, as described below.   
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Tier 4: Functional in situ studies vs. in vivo efficacy and safety studies 

Once the genetic cause of a mitochondrial disorder is identified, deeper understanding of molecular and 

cellular pathogenesis can be obtained through mechanistic studies in patient-derived fibroblasts or even 

induced pluripotent stem cells. Moreover, these studies are essential to validate the etiologic role of the 

identified genetic polymorphisms or mutations. Besides the notion that these cells can be obtained less-

invasively via skin biopsy and have a proliferative capacity, they carry all patient-specific mutations. 

Although, biological properties at the cellular level are therefore preserved (Hu et al., 2019; Saada, 

2011), potential tissue-specific differences in mtDNA heteroplasmy levels should be considered. A 

relevant addition are complementation studies, in which wild-type DNA of the suspected disease-

causing mutated gene is introduced into these patient-derived cells by viral transduction or transient 

transfection (Hoefs et al., 2008; Jonckheere et al., 2011; Kirby et al., 2004; Koopman et al., 2016), 

followed by functional confirmation of pathogenicity using protein expression levels or enzymatic 

activity (Hoefs et al., 2008; Jonckheere et al., 2013; Koopman et al., 2016). A known pathogenesis will 

help in the identification and development of potential therapeutic targets. Although complementation 

studies are comparable to the cellular validation steps performed as part of the systems pharmacology 

design, clearly for compound development an in vivo validation is required. A validation step using a 

relevant animal model could also closely resemble the use of patient-derived cells as model for the 

patient’s cellular response. To investigate whether the proposed approach to lead optimization indeed 

helped reduce the intrinsic mitochondrial toxicity hazard of the lead and that the mechanistic insights 

gained in vitro in Tier 3 have allowed the risk posed by any residual mitochondrial activity to be 

correctly assessed, one needs robust methodologies to measure mitochondrial function in vivo. In this 

respect some recently developed methods significantly enhanced the capabilities to monitor in vivo 

mitochondrial function at the molecular level. Development of the MITO-Tag Mice, for example, 

enabled the rapid determination of mitochondrial metabolites in various tissues (Bayraktar et al., 2019). 

High-resolution Fourier-transform mass spectrometry on isolated mitochondria provides an alternative 

approach (Go et al., 2014). Application of the same HA-tag-based rapid mitochondrial isolation 

technique has also been previously applied in animal and plant cells (Chen et al., 2016; Kuhnert et al., 

2020), which also demonstrated its ability for enzymatic evaluation of OXPHOS complex activity. Even 
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without the isolation of organelles, functional analysis of mitochondrial complexes in permeabilized 

muscle fibers, tissues and cells has been demonstrated previously (Kuznetsov et al., 2008). In addition, 

injection of an exogenous probe, followed by its evaluation ex vivo enabled the in vivo determination of 

superoxide, hydrogen sulphide, hydrogen peroxide and the mitochondrial membrane potential (Arndt et 

al., 2017; Cocheme et al., 2011; Logan et al., 2016; Shchepinova et al., 2017). Other assays use 

genetically encoded fluorescent markers and two-photon imaging to measure in vivo ROS and ATP 

production (van Hameren et al., 2019). The latter could provide real-time imaging of these levels, and 

if costs are justified by results, the dedicated equipment required may not limit its use in drug 

development.

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 10 January 2023 as DOI 10.1124/pharmrev.122.000568 This article

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


  

 
 

33

V | CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

Consciousness of potential mitochondrial off-target effects is key during design and development of 

new drugs. Implementation of systems pharmacology in the drug developmental process is expected to 

significantly enhance the detection and prevention of drug-induced mitochondrial dysfunction. The 

proposed tiered strategy aims to reduce drug-induced mitochondrial dysfunction before entering clinical 

drug development stages (see also Figure 5) and follows a workflow similar to that applied in the clinical 

setting to detect inherited mitochondrial disorders. 

The ultimate aim is to deploy systems pharmacology approaches early enough in compound 

development such that the chemistry of the lead molecules can be adjusted (e.g., compound structure) 

to remove or substantially diminish the intrinsic mitochondrial activity hazard, thereby negating or 

reducing the risk of later mitochondrial toxicity. An example of such an adaptive systems pharmacology 

method has been demonstrated by our group for the potential anti-obesity drug ibipinabant (Schirris et 

al., 2015b). Using a structure-based approach, we demonstrated inhibition of mitochondrial ADP/ATP 

exchange as off-target mechanism explaining the observed muscle toxicity, which could be reversed 

upon minor chemical modification of ibipinabant. As the capabilities in each tier mature, supported by 

systems pharmacology, applied methods could be moved progressively earlier. Then in silico strategies 

like molecular docking and pharmacophore modelling could offer an appropriate starting point in drug 

design; with subsequent testing in enzymatic or cellular assays to evaluate the potential off-target effects 

of early compound leads as part of an iterative chemistry development effort. 

We propose the implementation of systems pharmacology in early stages of drug development (e.g., 

lead development) to reduce drug-related adverse effects and to enable the early detection of molecules 

with mitochondrial liabilities, thereby minimizing the number of drug attritions in later development 

phases and improving patient safety. 
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FIGURE LEGENDS 

Figure 1 | The mitochondrion and its main characteristics. Mitochondrial ATP production from 

glucose starts with the import of glycolytic pyruvate and conversion into acetyl-coenzyme A (acetyl-

CoA) by the pyruvate dehydrogenase complex. Subsequently, acetyl-CoA enters the TCA cycle 

producing reduced nicotinamide adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide 

(FADH2), which function as substrates for the first and second multi-subunit enzyme complexes of the 

mitochondrial respiratory chain, respectively. This enables the transfer of protons from the 

mitochondrial matrix into the intermembrane space by the respiratory chain complexes I, III and IV, 

while oxygen is consumed at complex IV. The resulting electrochemical membrane potential is used by 

the F1F0-ATP synthase, also known as complex V, to generate the majority of cellular ATP from ADP. 

In addition, the matrix harbors various other metabolic pathways, placing mitochondria in the center of 

cellular catabolic and anabolic pathways. β-Oxidation accounts, for example, for the production of 

acetyl-CoA and NADH from fatty acids, imported through the carnitine transport system (Hoppel, 1982) 

and is used by the TCA cycle and OXPHOS system, respectively. Other metabolic pathways located in 

the mitochondrial matrix include heme biosynthesis, steroidogenesis (and the first steps of cholesterol 

synthesis), part of amino acid metabolism, iron-sulphur cluster assembly, part of gluconeogenesis, and 

calcium storage. Inside the mitochondrial matrix, mtDNA resides and may be subjected to damage from 

reactive oxygen species (ROS). 
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Figure 2 | Unique functional and structural characteristics render mitochondria particularly 

vulnerable to adverse drug effects. (A) Drug-induced mitochondrial liabilities are categorized in eight 

main groups according to their action on the different targets, as specified in section I. (B) Mitochondria 

harbor various structural and functional characteristics that enhance their vulnerability for adverse drug 

effects. (I) Lipophilic drugs easily accumulate in the phospholipid-rich inner and outer mitochondrial 

membrane (Comte et al., 1976) and can interact with cardiolipin (CL). Especially, cationic drugs are as 

such trapped in the mitochondrial matrix due to cardiolipin’s negative charge. (II) Mitochondrial 

transport proteins and channels, such as the mitochondrial calcium uniporter, allow accumulation of 

drugs and metal ions in the mitochondrial matrix, the latter can interact with essential proteins or disturb 

the redox cycle. The additional highly negative electrochemical membrane potential over the 

mitochondrial inner membrane causes strong accumulation (~300- to 500-fold) of lipophilic and 

amphiphilic cationic drugs. (III) Only a limited number of mechanisms exist that repair damaged 

mtDNA, of which base excision repair is the main and best understood DNA repair pathway in human 

mitochondria (Alexeyev et al., 2013; Zinovkina, 2018). (IV) mtDNA is packed in histone-like nucleoids, 

consisting of proteins including Twinkle, Tfam and mitochondrial single-strand DNA-binding protein 

(SSB). The non-coding displacement or D-Loop region acts as promotor in replication of mitochondrial 

DNA (Sharma et al., 2005). (V) OXPHOS complexes are main generation sites of radicals, such as 

reactive oxygen species (ROS). mtDNA is in close proximity to these sites. Moreover, mitochondria 

harbor several cytochrome P450 (CYP) enzymes that facilitate the conversion of xenobiotics into toxic 

and reactive metabolites, which could accumulate in the matrix, but also directly damage mitochondrial 

proteins, DNA, and lipids.  
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Figure 3 | Representation of the classical systems biology cycle. Systems biology strategies are 

typically initiated with biological data collection, which can originate from a variety of sources as 

indicated. Subsequently, collected data is integrated in computational models to simulate conditions of 

interest. Depending on available data and outcomes, different types of models can be applied, including 

top-down, bottom-up or middle-out modeling (also see Figure 4). Next, resulting predictions are 

experimentally verified in vitro and in vivo. After validation, new knowledge and insights originate and 

could also reinitiate the cycle to further adjust and refine the model. In this way, the predictive power of 

simulations can be improved.  
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Figure 4 | Overview of different types of systems biology approaches. Systems biology approaches 

can be categorized as either top-down, bottom-up or middle-out strategies. Top-down methods are 

initiated by the collection of big data sets often obtained using omics approaches (e.g., proteomics, 

genomics, transcriptomics and metabolomics) to construct network models representing the interactions 

between genes, transcripts, proteins and metabolites in a biological system. In this modeling 

methodology, the nodes represent the molecular targets (viz. interacting molecules in a biological 

network). Interactions between nodes are represented by edges. Hubs are defined as nodes that pose 

interactions with other nodes. In contrast, bottom-up approaches use hypothesis-driven data and is 

applied to simulate a smaller set of interactions. For the generation of such dynamic models, biochemical 

data is preferentially used. This type of data is often modeled as ordinary and partial differential 

equations, which represent the dynamics of the molecular interactions involved. These models are based 

on experimental data, including Michaelis-Menten kinetics (as shown in the equation). ‘v’ describes the 

reaction rate, related to the substrate concentrations ‘s’. At saturating substrate concentration, Vmax 

represents the maximum reaction rate, while Km is the substrate concentration at which half Vmax is 

reached. The middle-out strategy uses elements from both approaches in a dynamic network model that 

aims to implement data from different levels of complexity. This modeling strategy connects the 

network to the dynamic behavior of the system by describing how known interactions among defined 

elements determine the state of the elements, and how the whole system may change over time under 

different conditions (Albert, 2007). 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 10 January 2023 as DOI 10.1124/pharmrev.122.000568 This article

at A
SPE

T
 Journals on A

pril 10, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


  

 
 

71

Figure 5 | A tiered approach for the implementation of systems pharmacology to detect and 

ameliorate mitochondrial activity during drug development. We propose a step-by-step strategy to 

incorporate systems pharmacology in the drug development pipeline, based on a similar approach used 

to diagnose mitochondrial diseases. The first tier in this diagnostic workflow consists of phenotypic 

observations, which are comparable with phenotypic screening methods to detect mitochondrial 

dysfunction in early drug development stages like hit identification. The second tier in patients consists 

of clinical chemistry and can in drug development be compared to the lead development phase. This tier 

could consist of more in-depth phenotypic characterization of the previously observed mitochondrial 

liability. In this tier we suggest incorporating systems pharmacology to aid identification of the 

mechanisms underlying drug-induced mitochondrial dysfunction. These approaches can consist of 

network-based or structure-based modeling to identify off-target mechanisms. Subsequent 

computational techniques of systems biology and corresponding in vitro evaluation (e.g., biochemical 

and cellular assays) would result in an optimized lead or clinical candidate. If mitochondrial activity is 

though observed, the systems biology cycle can be reinitiated, with slight chemical adjustments to the 

potential lead. The third tier of the diagnosis of a mitochondrial disease is genetic screening. In drug 

development this phase would compare to the lead optimization phase, in which also only a small 

number of compounds is considered. Here, more mechanistic insights into the underlying off-target 

mechanism could be obtained using more advanced techniques including medium- and high-throughput 

and microscopic imaging and the used of knockout strategies like CRISPR-Cas9. The fourth and last 

tier compares to functional in situ studies as performed in clinical diagnosis of mitochondrial diseases, 

which can in drug development be used to assess a drugs effect on mitochondrial function in vivo, and 

most likely be used as an in vivo validation of the previously applied systems pharmacology approaches 

to attenuate mitochondrial dysfunction.
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TABLES 

Table 1. Overview of example drugs with FDA black box warnings for cardiovascular, renal and hepatic 

toxicity. Drugs for which the toxicity is related to mitochondrial liabilities are highlighted in grey. The 

reported toxic effects on mitochondrial function are indicated. 

Drug class  Drug  Toxicity  Mitochondrial toxic effects Reference 

Alkylating agents 

Cisplatin Renal 

Complex I and IV inhibition, 

declined MMP, low mtDNA, 

lower FAO, inhibition of 

protein synthesis 

(Miller et al., 

2010; Pereira et 

al., 2009; Santos et 

al., 2007; 

Zsengellér et al., 

2012) 

Ifosfamide Renal 
Complex I inhibition (Nissim et al., 

2006) 

Anesthetic  Bupivacaine Cardiovascular  
OCR reduction, 

mitochondrial swelling  

(Hiller et al., 2013) 

Antiarrhythmic  

Amiodarone Cardiovascular  

Complex I inhibition, 

reduction in ATP, OXPHOS 

uncoupling, MMP 

dissipation  

(Karkhanis et al., 

2018) 

Disopyramide  Cardiovascular  -   

Dofetilide  Cardiovascular  -   

Ibutilide  Cardiovascular  -   

Anthracyclines  

Daunorubicin  Cardiovascular  

MMP dissipation, ROS 

elevation, lipid peroxidation, 

inhibition of topoisomerase 

II (mtDNA)  

(Bloom et al., 

2016; Luo et al., 

2009; Wu et al., 

2014) 

Doxorubicin  
Cardiovascular/ 

renal 

Loss of cytochrome C, 

downregulation TCA protein 

expression, lipid 

(Benzer et al., 

2018; Brandão et 

al., 2021; 
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peroxidation, decreased 

mtDNA content, oxidative 

stress 

Gnanapragasam et 

al., 2007; Lahoti et 

al., 2012; Lebrecht 

et al., 2010; Oz et 

al., 2006; Pereira 

et al., 2016) 

Epirubicin  Cardiovascular  
Nitrosative stress  (Guven et al., 

2007) 

Idarubicin  Cardiovascular  

Mitochondrial swelling, 

inhibition of antioxidant 

enzymes, ROS elevation, 

lipid peroxidation, inhibition 

of topoisomerase II 

(mtDNA)  

(Bloom et al., 

2016; Kalender et 

al., 2002) 

Antibiotics  

Gentamicin Renal 

Decreased MMP, reduced 

mtDNA, ROS elevation, 

complex II inhibition 

(Chen et al., 

2017b; Gai et al., 

2020) 

Isoniazid  Hepatic  

ROS elevation through 

complex I-III inhibition, 

increased lipid peroxidation, 

dissipation MMP, 

mitochondrial swelling, 

cytochrome C release  

(Ahadpour et al., 

2016) 

Ketoconazole  Hepatic  

Complex I-IV inhibition, 

ATP depletion, decreased 

mtDNA, decreased MMP, 

superoxide accumulation  

(Haegler et al., 

2017; Rodriguez 

and Acosta, 1996)  

Streptozocin  Hepatic  -   

Trovafloxacin  Hepatic  -   
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Anti-cancer   

Arsenic trioxide  Cardiovascular  

Structural mitochondrial 

damage, abnormal mPTP 

opening, ROS elevation, 

downregulation 

mitochondrial biogenesis  

(Zhang et al., 

2018a) 

Cetuximab  Cardiovascular  -   

Dacarbazine  Hepatic  -   

Denileukin 

diftitox  
Cardiovascular  

-   

Flutamide  Hepatic  

MMP dissipation, ATP 

depletion, complex I 

inhibition  

(Ball et al., 2016; 

Coe et al., 2007; 

Fau et al., 1994; 

Zhang et al., 

2018b) 

Gemtuzumab  Hepatic  -   

Mitoxantrone  Cardiovascular  -   

Methotrexate  Hepatic  -   

Pentostatin  Hepatic  -   

Tamoxifen  
Cardiovascular/ 

hepatic  

OXPHOS uncoupling, 

inhibition of complex III and 

IV, inhibition FAO, mtDNA 

depletion  

(Gudbrandsen et 

al., 2006; Larosche 

et al., 2007; 

Lelliott et al., 

2005; Satapathy et 

al., 2015; Tuquet 

et al., 2000) 

Antivirals  

Abacavir  Hepatic  
Inhibition of mtDNA 

polymerase gamma  

(Brinkman and 

Kakuda, 2000) 

Didanosine  Hepatic  

mtDNA depletion and 

inhibition of mtDNA 

polymerase gamma  

(Igoudjil et al., 

2006; Mihajlovic 

and Vinken, 2022; 
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Walker et al., 

2004)  

Emtricitabine  Hepatic     

Entecavir  Hepatic     

Emtricitabine  Hepatic     

Lamivudine  Hepatic  

mtDNA depletion and 

inhibition of mtDNA 

polymerase gamma  

(Igoudjil et al., 

2006) 

Nevirapine  Hepatic  
MMP dissipation,  (Paemanee et al., 

2017) 

Telbivudine  Hepatic     

Tipranavir  Hepatic     

Stavudine  Hepatic  

mtDNA depletion and 

inhibition mtDNA 

polymerase gamma  

(Walker et al., 

2004) 

Zalcitabine  Hepatic  
Depletion of mtDNA  (Walker et al., 

2004) 

Zidovudine  Hepatic  

Mitochondrial swelling, 

inhibition complex II, MMP 

dissipation, loss of 

cytochrome C, ROS 

elevation, mtDNA 

depletion   

(Elimadi et al., 

1997; Igoudjil et 

al., 2006; Lewis et 

al., 1994; 

Mihajlovic and 

Vinken, 2022; 

Scruggs and Dirks 

Naylor, 2008) 

Beta-blockers Atenolol  Cardiovascular  

Mitochondrial swelling, 

inhibition complex II, MMP 

dissipation, loss of 

cytochrome C, ROS 

elevation   

(Seydi et al., 2020) 
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CNS agents 

Amphetamines  Cardiovascular  
Impaired OXPHOS, ROS 

elevation 

(Chen et al., 

2017a) 

Atomoxetin  Cardiovascular  -   

Dantrolene  Hepatic  -   

Droperidol  Cardiovascular  -   

Felbamate  Hepatic  -   

Methamphetamine  Cardiovascular  -   

Naltrexone  Hepatic  -   

Nefazodone  Hepatic  

Inhibition of complex I and 

IV, collapse mitochondrial 

membrane potential, 

imposed oxidative stress  

(Dykens et al., 

2008) 

Pergolide  Cardiovascular  -   

Valproic acid/ 

Divalproex 

sodium  

Hepatic  

mPTP opening, inhibition 

FAO enzymes and 

sequestration FAO cofactors  

(Aires et al., 2010; 

Li et al., 2015; 

Silva et al., 2008) 

Diabetes  

Pioglitazone  Cardiovascular  

Mitochondrial swelling, 

MMP dissipation, loss of 

cytochrome C, ROS 

elevation  

(Seydi et al., 2020) 

Rosiglitazone  Cardiovascular  

Inhibition of complex I and 

IV, uncoupling OXPHOS, 

increase mitochondrial 

oxidative stress, impairment 

mitochondrial bioenergetics  

(He et al., 2014) 

Hypertension  Bosentan  Hepatic  -   

Immunosuppressants Cyclosporin A Renal 

Decreased MMP, ROS 

elevation, increased 

mitochondrial fission, 

liberation of cytochrome C 

(de Arriba et al., 

2013) 
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NtRTIs Tenofovir Hepatic/Renal 
Inhibition mtDNA 

polymerase gamma 

(Kohler et al., 

2009) 

NSAIDs  

Celecoxib  Cardiovascular  

Mitochondrial swelling, 

inhibition complex IV, 

reduction in ATP content, 

MMP dissipation, decreased 

antioxidant enzyme level, 

ROS elevation, lipid 

peroxidation 

(Atashbar et al., 

2022; Salimi et al., 

2019) 

Diclofenac  Cardiovascular  

Mitochondrial swelling, 

complex II and III inhibition, 

reduction in ATP content, 

OXPHOS uncoupling, MMP 

dissipation, decrease 

antioxidant enzyme level, 

ROS elevation, lipid 

peroxidation, inhibition of 

adenine nucleotide 

translocase (ANT) 

(Brandolini et al., 

2020; Ghosh et al., 

2016a; Khezri et 

al., 2020; Moreno-

Sánchez et al., 

1999; Salimi et al., 

2019; Thai et al., 

2021)  

Diflunisal  Cardiovascular  -   

Etodolac  Cardiovascular  -   

Fenoprofen  Cardiovascular  -   

Ibuprofen  Cardiovascular  
OXPHOS uncoupling  (Satapathy et al., 

2015) 

Indomethacin  Cardiovascular  

Reduction in ATP content, 

OXHPOS uncoupling, MMP 

dissipation  

(Moreno-Sánchez 

et al., 1999) 

Ketoprofen  Cardiovascular  -   

Mefenamic acid  Cardiovascular  
Induction of mPTP opening (Olszewska and 

Szewczyk, 2013; 
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Uyemura et al., 

1997) 

Meloxicam  Cardiovascular  

Reduction in ATP content, 

OXHPOS uncoupling, MMP 

dissipation  

(Moreno-Sánchez 

et al., 1999) 

Naproxen  Cardiovascular  

Mitochondrial swelling, 

complex I and II inhibition, 

reduction in ATP content, 

MMP dissipation, decrease 

antioxidant enzyme level, 

ROS elevation, lipid 

peroxidation  

(Ghosh et al., 

2016b; Salimi et 

al., 2019) 

Nabumetone  Cardiovascular  -   

Oxaprozin  Cardiovascular  -   

Piroxicam  Cardiovascular  

Reduction in ATP content, 

OXHPOS uncoupling, MMP 

dissipation  

(Moreno-Sánchez 

et al., 1999) 

Salsalate  Cardiovascular  -   

Sulindac  Cardiovascular  

Mitochondrial uncoupling, 

membrane dissipation, ATP 

depletion  

(Leite et al., 2006) 

Tolmetin  Cardiovascular  -   

 

Abbreviations: ATP: adenosine 5’-triphosphate, CNS: central nervous system, FAO: fatty acid β-

oxidation, MMP: mitochondrial membrane potential, mPTP: mitochondrial permeability transition pore, 

mtDNA: mitochondrial DNA, NSAID: non-steroidal anti-inflammatory drug, NtRTI: nucleotide reverse 

transcriptase inhibitor, OCR: oxygen consumption rate,  OXPHOS: oxidative phosphorylation, ROS: 

reactive oxygen species, TCA: tricarboxylic acid. 
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Table 2. Overview of example assays that can be applied in our proposed tiered evaluation of drug-

induced mitochondrial dysfunction, based on methodologies used in the clinical investigation of 

inherited mitochondrial disease. 

 

Abbreviations: ATP: adenosine 5’-triphosphate, BN-PAGE: blue native polyacrylamide gel 

electrophoresis, CRISPR: clustered regularly interspaced short palindromic repeats, H2DCFDA: 2',7'-

dichlorodihydrofluorescein diacetate, IC50: inhibitory concentration 50%, KRIPO: key representations 

 Evaluation strategy Assay examples 

Tier 1 Phenotypic observations 

Glucose-galactose assay, cellular viability (fluorescence live/dead 

stain), respirometry assessment (e.g., OCR using Seahorse XF 

Bioscience), ATP levels (e.g., bioluminescent ATP or CellTiter-Glo®), 

lactic acid (colorimetric assays). 

Tier 2 Clinical chemistry 

Drug concentration-response curves (IC50/MEC), enzymatic activity 

(e.g., cytochrome C oxidase, NADH reductase or succinic 

dehydrogenase), ATP production rates (using Seahorse XF), OXPHOS 

complex activity or assembly (e.g. BN-PAGE), MMP (fluorescence, 

e.g., TMRM or JC-1 or flowcytometry, e.g. MitoTracker Green FM), 

ROS production (fluorescence, e.g. H2DCFDA and MitoSOX), 

network or structure-based model construction (e.g. ‘omics’ or X-ray 

protein structures/pharmacophore prediction using ProBiS/KRIPO). 

Tier 3 Cellular studies 

Protein overexpression or knockout (CRISPR/Cas9, RNAi, e.g. shRNA 

or siRNA) combined with cellular/metabolic parameters (e.g., cellular 

viability, OXPHOS activity and ATP production rates). 

Tier 4 In vivo studies 

In vitro genetic complementation using patient-derived fibroblasts: 

protein expression (e.g., Western Blot), metabolic parameters (e.g., 

OXPHOS complex activity, MMP) and in vivo evaluation of 

mitochondrial function (e.g., MITO-Tag mice, MS, ROS and ATP 

levels). 
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of interaction in pockets, MEC: minimal effect concentration, MMP: mitochondrial membrane potential, 

MS: mass spectrometry, NADH: nicotinamide-adenine dinucleotide reduced form, OCR: oxygen 

consumption rate, OXPHOS: oxidative phosphorylation, RNAi: RNA interference, ROS: reactive 

oxygen species, shRNA: short hairpin RNA, siRNA: small interfering RNA, TCA: tricarboxylic acid, 

TMRM: tetramethyl rhodamine methyl ester. 
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