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Abstract 

An increase in life expectancy in developed countries has led to an insurgency of chronic aging-

related diseases. In the last few decades, several studies provided evidence of the prominent role 

of cellular senescence in many of these pathologies. Key traits of senescent cells include cell 

cycle arrest, apoptosis resistance, and secretome shift to senescence-associated secretory 

phenotype (SASP) resulting in increased secretion of various intermediate bioactive factors 

important for senescence pathophysiology. However, cellular senescence is a highly 

phenotypically heterogeneous process, hindering the discovery of totally specific and accurate 

biomarkers. Also, strategies to prevent the pathological effect of senescent cell accumulation 

during aging by impairing senescence onset or promoting senescent cell clearance have shown 

great potential during in vivo studies and some are already in early stages of clinical translation. 

The adaptability of these senotherapeutic approaches to human application has been questioned 

due to the lack of proper senescence targeting and senescence involvement in important 

physiological functions. In this review, we explore the heterogeneous phenotype of senescent 

cells and its influence on the expression of biomarkers currently used for senescence detection. 

We also discuss the current evidence regarding the efficacy, reliability, development stage, and 

potential for human applicability of the main existing senotherapeutic strategies.  

 

Significance Statement 

This manuscript is an extensive review of what is currently known about the complex process of 

cellular senescence exploring its most defining features. The main body of the discussion focus 

on how the multi-feature fluctuation of the senescence phenotype and the physiological role of 

cellular senescence have both caused a limitation in the search for truly reliable senescence 

biomarkers and the progression in the development of senotherapies. 

  

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


6 
 

Table of Contents 

I. Introduction ............................................................................................................................. 8 

II. Features and Hallmarks of Cellular Senescence ................................................................. 9 

A. DNA Damage & Epigenomic Alterations ....................................................................... 11 

B. Macromolecule imbalance during Cellular Senescence ................................................ 13 

i. Cellular Senescence induces Protein homeostasis alterations ......................................... 13 

ii. Autophagy & Cellular Senescence ................................................................................... 15 

iii. Klotho, Autophagy and Cellular Senescence ................................................................... 18 

iv. Lipidic alterations during cellular senescence ................................................................ 20 

C. Structural and functional alterations of cell organelles during Cellular Senescence . 21 

i. Cellular senescence‐associated nuclear alterations ......................................................... 21 

ii. Mitochondrial dysfunction ............................................................................................... 24 

iii. Mitochondrial dysfunction‐associated senescence (MiDAS) .......................................... 25 

iv. Lysosomal Dysfunction ................................................................................................... 26 

D. Senescence-associated secretory phenotype (SASP) ...................................................... 27 

E. Post-mitotic senescence .................................................................................................... 30 

III. Cellular Senescence in physiological processes ................................................................ 31 

IV. Cellular Senescence Detection & Analysis ........................................................................ 32 

A. Markers used to evaluate cellular senescence ................................................................ 32 

B. Senolytic mouse models developed for cellular senescence study ................................ 44 

V. Senotherapy & Aging-related diseases ............................................................................... 47 

A. Senomorphics .................................................................................................................... 51 

B. Senolytic treatments ......................................................................................................... 55 

C. Alternative Senolytic Strategies ...................................................................................... 69 

VI. Conclusion and Future perspectives ................................................................................. 73 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


7 
 

VII. References .......................................................................................................................... 75 

 

  

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


8 
 

I. Introduction 

In 1961, Hayflick and Moorhead showed that cultures of fibroblasts had a limited number of 

cell divisions and therefore could not be maintained indefinitely (Hayflick and Moorhead, 

1961). They identified three different phases during human fibroblast embryonic tissue culture. 

Phase I corresponded to culture establishment where cells present a high growth rate, during 

Phase II cell division gradually decline until completely stopped, marking the beginning of 

Phase III where culture cell number started to rapidly decline, leading the culture to no longer 

be considered viable (Hayflick and Moorhead 1961). It was not known at that time, but this was 

later explained by the gradual shortening of chromosomes telomeres with each cell division that 

ultimately lead to chromosomal instability and DNA damage triggering a process now known as 

replicative senescence, which has been described in many different human and animal cell types 

(Lundblad and Szostak, 1989; Greider, 1990; Harley, 1991). Replicative senescence belongs to 

a wide network of cellular mechanisms collectively known as cellular senescence which in its 

essence is characterized by typical cellular features that include permanent cell cycle arrest, shift 

in cellular secretome content referred to as senescence-associated secretory phenotype (SASP), 

morphological alterations and resistance to apoptosis (Hayflick and Moorhead, 1961; Wang, 

1995; Campisi, 1996; Coppé et al., 2008). Even though it is thought that cellular senescence 

only spreads to a small fraction of the total cell population of each tissue, this small percentage 

can lead to pathological alterations in tissue function due to the continuous pro-inflammatory 

SASP mediators release which has already been associated with several aging-related 

pathological processes (Biran et al., 2017). Differently from quiescent or apoptotic cells, 

senescent cells are highly metabolically active allowing them to sustain the continuous 

production of SASP mediators (Capasso et al., 2015). SASP mediators generally have pro-

inflammatory effects including disrupting progenitor and stem cell function, induction of 

extracellular matrix rearrangement and even spreading of senescence phenotype (Kumar et al., 

1992; Acosta et al., 2008, 2012, 2013; Kuilman et al., 2008; Orjalo et al., 2009). However, they 

also signal the presence of senescent cells allowing their clearance by the immune cells (Xue et 

al., 2007; Krizhanovsky et al., 2008; TW Kang et al., 2011a; Sagiv and Krizhanovsky, 2013). 
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With the aging-related decrease in immune system function called “immunosenescence”, it is 

thought that the immune system slowly loses the capacity to eliminate senescent cells from 

tissues, therefore, contributing to the development of age-related chronic diseases (although this 

is still not entirely accepted) (TW Kang et al., 2011b; Sagiv and Krizhanovsky, 2013; Burton 

and Stolzing, 2018; Ovadya et al., 2018; Karin et al., 2019).  

Nowadays, cellular senescence can be divided into three main categories: i) replicative 

senescence ii) developmentally programmed cellular senescence, evidenced to be a crucial 

process for healthy embryonic development, and iii) stress-induced premature senescence 

(extensively reviewed by (Toussaint et al., 2002; Courtois-Cox et al., 2008; Da Silva-Álvarez et 

al., 2019)), triggered by a wide range of external and internal by stimuli such as oxidative stress, 

oncogene expression, DNA damage, and others represented in Figure 1. This variety of stimuli 

can lead to different but intertwined cellular senescence programs that have been individually 

characterized by specific phenotypic alterations (Wiley et al., 2017) which have not yet made 

possible the discovery of a single reliable cellular senescence biomarker. This has also been an 

obstacle in the development of therapeutic strategies targeting senescent cells (in this review we 

refer to them as senotherapeutics) given that the heterogeneity of the senescence phenotype 

throughout tissues might mean that some tissues might not be affected by the senotherapy and 

the lack of a specific biomarker might promote off-target effects. Despite this, pre-clinical and 

even clinical results have shown some promising results regarding the potential of some 

senotherapeutic strategies to treat aging-related pathological conditions (Zhu et al., 2016; Yosef 

et al., 2016; Y Zhu et al., 2017; Munoz-Espin et al., 2018; Amor et al., 2020). With this review, 

we aim to explain the important aspects of cellular senescence mechanisms that led to the 

development of current strategies used to detect senescent cells and the potential 

senotherapeutic approaches that are currently under optimization.    

 

II. Features and Hallmarks of Cellular Senescence 

As mentioned earlier, cellular senescence phenotypic manifestations can be highly diverse being 

mainly influenced by cell type and inductive stimuli (Basistyid et al., n.d.; Kirschner et al., 
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2020; Tripathi et al., 2021). Some of the senescence-inducing mechanisms have only been 

reported in vitro and remain to be identified in vivo studies (Figure 1). Also, as previously 

mentioned, senescence phenotype is a highly heterogeneous and dynamic process, however, 

there are cellular features and phenotypic traits that are shared by most of the different cellular 

senescence types.  

One defining trait of cellular senescence is cell cycle arrest, which is shared with quiescent 

cells. Differently from senescent cells that are irreversible arrested in G1, G1/S or G2 cell cycle 

check points, quiescence cells indulge into a steady cell phase called the G0 phase but retain the 

ability to re-enter the cell cycle. Although already been proven to have physiological functions 

(as mentioned earlier), cellular senescence is a degenerative process that is involved in 

pathological conditions mainly associated with aging and often arises as an alarm response 

triggered by damaging stimulation or unusual proliferation (Borodkina et al., 2018; Gorgoulis et 

al., 2019; Fujimaki and Yao, 2020). Differently, quiescence ensues in the absence of 

appropriate nutrition and growth stimulation (not as a result of cell damage) and is crucial for 

differentiated tissue homeostasis, regeneration, and repair upon damage and protection of stem 

and progenitor cells from stressors (Borodkina et al., 2018; Gorgoulis et al., 2019; Fujimaki and 

Yao, 2020). Further, contrary to senescent cells, given the proper stimuli quiescent cells can 

return to the cell cycle and proliferate (Borodkina et al., 2018; Gorgoulis et al., 2019; Fujimaki 

and Yao, 2020). It is also worth mentioning that i) most cells that can enter quiescence are also 

susceptible to premature and replicative senescence (Borodkina et al. 2018) and ii) despite 

cellular senescence being considered an irreversible process, recent studies have reported 

situations where senescent cells (mostly tumor cells) were able to reenter the cell cycle  

(Milanovic et al., 2018; Patel et al., 2016; Saleh et al., 2019). 

Cellular senescence-associated cell cycle arrest is mainly mediated by p53/p21 and p16/Rb 

pathways occurring in upregulation of p16 and p21 or increased activity of p53 (Childs et al., 

2015) (which will be discussed below) (Figure 1). Cells undergoing senescence in in vitro 

cultures, often display macromolecule imbalance such as alterations in protein homeostasis 

(proteostasis) and intracellular lipidic content along with structural and functional alterations in 
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cell organelles such as the nucleus (some cells might even display multiple nuclei), 

mitochondria and lysosomes (often dysfunctional and enlarged and accumulate in abnormally 

large numbers) (Guerrero et al., 2020) (Figure 1). Alterations in the composition of the cellular 

membrane such as upregulation of caveolin-1 (shown to promote stress-induced premature 

senescence through inhibition of Nrf2 (Volonte et al. 2013)) can also be seen which along with 

cell swelling and flat shape are thought to be caused by cytoskeleton reorganization (Wang and 

Gundersen 1984, Amaya-Montoya et al. 2020). There is also a senescence-associated tendency 

towards a metabolic shift favoring glycolysis over fatty acid oxidation (James et al., 2015) and 

the development of a senescence-specific secretome profile called SASP. In the following 

chapter we present a detailed characterization of these senescence-associated features.   

 

A. DNA Damage & Epigenomic Alterations  

As mentioned earlier, one characteristic of senescent cells is the permanent state of irreversible 

cell cycle arrest. One of the main cell cycle facilitators is the cyclin-dependent kinases (CDK) 

which are enzymes responsible for inducing the expression of other enzymes that promote cell 

cycle progression (Malumbres, 2014). During senescence, upon the activation of the DNA 

damage response (DDR), a signaling cascade referred to as the p53/p21 and p16INK4A pathways 

that culminate in CDK inhibition by proteins encoded in the CDKN2A (p16INK4A), CDKN2B 

(p15INK4B) and CDKN1A (p21CIP) genes (Figure 1). The continued inhibition of CDK results in 

the repression of E2F target genes required for the transition from G1 to S through prevented 

inactivation of Rb (Salama et al., 2014; Hernandez-Segura et al., 2018) (Figure 1). DDR 

usually maintains cell cycle arrest until the damage is repaired, however, unlike quiescent cells, 

senescent cells do not seem to be able to resume the cell cycle due to their incapacity to be 

reactive to mitogenic or growth factors (Rossiello et al., 2014; Hernandez-Segura et al., 2018). 

Senescence-inducing stimuli activate the DDR through ATM or ATR serine-protein kinases 

signaling that initiate cell cycle arrest by promoting p53 stabilization which leads to p21 

transcriptional upregulation. p21 inhibits cyclin E-cyclin-dependent kinase2 (cyclin E–Cdk2) 

preventing Rb inactivation and allowing it to stay bonded to E2F which cannot induce the 
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expression of essential genes for the transitioning from G1 to S phase (Rossiello et al., 2014; 

Salama et al., 2014; Herranz and Gil, 2018) (Figure 1). ATM or ATR serine-protein kinases 

signaling can also lead to phosphorylation of the histone H2AX (variant from the H2A family) 

on Ser 139 residue in the H2AX carboxyterminal tail, forming γH2AX, leading to structural 

alterations at the damaged site and assembly of specific DNA repair complexes that can 

promote DNA repair. γH2AX function and mechanisms of action in DDR are reviewed 

elsewhere (Turinetto and Giachino, 2015; Georgoulis et al., 2017; Hernandez-Segura et al., 

2018). 

Other epigenetic alterations have also been shown to play a role in cellular senescence, such as 

H3K9 methylation (H3K9me3) which allows it to serve as a binding site for acetyltransferase 

Tip60 that can activate ATM through acetylation, triggering the DDR and leading to cell cycle 

arrest (Wang et al., 2009). H3K9me3 is then reversed through DDR-mediated degradation of 

G9a/GLP methyltransferase to facilitate the progression of the DNA repairing process. 

As will be further discussed below, the CDK4/6 inhibitor p16 is also an essential driver of cell 

cycle arrest during cellular senescence and currently is one of the most used and more accurate 

biomarkers for senescence detection both in vitro and in vivo (Rayess et al., 2012; Hernandez-

Segura et al., 2018). 

During physiological conditions, p16 remains methylated through the action of DNA (cytosine-

5)-methyltransferase 1 (DNMT1) methyltransferase. However, upon cellular senescence 

DNMT1 inhibition, causes p16 promoter demethylation (BQ Zhu et al., 2017). p16 can also be 

transcriptionally regulated through the binding of Polycomb repressor complex (PRC) 1 and 2 

to its coding locus (INK4/ARF) leading to heterochromatin formation. In contrast, detachment 

of these complexes leads to the formation of euchromatin and restoration of the capacity for p16 

transcription (Rayess et al., 2012). JMJD3, ZRF1, and MLL1 are other factors that participate in 

INK4 locus epigenetic regulation (Barradas et al., 2009; Kotake et al., 2009; Ribeiro et al., 

2013). However, it is still not clear how the recruitment and disassociation of the PRCs and 

these epigenetic factors from the INK4/ARF are mediated (Herranz and Gil, 2018). H3K9me2 is 
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also reduced in the promoters of IL-6 and IL-8 known as the two main SASP components 

(Takahashi et al., 2012).  

 

B. Macromolecule imbalance during Cellular Senescence  

i. Cellular Senescence induces Protein homeostasis alterations  

Endoplasmic reticulum (ER) stress has been proposed as a promoter of senescence-associated 

oxidative stress (Pluquet et al., 2015). However, at the moment, there is still controversy about 

whether ER stress causes cellular senescence or it is just one more consequence of this process 

(Pluquet et al., 2015). The ER is a continuous network of membranes spread throughout the 

cytoplasm of eukaryotic cells with a connection to the nucleus that plays a huge role in lipid and 

calcium homeostasis and harbors a highly oxidizing environment that favors the dynamization 

of crucial processes for protein production such as synthesis, folding, post-translational 

modification and cytoplasmic protein transport (Pluquet et al., 2015).  

During cellular senescence, numerous cellular insults can lead to proteotoxicity through ER 

stress such as nutrient and energy deprivation, oxidative stress, accumulation of aberrant 

mutations, and abnormal increase in protein synthesis featuring low chaperone availability. 

Overall this ultimately can lead to an abnormal accumulation of damaged unfolded/misfolded 

proteins in the ER lumen (Pluquet et al., 2015). Increased concentration of intracellular 

oxidative agents such as ROS can lead to the inactivation of a variety of protein tyrosine 

phosphatases through oxidation of the cysteine residues in their active sites (Deschenes-Simard 

et al., 2013). This can lead to ERK signaling hyperactivation, which might induce cellular 

senescence. In fact, high levels of phospho-ERK (ERK activated form) are found throughout 

senescent abundant pre-neoplastic lesions and therapy-induced senescent cells (Haugstetter et 

al., 2010; Deschenes-Simard et al., 2013; Gorgoulis et al., 2019). Further, the excess of ROS in 

conditions where metals are present can lead to carbonylation of many aminoacid residues 

including arginine, lysine, threonine, and proline which can expose protein hydrophobic 

surfaces promoting aggregation and unfolding (Nystrom, 2005). Also, other aminoacid groups 

can react with these carbonyl residues to form Schiff bases that can further promote aggregation 
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(Gorgoulis et al., 2019). Cross-link between protein aggregates and lipids or sugars can produce 

insoluble aggregates usually seen in aged tissues and senescent cells called lipofuscin (discussed 

further below) (Brunk and Terman, 2002; Gorgoulis et al., 2019). To counteract the abnormal 

intracellular accumulation of protein aggregates, cells are known to possess two systems: the 

unfolded protein response (UPR) and ER-associated protein degradation (ERAD) (Figure 2). 

ERAD induces unfolded protein transportation from ER to the cytosol for degradation by the 

proteasome. UPR is a cellular mechanism that promotes the reinstatement of proteostasis 

(protein homeostasis) by increasing the production of chaperones and components of both 

autophagy and ERAD systems and promoting a decrease in protein synthesis. UPR can also 

increase ER capacity in response to increase protein burden through XBP1s and ATF6α, but not 

ATF4 activation, that increases phospholipid synthesis which promotes ER membranes 

enlongation (Shaffer et al., 2004; Sriburi et al., 2007; Bommiasamy et al., 2009). 

Binding immunoglobulin protein (BiP) is a protein found in ER that can bind and inhibit the 

UPR key activators IRE1α, ATF6α, and PERK. An increase in unfolded/misfolded protein load 

in the ER lumen causes Bip to detach from these proteins to bind to unfolded/misfolded proteins 

leading to UPR activation (Figure 2). UPR activation has also been demonstrated to increase 

Bip translation (Gulow et al., 2002), a phenomenon that is reported to occur during cellular 

senescence (Hernandez-Segura et al., 2018). In fact, BiP mRNA and protein levels were shown 

to be upregulated in some models of cellular senescence, however, the same could not be 

observed in other cellular senescence models (Pluquet et al., 2015). There is also evidence that 

the UPR activation might vary according to the different cellular senescence mechanisms 

(Figure 1) as replicative senescence of WI38 cells leads to the activation of all UPR inducers 

(ATF6α, PERK, and IRE1α) while cellular senescence induced by hydrogen peroxide only leads 

to PERK activation (Matos et al., 2015). More evidence of the correlation between ER stress 

and cellular senescence can be found throughout the literature (Denoyelle, 2006; Rayess et al., 

2012; Dorr et al., 2013) along with indications of the importance of all UPR inducers in cellular 

senescence which are reviewed by Pluquet et. al (Pluquet et al., 2015).  

 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


15 
 

ii. Autophagy & Cellular Senescence 

As shown in Figure 2, autophagy is another response mechanism triggered by the cell upon ER 

proteotoxic stress and other stressing stimuli such as hypoxia, oxidative stress, or nutrient 

deprivation (Saha et al., 2018). This lysosomal “self-eating” process is essential for preserving 

the equilibrium between intracellular anabolism and catabolism. While the ERAD system is 

limited to the degradation of ubiquitin-conjugated protein aggregates, autophagy can be used by 

the cell to decompose and/or reuse a variety of damaged macromolecules, aggregates, or 

intracellular organelles including mitochondria, ER, peroxisomes and lipid droplets through 

lysosome digestion (Saha et al., 2018). The resulting smaller biomolecules can be secreted or 

used as building blocks for intracellular anabolic reactions. For example, resulting amino acids 

can be used for protein synthesis, free fatty acids for the tricarboxylic acid (TCA) cycle or β-

oxidation, and glucose for ATP production through glycolysis (Gamerdinger et al., 2011; 

Moreno-Blas et al., 2018). At first, autophagy was thought to be activated non-selectively in 

response to stress, however recent evidence suggests that some intracellular components or even 

pathogens can be selectively degraded by this mechanism (Farre and Subramani, 2016). 

Autophagy is divided into three variants (macroautophagy, microautophagy, and chaperone-

mediated autophagy (CMA)) that differ mainly in the process of cargo transportation to the 

lysosomes. During macroautophagy, cargo to be degraded is sequestered by a double-membrane 

vesicle structure referred to as autophagosome which is then transported via the dynein 

machinery on microtubules to the lysosomes to form the autolysosomes where the entire 

complex is degraded by the lysosomal hydrolytic enzymes. In microautophagy, cargo is directly 

engulfed by the lysosomes and in CMA protein transportation towards the lysosomes is 

facilitated through a multi-chaperone complex (Moreno-Blas et al., 2018; Saha et al., 2018). 

During aging, macroautophagy (the better-described type of autophagy) is known to decline in 

various tissues and its stimulation is correlated with an increase in the longevity of model 

organisms (Madeo et al., 2015; Moreno-Blas et al., 2018). Further, many behavioral and 

pharmacological interventions that promote longevity in model organisms such as exercise, 

calorie restriction, target of rapamycin (TOR) or insulin/insulin-like growth factor signaling 
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inhibition and sirtuins or 5' AMP-activated protein kinase (AMPK) activation are known to 

induce autophagy (de Cabo et al., 2014; D Zhou et al., 2021). In the context of aging, autophagy 

has gained more attention than the ERAD mechanism since the proteasome is unable to degrade 

protein aggregates formed in the pro-oxidant and aggregation-prone milieu seen during aging 

(Kuwano et al., 2016). Since one known hallmark of cellular senescence is the accumulation of 

damaged cellular components, it has been proposed that the alterations of autophagy seen 

during aging can be a factor in the development or maintenance of the senescent phenotype 

(Rajawat et al., 2009). However, evidence shows that autophagy can have pro and anti-

senescent effects depending on the timing and duration along with the type of autophagy 

(general or specific), cargo and inducing/inhibitory stimuli. Further, this relationship has been 

shown to play a role in a wide range of pathological conditions including arthritis, 

atherosclerosis, cancer and renal diseases (Kang and Elledge, 2016; Rajendran et al., 2019). 

Evidence suggests that cellular senescence can control macroautophagy, although its effect 

seems to change according to the context (Kang and Elledge, 2016). Macromolecules recycled 

during macroautophagy have been shown to be highly important to the synthesis of the SASP 

factors (Kang and Elledge, 2016). In agreement, inhibition of macroautophagy has been shown 

to both impair and stimulate HRASG12V inducing senescence and the formation of SASP (Kang 

and Elledge, 2016). Downregulation of ATG7 and Atg12 (both indispensable for 

autophagosome formation) promotes premature senescence in human fibroblasts (HT Kang et 

al., 2011). In a study performed by Garcia-Prat and colleagues, impaired macroautophagy 

causes early senescence of young myosatellite cells (crucial for muscle tissue regeneration), 

through disruption of proteostasis, increased oxidative stress, and mitochondrial dysfunction 

while re-establishment of autophagy was able to reverse senescence phenotype and restore 

regenerative functions of old myosatellite cells (Garcia-Prat et al., 2016).  

The stability of the transcription factor and major regulator of SASP that accumulates 

intracellularly during senescence known as GATA4 (GATA Binding Protein 4), is mediated by 

macroautophagy. GATA4 degradation is induced by a key receptor in the autophagic process 

named SQSTM1/p62. However, GATA4-SQSTM1 interaction declines upon exposure to 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


17 
 

senescence-inducing stimuli leading to abnormal GATA4 accumulation which causes 

overproduction of SASP mediators through continuous activation of the NF-κB pathway. 

Further, SASP factors have also been shown to be synthesized from recycled amino acids in a 

complex formed at the trans-side of the Golgi apparatus during macroautophagy in Oncogene-

induced senescence (OIS) known as the TOR-autophagy spatial coupling compartment (Narita 

et al., 2011). Autolysosomes accumulate in this site forming a pool of reusable amino acids that 

are then used by MTORC1 to sustain SASP factors production including interleukin-6/8 (IL-6 

& IL-8) (Narita et al., 2011). 

On the other hand, Zheng and colleagues reported that macroautophagy was increased in 

senescent mesenchymal stem cells senescence displaying a high number of autophagic vacuoles 

and upregulation of autophagy-related proteins. Further, pharmacological inhibition using 

bafilomycin A1 and 3-methyladenine of autophagy in the same type of cells resulted in the 

downregulation of senescence markers (Zheng et al., 2014). While pharmacological inhibition 

of autophagy was shown to prevent premature senescent phenotype of human umbilical vein 

endothelial cells, although increased apoptosis (Patschan et al., 2008). CMA is responsible for 

the selective degradation of misfolded, oxidized, or damaged proteins which is essential to the 

maintenance of cellular proteostasis. As such, CMA impairment during aging can lead to 

intracellular accumulation of protein aggregates which is a known hallmark of cellular 

senescence that can contribute to the development of age-related diseases (Moreno-Blas et al., 

2018). During CMA, proteins set to be degraded display an exposed KFERQ motif which is 

recognized by HSC70 chaperones and co-chaperones. The formed protein-chaperone complex is 

later recognized by the lysosomal transmembrane protein LAMP2A that multimerizes into a 

pore structure allowing for internalization of the now unfolded protein which is then degraded 

by the lysosomal hydrolases (Moreno-Blas et al., 2018). Evidence suggests that the age-related 

decline in CMA function is mainly attributed to both LAMP2A downregulation and impaired 

multimerization which might be associated with the aging increase in cellular senescence since 

LAMP2A was shown to be reduced in senescent mouse embryonic fibroblasts (Storer et al., 

2013). Further, RNase A (CMA target) degradation rate has been shown to be reduced during 
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cellular senescence (topic more extensively reviewed by Moreno-Blas and colleagues) (Storer et 

al., 2013). There is still a lot to unveil regarding CMA relationship with cellular senescence, but 

evidence point to a CMA possessing an anti-senescent effect which is gradually lost during 

aging.   

iii. Klotho, Autophagy and Cellular Senescence  

In 1997 Kuro-o et al. reported that the deletion of an unknown gene in mice resulted in a 

significant decrease in their lifespan as a result of the premature development of various age-

related problems (Kuro-o et al., 1997). This gene became to be known as “Klotho” and codes 

for a protein now known as “α-Klotho”. Since then, 3 homologous proteins were discovered 

including β-Klotho (Ito et al., 2000), KLPH (Ito et al., 2002), and the Klotho-related protein 

(Klrp) (Hayashi and Ito, 2016) differing in structure, function and localization. α-Klotho and β-

Klotho are highly homologous proteins and both regulate important metabolic processes in 

mammals (Kuro-o, 2019), however, they differ in their specific functions and localization (H 

Zhou et al., 2021). β-Klotho indeed can be mostly found in the highly metabolic active tissues 

such as liver, gut, pancreas, yolk sac, and brown and white adipose tissues where it mediates 

various metabolic processes including fatty acid metabolism, glucose uptake, and bile acid 

synthesis (Ito et al., 2000). On the other hand, α-Klotho is highly expressed in some brain 

structures including the epithelial cells of the choroid plexus and at low levels in the pituitary (H 

Zhou et al., 2021) and is known to participate in homeostasis maintenance-related functions 

such as prevention of inflammation and ROS-induced oxidative damage, stem cells protection, 

Ca2+ and phosphate homeostasis, myelination induction and long-term enhancement in neurons 

(Liu et al., 2007; Martin et al., 2012; Chen et al., 2013; Zhou et al., 2018; H Zhou et al., 2021). 

Interestingly, evidence indicates that α-Klotho seems to influence the autophagic flux which 

might be correlated with the pathophysiological development of aging-related diseases given 

that α-Klotho's expression levels decrease during aging in various tissues including brain, liver, 

kidney, and heart sinoatrial node (Duce et al., 2008; Yamazaki et al., 2010; Semba et al., 2014; 

Akasaka-Manya et al., 2016; Zhou et al., 2018; H Zhou et al., 2021). In fact, some studies 
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provide a link between α-Klotho with neurodegenerative disorders, as Alzheimer’s disease, 

whose pathophysiology is characterized by abnormal deposition of amyloid-β and formation of 

neurofibrillary tangles in the brain which are usually removed through autophagy. whose 

pathophysiology is characterized by abnormal deposition of amyloid-β and formation of 

neurofibrillary tangles in the brain which are usually removed through autophagy. Evidence 

indicates that autophagy is disrupted in the brains of Alzheimer’s disease patients and animal 

models (DS Yang et al., 2011; Castellazzi et al., 2019; Pomilio et al., 2020) and that this 

impairment is highly influenced by an age-related decrease in α-Klotho 's expression (Zeng et 

al., 2019). In fact, α-Klotho's overexpression was shown to activate autophagy through 

inhibition of Akt/mTOR pathway, preventing amyloid-β deposition in amyloid-β1-42 fibrils-

treated BV2 cells (Zeng et al., 2019) and decreasing hyperphosphorylated tau protein levels 

(precursors of neurofibrillary tangles' formation) (Gao et al., 2018; Xin et al., 2018; Zeng et al., 

2019). . Further, α-Klotho overexpression in the brain of APP/PS1 mice (Alzheimer’s disease 

mouse model) prevented the abnormal accumulation of lipofuscin which are insoluble 

autofluorescent aggregates thought to be composed of oxidized proteins that accumulate 

intracellularly in senescent cells (further discussed below) (Brunk and Terman, 2002; Zeng et 

al., 2019). This is thought to be mediated by α-Klotho 's autophagy activation capacity (H Zhou 

et al., 2021).  Age-related decrease in α-Klotho's expression in renal tubular epithelial cells has 

also been correlated with the development of renal problems such as chronic kidney disease. 

Restoration of α-Klotho levels in cultured human renal tubular epithelial cells (HKC-8) and 

cells from unilateral ischemia-reperfusion mice had a mitochondrial protective effect mediated 

by significant inhibition of Wnt1 and Wnt9a-induced mitochondrial injury resulting in decrease 

in cellular senescence and fibrotic lesions (Miao et al., 2021). In another study, inner medullary 

collecting duct-3 cells exposed to radiation displayed higher cellular senescence than controls 

along with decreased α-Klotho's gene expression. The same was further confirmed in the kidney 

tissues of BALB/c mice and was attributed to radiation's mediated increase in TNF-α 

expression, which downregulates α-Klotho's expression and prevents the formation of soluble α-

Klotho by decreasing the expression of α-Klotho ectodomain shedding enzyme ADAM9/10/17. 
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This may underlie the development of radiation nephropathy which is a major complication 

associated with radiotherapy (Kim et al., 2021). Cigarette smoke, one of the major risk factors 

for the development of COPD, has also been shown to promote a decrease in α-Klotho's 

expression in lung macrophages of mice and individuals with smoking habits with or without 

COPD. Moreover, bronchial epithelial cells from COPD patients show lower levels of α-Klotho  

(Li et al., 2015; Krick et al., 2018) and its overexpression in vitro was shown to protect cigarette 

smoke-induced cell death (Blake et al., 2015). Interestingly, cigarette smoke transiently 

activates autophagy which leads to cellular senescence (Fujii et al., 2012). Reduction of α-

Klotho and other mediators has also been shown to promote vascular dysfunction (precursor to 

the development of cardiovascular disease) through the induction of endothelial cell senescence 

(Jia et al., 2019).  

 

iv. Lipidic alterations during cellular senescence  

Besides proteins, evidence suggests that lipid macromolecules such as fatty acids, sphingolipids, 

and glycerolipids might play a role in the development, maintenance and even spreading of 

senescence phenotype (Saitou et al., 2018). The lipidic amphipathic nature allows for the 

formation of cellular membranes not only delimiting the cell (plasma membrane) but also the 

intracellular organelles. The plasma membrane is constituted by phospholipids, glycolipids, and 

cholesterol and its fluidity depend on the presence of these molecules and the length and 

unsaturation of the fatty acyl tails (van Meer et al., 2008; Triana-Martinez et al., 2019). As 

already mentioned, one main hallmark of cellular senescence is remodulation of the plasma 

membrane (Hernandez-Segura et al., 2018). It is thought that the upregulation of lipid 

biosynthesis and metabolism during senescence could be prompted by increased lipidic demand 

to support membrane enlargement (Millner and Atilla-Gokcumen, 2020). There is also solid 

evidence of various types of lipidic macromolecule's involvement in senescence-related 

processes including cell cycle arrest, oxidative stress response, inflammation, and SASP 

production (Millner and Atilla-Gokcumen, 2020). Triacylglycerols and lipid droplet 

accumulation have been also revealed to be a major lipidic change during fibroblast replicative 
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senescence (Lizardo et al., 2017). Increased lipid droplets and upregulation of enzymes 

involved in breaking down reactive lipids were also reported during therapy-induced senescence 

(Flor et al., 2017). It is thought that lipid droplet accumulation is part of a cell defensive 

mechanism during senescence that redirects unsaturated fatty acids to triacylglycerols 

depositing them in lipid droplets preventing their oxidation and formation of lipid peroxides 

(Flor et al., 2017; Lizardo et al., 2017). Other possible lipidic macromolecules or intervenients 

in lipid metabolism possibly involved in the process of cellular senescence include ceramides, 

deoxyceramides sphingosine kinase 1 and 2 (SK1 and SK2, catalyzers of sphingosine 

phosphorylation for the generation of sphingosine-1-phosphate), CD36 (cluster of 

differentiation 36, membrane receptor involved in fatty acid metabolism) and carnitine 

palmitoyl transferase 1 (CPT1, a mitochondrial transporter transmembrane enzyme that converts 

long-chain fatty acyl-CoA to long-chain acylcarnitine), these are properly reviewed by Millner 

and Atilla-Gokcumen (Millner and Atilla-Gokcumen, 2020). 

 

C. Structural and functional alterations of cell organelles during Cellular Senescence    

i. Cellular senescence-associated nuclear alterations 

The development of some cellular features such as transcriptional and proteomic regulation 

along with cell migration, proliferation, morphology, and lineage specification have been shown 

to be under the influence of extracellular mechanical stimulation that is converted into 

biochemical signals (Humphrey et al., 2014; Gilbert and Swift, 2019). Cytoskeleton filaments 

attached to membrane‐anchored receptors such as cell membrane‐spanning G‐protein‐coupled 

receptors, stretch‐activated ion channels, or integrin and cadherin adhesion complexes, can 

sense mechanical stimuli from the extracellular matrix (ECM) or neighbor cells (Zuidema et al., 

2020). These filaments are connected to the nucleus where the mechanical stimuli are mediated 

by the linker of the nucleoskeleton and cytoskeleton (LINC) complex. This protein structure is 

formed by 3 main families of conserved proteins which are fairly reviewed elsewhere (Gilbert 

and Swift, 2019). One of these types is lamins, major components of the nuclear lamina that 

lines the inside of the nuclear envelope, a structure responsible for containing the nucleus, 
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composed of the inner, and outer phospholipid bilayer membranes, and a space formed between 

the two layers referred to as the perinuclear space which is connected to the lumen of the rough 

ER (Gilbert and Swift, 2019). Lamins, type V intermediate filament proteins, are structural 

components of the nuclear lamina, a structure that provides a molecular interface between the 

inner nuclear membrane and chromatin, and that is critical for the definition of the viscoelastic 

properties and shape of the nucleus. Lamins can be classified into two types: i) A-type lamins 

encoded by the LMNA gene which can originate both lamins A or C through alternative 

splicing and are known to be predominantly expressed in differentiated cells and are present in 

the nuclear lamina and nuclear interior, and  ii) B-type lamins composed of lamins B1 and B2 

which are respectively encoded by the LMNB1 and LMNB2 genes and are known to be 

expressed in all mammalian cells and found almost exclusively at the nuclear periphery 

(Gonzalo et al., 2017). 

In the eukaryotic nucleus, while euchromatin is mainly found in the internal nucleus, a great 

portion of epigenetically silent heterochromatin is distributed in the surrounding areas of the 

nuclear periphery being anchored to the inner side of the nuclear envelope (Lukasova et al., 

2018). These heterochromatin/nuclear bonds are referred to as heterochromatin tethers and have 

been shown to play a major role in the regulation of the organization and function of chromatin, 

influencing gene expression (Holmer and Worman, 2001; Lukasova et al., 2018). 

Heterochromatin tethers are formed by tethering proteins from the inner nuclear membrane. 

These proteins can recognize lamina-associated heterochromatin domains (LAD) along with 

nuclear lamins engaging in a bridging role between the heterochromatin and the nuclear 

envelope. Lamin B receptor (LBR) is part of this group of proteins, it preferably binds to lamin 

B1 in embryonic and non-differentiated cells and also to chromatin regions marked by specific 

histone modifications through its Tudor domain resulting in gene silencing (Olins et al., 2010). 

Mutations in its gene locus are known to be causative of pathological abnormalities such as 

Pelger–Huet disorder (Lukasova et al., 2018). In fact, two distinguished heterochromatin tethers 

demark proliferating cells from differentiating cells (Lukasova et al., 2018). In embryonic and 

non-differentiated cells, LBR heterochromatin tethers promote chromatin structural arrangement 
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that facilitates the expression of proliferation-inducing genes while heterochromatin tethers 

formed by lamin A/C and LEM-domain (discussed below) promote chromatin structural 

arrangement that facilitates the silencing of proliferation-inducing genes and the expression 

different kinds of differentiation-inducing cells (Brachner and Foisner, 2011; Lukasova et al., 

2018). Results from a study performed by Solovei et al. suggest that LEM-domain protein 

expression is specific to developmental stage and cell type and that they are not detected in 

every known LBR-non expressing cell type (Solovei et al., 2013). 

Mutations in lamin proteins mainly in the LMNA gene have been associated with a wide range 

of degenerative pathologies including syndromes with premature aging phenotypes such as 

Hutchinson Gilford Progeria Syndrome, restrictive dermopathy, and Atypical Werner 

Syndrome, peripheral neuropathies such as Charcot-Marie-Tooth-Disease type 2B1, muscular 

dystrophies such as Emery-Dreyfus Muscular Dystrophy and lipodystrophies (Gonzalo et al., 

2017). Studies suggest that during cellular senescence there are alterations in the proteins of the 

nuclear envelope including downregulation of lamin-B1 (Freund et al., 2012), lamin-A, LEM 

domain-containing, LBR, and LEM domain-containing protein 3 (LEMD3) and upregulation of 

SUN1 levels were increased (Lenain et al., 2015). SUN1 belongs to the LINC complex that if 

altered during senescence could result in aberrant mechanical force transduction to the nucleus 

which may originate in deviant cellular mechano-response. During cellular senescence, 

chromatin suffers functional and structural alterations that include the dissociation between the 

inner nuclear membrane and centromeric repetitive sequences, their relocation to the 

nucleoplasm, and distension (Lukasova et al., 2018). In particular, decreases in lamin-B1 

observed during cellular senescence were shown to contribute to alterations in the 

organizational structure of heterochromatin promoting the formation of senescence-associated 

heterochromatic foci (SAHF), (further discussed below) and the loss of integrity of the bond 

between the nuclear lamina and chromatin. Further studies evidence the importance of both 

LBR and lamin-B1 in the induction of cellular senescence as their downregulation has resulted 

in the disassociation of centromeric heterochromatin from the INM to and relocation in an 

unfolded conformation to the nucleoplasm resulting in alterations in chromatin architectural 
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structure and gene expression (Lukášová et al., 2017). LBR was also shown to be coordinately 

expressed with lamin B1 in cancer cells as their downregulation led to cellular senescence while 

duplication in the lamin B1 gene (LMNB1) led to increased LMNB1 expression causing the 

development of adult-onset autosomal dominant leukodystrophy (Dreesen et al., 2013).  

 

 

 

ii. Mitochondrial dysfunction  

Mitochondrial dysfunction occurs during aging and several pathological processes and is 

characterized by mitochondrial swelling, increased mtDNA mutation rate, loss of cristae, and 

deterioration of the inner membrane resulting in decreased membrane potential. Despite the 

increased number and size, mitochondria are less functional, with less capacity for ATP 

production, increased proton leak, reduced fission and fusion rates, and accumulation of TCA 

cycle metabolites (Kaplon et al., 2013; Gorgoulis et al., 2019). Despite the existence of 

evidence that dysfunctional mitochondria promote cellular senescence both in in vitro cell 

cultures and in vivo models, there is not yet a clear picture of how this occurs (Dai et al., n.d.; 

Moiseeva et al., 2009; Kang et al., 2012; Ogrodnik et al., 2019). 

One major factor thought to potentiate cellular senescence through induction of mitochondrial 

dysfunction is the rise in ROS caused by stressors (Lee et al., 2002; Passos et al., 2007; Kaplon 

et al., 2013; Miettinen and Bjorklund, 2017; Gorgoulis et al., 2019; Ogrodnik et al., 2019) 

(Figure 1). Cellular senescence has been successfully induced in fibroblasts and cancer cells 

through an intracellular increase in ROS levels after p53 or p21 activation (Macip et al., 2002, 

2003). Further, during cellular senescence, p16INK4A/Rb-pathway has been shown to cooperate 

with mitogenic signals to stimulate the rise in ROS intracellular levels triggering the activation 

of protein kinase C delta, which promotes further generation of ROS (Takahashi et al., 2006). 

Evidence suggests that an increase in mitochondrial mass and ROS as a result of RAS activation 

during OIS is dependent on either Rb or p53 signaling (Moiseeva et al., 2009; Ogrodnik et al., 

2019). DDR activation during cellular senescence has also been shown to promote mTORC1 
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and Akt activation leading to mitochondrial dysfunction (Correia-Melo et al., 2016). During 

senescence, alterations to the intracellular ADP: ATP and AMP: ATP ratios can activate AMPK 

which contributes to cell-cycle arrest (Birch and Passos, 2017; Gorgoulis et al., 2019). This 

evidence stands out the relevance of cell cycle arrest factors in the induction of mitochondrial 

dysfunction during cellular senescence and suggests that the interaction with growth-inducing 

factors contributes to the process (Correia-Melo et al., 2016; Ogrodnik et al., 2019). Evidence 

also suggests that cell enlargement during senescence might play a role in the increase in 

mitochondrial dysfunction during senescence as high cytoplasmic volume has been shown to 

change mitochondrial dynamics along with the traffic of mitochondrial metabolites (Pezze et al., 

2014) and mitochondrial dysfunction could be reversed through inhibition of growth signaling 

in senescent cells (Passos et al., 2010; Correia-Melo et al., 2016).  Also, induction of the 

autophagic mitochondrial clearance, known as mitophagy, in senescent cells seems to decrease 

SASP (Correia-Melo et al., 2016; Gorgoulis et al., 2019). Evidence regarding the role of 

mitochondrial dysfunction in cellular senescence in vitro is clear, however characterization of 

this relationship in vivo is still scarce. Also, because mitochondrial dysfunction is associated 

with many other cellular processes it cannot be used as a reliable cellular senescence biomarker 

(Gorgoulis et al., 2019). 

iii. Mitochondrial dysfunction-associated senescence (MiDAS) 

In 2016, Wiley and colleagues described a distinct type of senescence induced by mitochondrial 

dysfunction which they named mitochondrial dysfunction-associated senescence (MiDAS) 

(Wiley et al., 2016). This process was not found to be correlated with ROS-related DNA 

damage but with overactivation of the AMPK-p53 axis due to an increase in the NAD+/NADH 

ratio (Wiley et al., 2016). AMPK-p53 activation was shown to promote cell cycle arrest and 

modeling of SASP profile through decreased activity of both sirtuins and ADP ribose 

polymerase (PARP), known activators of NF-kB, an important SASP regulator, resulting in the 

downregulation of the IL-1-dependent SASP arm and the increased expression of TNFα, IL10, 

and CCL27 (Wiley et al., 2016; Birch and Passos, 2017; Gorgoulis et al., 2019). Further, 
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MiDAS-associated SASP profile was shown to suppress preadipocyte differentiation and 

promote keratinocyte differentiation which might suggest a correlation between MiDAS and the 

development of lipodystrophy and skin problems that tend to develop during aging mice (Wiley 

et al., 2016). 

 

iv. Lysosomal Dysfunction 

As mentioned earlier, dysfunctional organelles such as mitochondria and lysosomes accumulate 

during cellular senescence since autophagy (their main degradation mechanism) is often 

impaired (Kang and Elledge, 2016; Doherty and Baehrecke, 2018). As such, in senescent cells, 

lysosomes often display abnormal size and are unusually increased in number (Robbins et al., 

1970). An increase in lysosomal biogenesis might happen as an attempt by senescent cells to 

compensate for the accumulation of dysfunctional lysosomes (Westermann, 2012; Gorgoulis et 

al., 2019). Although during senescence, lysosomes increase in size and therefore internal 

content, their activity is often reduced leading to impairments in mitochondrial clearance 

mechanism which, as mentioned earlier, might result in increased ROS production that might 

exacerbate cell damage and therefore promote further lysosome dysfunction (Park et al., 2018; 

Gorgoulis et al., 2019). 

Further, cellular senescence-related enlargement of lysosomal compartments may result from 

increased content which is related to the accumulation of lipofuscin formed due to the 

accumulation of ROS and stress (Figure 1). Lipofuscins are insoluble auto fluorescent 

aggregates visually seen as yellow-brown pigments that accumulate intracellularly and are 

known to impair the amino acid recycling process by interfering with the lysosomal/autophagic 

and proteasomal protein degradation pathways (Brunk and Terman, 2002). Curiously, evidence 

suggests that lipofuscin might contribute to apoptosis resistance characteristic of senescent cells 

by increasing the expression of Bcl-2(McHugh and Gil, 2018). Using a biotinylated Sudan 

Black B (SBB) analog (GL13) staining or light microscopy, lipofuscin pigments can be 

observed in the lysosomes of senescent cells although their presence extends beyond senescent 
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cells which renders it not specific as a senescence biomarker (Terman and Brunk, 2004; 

Evangelou and Gorgoulis, 2017; Evangelou et al., 2017). 

 

D. Senescence-associated secretory phenotype (SASP) 

Most senescent cells have a profound change in their secretory phenotype to SASP which 

promotes paracrine and autocrine function through intermediate factors. According to 

Borodkina and colleagues, SASP factors can be classified into proteases, insoluble extracellular 

matrix proteins, soluble signaling factors, and non-protein components (Borodkina et al., 2018). 

They can also be sorted according to their function into 3 main groups: i) factors binding to a 

receptor; ii) factors acting directly, and iii) regulatory factors (Borodkina et al., 2018). The 

factors that bind to receptors constitute a class of soluble signaling molecules that interact with 

specific cell membrane receptors generating a variety of intracellular signaling cascades that 

result in the development of the mentioned senescent-like alterations. Included in this group are  

chemokines (CCL-2, CCL-5, CCL-16, CCL-26, CCL-20, GROα, GROβ), interleukins (IL-1a, 

IL-6, IL-8) and growth factors (FGF, GM-CSF, HGF, TGFβ) (Borodkina et al., 2018). 

Regarding the factors acting directly, as the name says, these molecules can act directly in the 

neighboring cells for example by cleaving membrane-bound proteins, destroying signaling 

molecules, and promoting the restructuring of the surrounding extracellular matrix. In this group 

are included matrix metalloproteases (MMP-1, MMP-3, MMP-10), serine proteases (tissue 

plasminogen activator (tPA), urokinase plasminogen activator (uPA)), and free radicals (ROS, 

reactive nitrogen species) (Borodkina et al., 2018). The regulatory factors are compounds that, 

although not possessing natural enzymatic activity, exert their function by binding and 

regulating the activity of the factors that belong to groups I and II. Examples from this group 

include inhibitors of metalloproteases (TIMP), insulin-like growth factor binding proteins 

(IGFBP), and the plasminogen activator inhibitor (PAI) (Borodkina et al., 2018). It is also worth 

mentioning that microRNA containing extracellular vesicles has been found to be part of the 

SASP secretome and evidence suggests that it might promote important responses for inducing 

or repressing cellular senescence in nearby cells (Urbanelli et al., 2016; Borodkina et al., 2018).  
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As already mentioned above, SASP factors can induce restructuring of the surrounding 

microenvironment through shifting peripheral cells’ function and morphology along with tissue 

biological structure (Figure 1) (Wang and Gundersen, 1984; Volonte et al., 2013; James et al., 

2015). SASP mediators responsible for inducing these alterations include cell proliferating 

growth factors that promote an increase in organelle mass to prepare the cell for cell division 

(Ogrodnik et al., 2019). However, since senescent cells enter cell cycle arrest, overproduction of 

organelle mass leads instead to dysfunctional organelle accumulation (Ogrodnik et al., 2019). 

SASP factors are not only important for the maintenance and establishment of cellular 

senescence, but also for immune signaling, management of neoplastic development, and many 

other functions (Rodier et al., 2009; Freund et al., 2010; Sagiv and Krizhanovsky, 2013; Childs 

et al., 2015) (as it well discussed below). However, due to the deactivation of the apoptotic 

pathways during senescence (Kirkland and Tchkonia, 2017), these cells tend to accumulate in 

tissues which can lead to the chronic secretion of SASP factors which, over time, may lead to 

damage in the surrounding cells and tissues (Borodkina et al., 2018) and might promote the 

development of a low grade and sterile chronic inflammatory profile referred to as 

inflammaging and thought to be involved in a wide range of aging-related diseases (Franceschi 

et al., 2018). To fight this, in physiologic conditions, the immune system can recognize and 

clear senescent cells from tissues (Budamagunta et al., 2021). SASP-mediated senescent cell 

clearance by immune cells such as macrophages also allows for progenitor cell proliferation and 

differentiation, regenerating damaged tissue, making cellular senescence a crucial process in 

tissue repair and remodeling (Prata et al., 2018). Senescent cell burden then determines 

senescence effect on surrounding tissue is beneficial or detrimental. Continuous SASP 

signaling-mediated senescence propagation or age-related decrease in immune system function 

can lead to abnormal accumulation of senescent cells which can impair the repairing effect of 

cellular senescence and can further exacerbate the damage leading in some cases to the 

formation of fibrotic scar tissue that can contain senescent cells and inflammatory cells (Sone 

and Kagawa, 2005).   
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SASP immunological functions are primarily mediated by the NF-κB and CCAAT/enhancer-

binding protein (C/EBP) proinflammatory transcription factor family. Recently the 

cGAS/STING pathway has been found to regulate the production of SASP during cellular 

senescence. Cytoplasmic GMP-AMP synthase (cGas) detects and binds to cytoplasmatic 

chromatin fragments, gaining 2′3′-cyclic GMP-AMP (2′3′-cGAMP) production capacity (from 

GMP and AMP). 2′3′-cGAMP activates the Stimulator of interferon genes (STING) in TANK-

binding kinase 1 (TBK1) in the ER promoting the phosphorylation of IRF3 and the activation of 

NF-κB. These two transcription factors can then migrate to the nucleus where they can promote 

the expression of SASP mediators including IL-6, IL-8 and IFN-β. The concrete mechanism of 

cytoplasmatic chromatin fragment accumulation is still unclear, however, some senescence 

traits are thought to play a role such as the loss of nuclear integrity related to the senescence-

associated disrupted lamin B1 expression and the excessive generation of double-strand DNA 

fragments as a result of the aberrant nuclear and mitochondrial DNA damage seen during 

senescence (Baker et al., 2016). NOTCH1 signaling has also been found to be involved in the 

regulation of SASP. Inhibition of NOTCH1 has been shown to downregulate TGF-β 

incorporation into the secretome and prevent the inhibition of C/EBPβ, therefore, promoting the 

SASP secretome (Hoare et al., 2016). Interestingly, during OIS NOTCH1 has been shown to be 

upregulated (Hoare et al., 2016). This study observed that during OIS, NOTCH1 activity 

fluctuates dynamically changing the secretory profile accordingly, fluctuating between TGF-β 

including secretome (shown to promote juxtacrine senescence induction through NOTCH-JAG1 

pathway) and pro-inflammatory profile characterized by up-regulation of pro-inflammatory 

cytokines such as IL-1α respective transcription factor of C/EBPβ (Hoare et al., 2016). Also, a 

variety of other signaling pathways have been shown to be involved including (but not limited 

to) PI3K/AKT/mTOR, p38MAPK, and JAK/STAT (Sieben et al., 2018; Sun et al., 2018). 
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E. Post-mitotic senescence 

As discussed above, cellular senescence was originally described as a consequence of the 

limiting proliferation capacity of mitotic cells (Hayflick and Moorhead, 1961). As the complex 

machinery behind this process and its correlation with aging and pathology was being unveiled 

by new studies, the holistic view of cellular senescence shifted towards a cellular stress response 

mechanism (Von Zglinicki et al., 2021). As such, the question as to whether cellular senescence 

is indeed restricted to proliferation-competent cells has recently arisen in light of recent 

evidence indicating the presence of senescence markers in post-mitotic cells from aged mice 

tissues including mature neurons, cardiomyocytes, skeletal muscle myofibers and osteocytes (D 

Jurk et al., 2012; Farr et al., 2017; Musi et al., 2018; Anderson et al., 2019; Benkafadar et al., 

2019; da Silva et al., 2019). The first evidence of cellular senescence in post-mitotic cells 

remounts to 2012 when Jurk and colleagues reported the existence of various senescence 

markers in cerebellar Purkinje neurons, cortical neurons, and neurons of the myenteric plexus 

from aged mice (Diana Jurk et al., 2012). Jurk and colleagues also showed that the 

accumulation of senescent neurons was induced by dysfunctional telomere-activated DDR 

(Diana Jurk et al., 2012). Two more recent independent studies provide evidence regarding the 

onset of cellular senescence in neurons including the detection of senescence-like traits in the 

tau neurofibrillary tangles presenting neurons from both post-mortem Alzheimer's disease 

patients and mouse models (Musi et al., 2018), and senescent mouse retinal ganglial cell layer 

under ischemia (Oubaha et al., 2016). Particularly, Musi and colleagues were able to detect 

upregulation of the transcription of genes regulated by p53, p38MAPK, TGFβ, and NF-κB 

while in the Oubaha et al. study senescence was seen to spread from retinal ganglion neurons to 

retinal microglial cells and the vasculature through bystander signals (Oubaha et al., 2016).  

Growing evidence shows that several post-mitotic cell types undergo cellular senescence during 

aging; however how post-mitotic senescence impacts tissue integrity and function and weather 

drives aging is currently ill-defined (reviewed in (Von Zglinicki et al., 2021). 
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III. Cellular Senescence in physiological processes  

Due to its established relationship with aging and related pathological process, for some time, 

researchers have been looking for therapies to eliminate senescent cells from tissues. However, 

although chronic deposition of senescence cells in tissues is associated with the 

pathophysiology of some diseases, acute cellular senescence has been found to play important 

role in many homeostatic processes (Amaya-Montoya et al., 2020) (Figure 3). As mentioned 

above, cellular senescence is a crucial mechanism for tissue remodeling by promoting damage 

cell clearance and promoting tissue regeneration. Upon cutaneous wound, cellular senescence is 

known to stimulate wound closure by the induction of myofibroblasts differentiation through 

the secretion of platelet-derived growth factor AA (PDGF-AA) by senescent fibroblasts and 

endothelial cells (Demaria et al., 2014). This acute fibroblasts senescence is induced by the 

extracellular matrix-associated signaling protein CCN1 which can bind to the cell adhesions 

receptors, heparan sulfate proteoglycans, and integrin alpha(6)beta(1) (Jun and Lau, 2010). 

Also, in liver tissue, senescence of hepatic stellate cells can prevent excessive fibrosis, impair 

damaged cell proliferation and promote senescent cell clearance by the immune system 

(Krizhanovsky et al., 2008). Like apoptosis, evidence suggests that cellular senescence can act 

as a tumor-suppressive mechanism as OIS was proven to impair tumor cell proliferation (Di 

Micco et al., 2006; Kuilman et al., 2010; Rufini et al., 2013). However, tumor senescent cells 

are also known to secrete immunosuppressive signals and set a proper microenvironment for 

tumor cell proliferation and metastasis in the early stages of cancer development (Collado et al., 

2005; Ruhland et al., 2016; Demaria et al., 2017; Prieto and Baker, 2019). Cancer's relationship 

with cellular senescence is complex and is extensively reviewed elsewhere (Campisi, 2013; Liu 

et al., 2018; Calcinotto et al., 2019; Prieto and Baker, 2019).  

During embryonic development, senescence-associated beta-galactosidase (SA-β-gal)+ and 

proliferation marker protein Ki-67−senescent cells have been detected in various regions of the 

mouse embryo such as the neural tube, roof plate, hindbrain, mesonephros, endolymphatic sac, 

apical ectodermal ridge, gut endoderm, pharyngeal arches, the tip of tail, placental 

syncytiotrophoblasts and also in the human embryo (mesonephros and endolymphatic 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


32 
 

sac)(Munoz-Espin et al., 2013; Storer et al., 2013; Rhinn et al., 2019). These cells showed 

impaired cell proliferation along with increased marked expression of SA-β-gal, p21, and SASP 

factors but interestingly did not seem to display DNA damage along with the expression of cell 

cycle inhibitors p53, p16INK4A, p19ARF. This indicates that the presence of cellular senescence in 

embryonic tissues might be of a different type (Rhinn et al., 2019). Moreover, this process was 

proven to be highly dependent on p21 and TGF-β/PI3K pathways since p21-null mouse 

embryos are known to develop patterning defects similar to the outcome of chemical or 

senolytic treatments (Munoz-Espin et al., 2013; Storer et al., 2013; Davaapil et al., 2017; Gibaja 

et al., 2019; Rhinn et al., 2019). These cells are ultimately cleared by macrophages resulting in 

tissue remodeling (Munoz-Espin et al., 2013; Rhinn et al., 2019). Natural Killer cells are also 

highly present in the uterus during early pregnancy and have been shown to promote placental 

development through secretion of pro-angiogenic factors mediated by the interaction with MHC 

I expressing trophoblast (Rajagopalan, 2014). On the other hand, senescence natural killer cells 

were found to mediate embryonic implantation through trophoblast-dependent activation of the 

p21 signaling pathway through CD158d receptor stimulation, promoting angiogenesis and 

vascular remodeling (Rajagopalan and Long, 2012; Amaya-Montoya et al., 2020). The 

information discussed so far has emphasized the detrimental effect of chronic cellular 

senescence which results from continuous exposure to stress stimuli while recognizing the 

importance of acute cellular senescence for some homeostatic physiological cellular functions. 

The same can be said of the SASP as it can vary in content according to cell type, external 

stimuli, and environmental context (Faget et al., 2019; Amaya-Montoya et al., 2020). This 

might help explain the variation in senescent cells’ features, function, and susceptibility to 

senotherapeutic treatments (discussed below) found throughout tissues. 

 

IV. Cellular Senescence Detection & Analysis  

A. Markers used to evaluate cellular senescence 

Beta-galactosidase (SA-β-gal) & p16 
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A combination of cellular markers is needed to identify senescence in a wide range of cell types 

(YZ Xiao et al., 2020) as summarized in Table 1. The most used combination is the 

measurement of senescence-associated beta-galactosidase (SA-β-gal) activity detectable at pH 

6.0 (Dimri et al., 1996) and the expression of tumor suppressor p16INK4A. SA-β-gal is the 

excessively active form of lysosomal β-D-galactosidase expressed by the GLB1 gene that can 

catalyze the hydrolysis of β-galactoside into monosaccharides (Piechota et al., 2016). On the 

other hand, p16 exhibits low expression in healthy cells but has been shown to be 

phosphorylated during senescence of epithelial cells leading to G1 cell cycle arrest through 

CDK4/6 augmented affinity which prevents retinoblastoma protein (Rb) phosphorylation 

perpetuating its cytoplasmic association with the transcription factor E2F1 responsible for 

positive regulation of transition from G1 to S phase (Rayess et al., 2012) (Figure 1). During 

cellular senescence, SA-β-gal activity at pH 6.0 increases due to augmented lysosomal 

biogenesis, and p16 phosphorylation is known to contribute to the induction as well as to the 

maintenance of cellular senescence (Rayess et al., 2012). SA-β-Gal optimal pH for maximal 

enzymatic activity is between 4.0 and 4.5 which corresponds to lysosomes’ intrinsic pH where 

this enzyme is found. Therefore, when performing SA-β-Gal enzymatic activity testing at pH 

6.0 allows for a clear separation between high and normal SA-β-Gal expressing cells given that 

this pH level is known to reduce enzymatic activity by almost 99% and therefore only cells with 

augmented lysosomal content possess sufficient amount of enzyme to display some grade of 

activity (Kurz et al., 2000). SA-β-gal activity at pH6.0 can be measured through a cytochemical 

assay based on a chromogenic substrate 5-Bromo-4-chloro-3-indolyl b-D-galactosidase (X-gal) 

conversion to a blue-dyed precipitate while p16 can be detected using RT-PCR, western blot, 

single-cell RNA sequencing. Also, recent strategies for p16 in vitro detection are currently used 

including senescent-cell reporters such as luciferase knock-in at the p16INK4A (CDKN2A) locus 

mouse called p16(LUC) which allows for measurement of p16INK4A promoter activity (Burd et 

al., 2013) and similarly through p16-3MR or INK-ATTAC systems that promote p16INK4A  co-

transgene expression of green fluorescent protein (GFP) and monomeric red fluorescent protein 

(mRFP) respectively allowing senescent cell isolation through flow cytometry (Childs et al., 
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2015; Khosla et al., 2020). These last methodologies have been implicated in the study and 

development of potential therapeutic interventions based on the elimination of senescent cells 

which will be further discussed later in the chapter. High expression of p16 has been detected in 

various types of senescent cells including senescent fibroblasts (Alcorta et al., 1996; Robles and 

Adami, 1998) keratinocytes (Loughran et al., 1996), uroepithelial cells (Jarrard et al., 1999), 

pancreatic β-cells (Krishnamurthy et al., 2006), emerging neoplasms and surrounding stromal 

cells (Burd et al., 2013). Moreover, p16 expressing cells have been reported to accumulate in 

mouse tissues during aging,  such as in skeletal muscle, eye, adipose tissue (Baker et al. 2011), 

pancreas (Krishnamurthy et al., 2006), kidney, heart, and blood vessels (Baker et al., 2016; 

Shimizu and Minamino, 2019). SA-β-gal high activity at pH 6.0  can also be detected in most 

senescent cells including dermal fibroblasts, epidermal keratinocytes, human umbilical vein 

endothelial cultures, human mammary epithelial cells, neonatal human melanocytes, and a 

substantial population of senescent epithelial cells from benign prostatic hyperplasia (Castro et 

al., 2003). However, specific non-senescent cells such as activated macrophages have been 

reported to display both high SA-β-gal activity at pH 6.0 and p16 expression (Hall et al., 2016, 

2017) while some senescent cells such as senescent geriatric satellite cells display high 

expression of p16, fail to show increased activity of SA-β-gal at pH 6.0 (Sousa-Victor et al., 

2014). Altogether, this evidence show that the combination between these two biomarkers, 

although can in most cases detect accurately cellular senescence, cannot be considered entirely 

sensitive or specific, therefore, the additional measurement of other known less specific cellular 

senescence biomarkers are usually used to confirm the assessment, such as SASP, tumor 

suppressor genes p53/p21, telomere length, proliferation marker protein Ki-67, clusterin, 

senescence-associated heterochromatin foci (SAHF), lamin B1 and lamin B receptor (LBR).  

 

Tumor suppressor genes p53/p21, other markers of DDR & Cell cycle arrest 

As discussed earlier (Chapter 1), abnormal high expression of p53 and p21 is an 

unquestionable feature of cellular senescence, however not specific since both p53 and p21 

seem to be upregulated during apoptosis and transient cell cycle arrest (Wang et al., 2015; YZ 
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Xiao et al., 2020). In fact, although p21 is a CDKs inhibitor and is upregulated in response to a 

variety of senescence-inducing stimuli, evidence suggests that it can be activated in a p53-

independent manner and is also essential for cell cycle progression (Schwaller et al., 1997; Jung 

et al., 2010). Further, although p53 and p21 are usually important for the initiation of cell cycle 

arrest during senescence induction, even if DNA damage continues p53 and consequently p21 

signaling may decline over time. This is thought to happen due to the heterochromatinization of 

E2F targets (part of the SAHF (discussed below)) prolonging the repression of cell cycle 

progression promoting genes (Narita et al., 2003; He and Sharpless, 2017). As mentioned earlier 

(Section 1), one of the main indicators of DDR activation is the phosphorylation of histone 

H2A variant H2AX on serine residue 139 referred to as γH2AX however, it is not specific to 

cellular senescence as it can be observed in other conditions where the DDR is activated such as 

apoptotic DNA fragmentation and even in functions not associated with the DDR (Rogakou et 

al., 1999; Turinetto and Giachino, 2015; Georgoulis et al., 2017). Several other indicators, 

although used less frequently, can also be measured to detect DNA damage during cellular 

senescence. This includes ATM, ATR, Tumor suppressor p53 binding protein 1 (53BP1), 

RAD51 recombinase, and the MRE11/RAD50/NBS1 complex, which can be detected by 

fluorescence microscopy following co-immunofluorescence staining (Rothkamm et al., 2015). 

The decreased expression of proliferation marker is also used as a complement biomarker for 

cellular senescence detection. The protein Ki-67, usually only referred to as Ki-67, is a nuclear 

protein expressed from the MKI67 gene whose absence has been correlated to an arrest in cell 

proliferation during cellular senescence (but not exclusively). Ki-67 can be detected through 

immunostaining where during interphase can be found in the cell nucleus while in mitosis is 

allocated to the surface of the chromosomes (Cuylen et al., 2016; YZ Xiao et al., 2020). 

Another proliferation marker often assessed for aiding cellular senescence detection, usually 

through immunohistochemical staining, is the proliferating cell nuclear antigen (PCNA) (Nagai 

et al., 2014; El Hasasna et al., 2015). This ring-shaped homotrimer is in the center of a large and 

complex protein network responsible for regulating and coordinating a wide range of processes 

important for ensuring correct DNA replication such as mismatch repair, nucleotide excision 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


36 
 

repair, error-free damage bypass, Okazaki fragment maturation, translation synthesis, sister 

chromatid cohesion, chromatin assembly, S-phase specific proteolysis and break-induced 

replication (Boehm et al., 2016). During cellular senescence, PCNA exhibits low expression 

although in a non-specific manner as quiescent cells also express the same levels and both 

normal proliferating and tumor cells display inconsistent PCNA expression. Also, PCNA 

expression is known to vary during the cell cycle displaying the highest expression during the S 

phase (Jurikova et al., 2016). Curiously serum treatment induces an increase of PCNA levels in 

quiescent cells as they resume the cell cycle (Almendral et al., 1987) which highlights its 

importance for cell cycle progression (Jurikova et al., 2016). 

 

Telomere length 

Cell genetic material is continuously subjected to the action of surrounding stimuli which can 

easily lead to damage and chromosome erosion. To prevent that, chromosomes have 

nucleoprotein structures called telomeres at the end of each arm (Greider, 1991; Turner et al., 

2019). These structures are composed of highly conserved hexameric 5'-TTAGGG- 3' tandem 

repeats that form specialized T-loop conformation and a G-rich 3'-AATCCC-5' strand called G-

strand that protrudes and invades the 5′ double-stranded telomeric duplexes, forming a D-loop 

(Turner et al., 2019). Also, telomeres are associated with specialized proteins namely proteins 

that constitute the sheltering complex. The structure promotes the prevention of telomere 

degradation and regulates the activity of the ribonucleoprotein complex responsible for 

synthesizing new telomeric repeats known as Telomerase (Turner et al., 2019). This enzymatic 

complex is composed of the telomerase reverse transcriptase (TERT) subunit responsible for 

catalyzing the synthesis of new telomeric repeats by copying its telomerase RNA component 

(TERC) (Greider and Blackburn, 1989). Most mammalian cell types do not express this 

enzymatic complex in significant amounts or if so, in most cases telomerase activity is repressed 

by competitive binding of telomeric repeat-containing RNA (TERRA) with TERC, as 

alternative telomere erosion effect may be contradicted through homologous recombination-

mediated alternative lengthening of telomeres (ALT) (Sobinoff and Pickett, 2017; Turner et al., 
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2019). Both these two mechanisms can delay cell replication-related telomere erosion however, 

telomeres are still known to shorten with each cell division. Upon reaching critical levels of 

telomeric length, the sheltering complex is no longer able to perform its functions leaving the 

chromosome ends vulnerable to destabilizing agents (Turner et al., 2019). One process affected 

by the compromised sheltering complex function is the activation of DDR. Telomere erosion 

leaves double-stranded chromosome ends exposed which are recognized by DDR as double-

strand breaks (Fumagalli et al., 2012). Two proteins of sheltering complex named POT1 and 

TRF2 are reported to inhibit ATR kinase and ATM kinase pathways respectively (Sfeir and de 

Lange, 2012), both of which culminate in the activation of p53 that ultimately may lead to cell 

cycle arrest (Figure 1). Given that human cells do not express telomerase in sufficient quantities 

to completely counteract the gradual telomere erosion, the DDR is maintained consistently 

activated (Engin and Engin, 2021). As already mentioned, this resembles a feature of cellular 

senescence, in fact, telomere shortening is identified as the definitive cause of the 

aforementioned replicative-associated senescence and is correlated with aging in vivo (Herranz 

and Gil, 2018). However, there is no convincing evidence to suggest a high specificity of 

telomere length as a cellular senescence biomarker, although is often used to confirm other 

markers (YZ Xiao et al., 2020). Measurement of telomere length can be done using Southern 

Blot (Kimura et al., 2010), flow cytometry with Flow-FISH technique which consists of an in-

situ hybridization using specific synthetic peptides that mimic the DNA sequences 

complementary to the telomeres marked with low molecular weight fluorochromes, allowing a 

quantitative measurement by flow cytometry (Bradford et al., 2009; YZ Xiao et al., 2020) and 

qPCR (Lin et al., 2019).  

 

Clusterin 

Clusterin (also known as Apolipoprotein J) is a chaperone encoded by the CLU gene situated on 

chromosome 8 and can be found in nuclear, cytoplasmic, or secreted isoforms in a wide range of 

cell tissues (Poon et al., 2000). This protein has been reported to play a role in several important 

biological processes such as lipid transport, membrane recycling, cell adhesion, and cell death. 
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It has an apolipoprotein function in high density-lipoprotein (Desilva et al., 1990) and an 

extracellular folding function of secreted proteins promoting the prevention of pathological 

protein aggregation (Poon et al., 2000). As such, clusterin has been correlated with the 

abnormal proteostasis-related altering of Aβ aggregation/clearance in Alzheimer’s Disease 

(considered the third most significant genetic risk factor for late-onset of Alzheimer’s Disease 

(Foster et al., 2019)). Abnormal high levels of clusterin have also been detected in a wide range 

of late-stage metastatic cancers (Zhou et al., 2015). It is also known that clusterin engages in 

other pathophysiological processes such as immune modulation, including mediation of the NF-

κB pathway, complement-mediated cell lysis,  oxidative stress, programmed cell death, cell 

survival through modulation of the extracellular signal-regulated kinase (ERK) 1/2 signaling 

and matrix metallopeptidase-9 overexpression (Koltai, 2014), inhibition of BAX on the 

mitochondrial membrane (Zhang et al., 2005) and prevention of cellular senescence through 

activation of the phosphatidylinositol 3-kinase/protein kinase B pathway stimulating cell 

proliferation (YJ Zhang et al., 2019). High levels of clustering have been observed in some 

senescent cells including glioblastoma multiforme or WI-38 fibroblasts which have turned it 

into a recognized cellular senescence biomarker (Matos et al., 2012; Li et al., 2013); however, 

as described above, it lacks specificity. Its detection can be done by quantitative real-time PCR 

(qPCR) or western blotting. 

 

 

Senescence-Associated Heterochromatin Foci (SAHF) 

Cells genetic content can be organized into two main types of chromatin: i) euchromatin, where 

most actively transcribed genes lie; displays a decondensed conformation during interphase and 

is replicated in early S-phase, and ii) heterochromatin that comparatively displays high 

condensed conformation during interphase and has a late replication during S-phase and is 

mostly constituted by repressed genes (Zhang and Adams, 2007). This last type is divided into 

constitutive heterochromatin mostly composed by repetitive sequences that are constant through 

cell life and can be found in the telomeres or pericentric satellites present next to the 
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centromeres, and by facultative heterochromatin which is developmentally regulated and is 

turned from euchromatin into heterochromatin for permanent silencing of specific genes (Craig, 

2005; Zhang and Adams, 2007). SAHFs are specialized domains of facultative heterochromatin 

formed during cellular senescence and are  positive for specific markers of heterochromatin 

such as di-or trimethylated lysine 9 histone H3 (H3K9Me2/3), heterochromatin protein 1 (HP1), 

histone H2A variant macroH2A (mH2A), anti-silencing function 1 (ASF1) (Raghuram and 

Mishra, 2014; YZ Xiao et al., 2020). They were first described by Narita et al in 2003 after 

noticing that senescent cells displayed 30–50 bright punctate DAPI-stained DNA foci (Narita et 

al., 2003; Zhang and Adams, 2007). Senescent cells undergo a general change in nuclear 

architecture which include the formation of SAHF in the promoters of cell proliferation-

inducing genes such as E2F target genes as cyclin A which is strictly necessary for S-phase 

entering (Narita et al., 2003; Zhang et al., 2007) that helps to induce and maintain the cell cycle 

arrest necessary for cellular senescence. Loss of heterochromatin during cellular senescence has 

been reported to be correlated with an increase in genetic instability leading to impaired double-

strand-break repair capacity (Gorbunova and Seluanov, 2016). As referred above senescence-

associated DNA foci SAHF can be observed using DAPI cell staining, usually displaying a 

more compact structure (YY Xiao et al., 2020). OIS and replicative senescent mouse embryonic 

fibroblasts did not seem to display SAHF punctate (Kennedy et al., 2010). This recent evidence, 

put in question SAHF specificity towards cellular senescence, suggesting that this may not be a 

suitable biomarker for single detection of senescence and instead should be combined with other 

biomarkers for a more reliable assessment (YY Xiao et al., 2020) (Figure 1). 

 

Nuclear Lamins altered in senescent cells 

As already mentioned earlier in Chapter 1, during cellular senescence, chromatin undergoes 

functional and structural alterations that include its distention and relocation to the nucleoplasm 

along with the dissociation between the inner nuclear membrane and centromeric repetitive 

sequences (Lukasova et al., 2018). In one study, both OIS and replicative senescence were 

shown to induce Lamin B1 loss through direct stimulation of either the p53 or pRB pathway 
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present in primary human and murine cell strains. During apoptosis, lamins are degraded by 

caspases leading to the formation of lamin B1 degradation end-result products, however in this 

study, senescent cells did not display these products and caspase inhibition did not seem to 

influence the reported lamin B1 loss during cellular senescence (Freund et al., 2012). In 

contrast, a senescence-related decrease in lamin B1 levels was attributed to the decline in lamin 

B1 mRNA stability (Freund et al., 2012). In another study, Dreesen and colleagues further 

report a decrease in Lamin B1 protein in human dermal fibroblasts and keratinocytes during 

cellular senescence (Dreesen et al., 2013). This decrease was shown to be attributed to the 

negative regulation of LMNB1 transcription and translation by miRNA-23a and was also 

observed in chronologically aged human skin tissue (Dreesen et al., 2013). Interestingly, both 

overexpression and depletion of LMNB1 resulted in proliferation impairment but solely 

LMNB1 overexpression promoted cellular senescence. This could be explained due to the fact 

that during differentiation LBR and lamin-B1 function is taken over by lamin A/C with specific 

lamin A/C binding proteins (Lukasova et al., 2018). This effect was further inhibited by 

telomerase-induced expression or p53 inactivation. In contrast, downregulation of both LMNB1 

and LMNA/C aggravates the senescent phenotype (Dreesen et al., 2013). Further, a study 

performed by Sadaie et al. reports that the induction of cellular senescence led to lamin-B1 

specific depletion in the H3K9me3 enriched LADs heterochromatin regions, suggesting the 

promotion of SAHF formation (Sadaie et al., 2013). Further, Sadaie et al. observed increased 

lamin-B1 binding to H3K27me3 marked gene-rich regions (Sadaie et al., 2013). This evidence 

suggests that the spatial organization of chromatin is indeed a major factor not only in the 

regulation of genome functions but also in the modulation of gene expression according to 

external mechanical stimuli (Chandra et al., 2015; Gilbert and Swift, 2019). More studies 

confirming the reduced expression of lamin B1 during cellular senescence as a result of the 

activation of the p53- and Rb axis include (Shimi et al., 2011; Shah et al., 2013). Despite this 

evidence, results from two independent studies suggest that lamins can be dispensable in this 

function given that cell cultures from lamin B1 and lamin B2 depleted mice lacking seemed to 

display preserved nuclear architecture even in the absence of lamin A/C (Kim et al., 2011; SH 
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Yang et al., 2011). This was thought to happen due to the fact that LBR can attach to other 

transmembrane domains of the inner nuclear membrane (Solovei et al., 2013). Further evidence 

of the relevance of LBR down-regulation for the induction of cellular senescence is presented 

by a study done by Arai et al. which reports the induction of cellular senescence in HeLa and 

normal human diploid fibroblast TIG-7 cells was a result of LBR knockdown due to excess 

thymidine (Arai et al., 2019). However, despite this evidence clearly showing the importance of 

both lamin-1 and LBR in the development of cellular senescence, there is also evidence that 

suggests that the down-regulation of these two proteins is not sufficient to induce cellular 

senescence in every cell types (Arai et al., 2019). Specifically, Lukášová et al (2017) report that 

small hairpin ribonucleic acid (shRNA) mediated downregulation of lamin-1 and LBR in MCF7 

and U2OS cells was not enough to induce senescence despite cells exhibiting a slower 

proliferation rate after cell cloning compared to the parental cells along with higher nuclear 

membrane permeability as a result of increased formation of micronuclei suggesting that other 

factors are required to trigger cellular senescence (Lukášová et al., 2017). 

Altogether these studies suggest that lamin B1 and LBR evaluation (e.g. RT-qPCR, Western 

Blotting, or immunohistochemistry) is a reliable methodology for cellular senescence detection, 

however, specificity and sensitivity still need improvements.  

 

 

 

Senescence-Associated Secretory Phenotype (SASP) 

As discussed earlier in Chapter 1, SASP mediators are a long list of compounds that mainly 

include cytokines, chemokines, proteinases, and growth factors (Chapter 1) (Ohanna et al., 

2011). SASP profile of each senescent cell varies according to cell type, tissue 

microenvironment, senescent inducing stimuli, and damage extension (Figure 1)(Faget et al., 

2019). IL-6 and IL-8 are considered to be ubiquitous senescence representative markers 

(Kuilman et al., 2008; Hernandez-Segura et al., 2018) given their presence in various senescent 

cell types such as damage-induced senescent fibroblasts, melanocytes, and epithelial cells DNA 
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(Lu et al., 2006; Green, 2008; YZ Xiao et al., 2020). However, both IL-6 and IL-8 are not 

senescence-exclusive since they seem to be involved in other physiological and pathological 

processes such as inflammation and regulation of the immune system (Ramani et al., 2015). 

Studies reveal IL-6 and IL-8 as essential elements in the NF-κB DDR-induced activation 

(Takahashi et al., 2012; Hayakawa et al., 2015) and as factors in OIS inflammatory 

transcriptome (Kuilman et al., 2008). IL-6 interacts with the transcription factor C/EBPβ in a 

paracrine manner to amplify the activation of the inflammatory network, which includes IL-8 

(Kuilman et al., 2008). Besides, IL-6 and IL-8, a small group of mediators including (however 

not limited) chemokine (C-X-C motif) ligand 1 (CXCL1), Chemokine (C-C motif) ligand 20 

(CCL20), Granulocyte-macrophage colony-stimulating factor (GM-CSF) and 

metalloproteinases have been considered universal SASP representatives as they have been 

found to be expressed in most senescent conditions (Hernandez-Segura et al., 2017; Wiley et 

al., 2017; Sun et al., 2018), which begs the question of whether they can be used as reliable 

senescence detecting biomarkers? Unfortunately, in resemblance with IL-6 and IL-8, evidence 

of the presence of all of these mediators in non-senescent conditions can be found throughout 

the literature rendering them not specific (Becher et al., 2016; Wang et al., 2017; Furue et al., 

2020). Thus, SASP factors can be detected through a variety of assays including Western blot, 

ELISA assay using commercial kits even immunostaining with antibodies targeting each SASP 

factor followed by High Content Microscopy Analysis (Hari and Acosta, 2017). Overall, SASP 

is seen as a senescence biomarker due to its crucial role in the development and biological 

impact of cellular senescence, however due to its high heterogeneity, its absence in particular 

cases and the presence of its mediators in non-senescent conditions (Coppe et al., 2011; Ohanna 

et al., 2011) renders it not suited to solely be a cellular senescence biomarker. However, it 

might be used as a confirming biomarker and since its heterogeneity is somewhat originated by 

its variation according to cellular senescence mechanisms (Figure 1), it could also be used as a 

differential biomarker.    

 

Deep Learning-Based Senescence Scoring System by Morphology (Deep-SeSMo) 
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Deep learning is a form of Artificial Intelligence that specializes in the development and 

deployment of a subset of machine learning algorithms referred to as multilayered artificial 

neural networks that can extract higher-level features and recognize patterns from different 

kinds of raw input data to make classifications in accordance. Deep learning models are usually 

trained using supervised learning approaches in which datasets are labeled according to a 

classification outcome variable. Models learn to associate specific features to each outcome 

during training that allow subsequent classification of unlabeled data (Esteva et al., 2019). 

Convolutional neural networks (CNNs) are commonly used models for data that display natural 

spatial invariance such as images. The deep learning field has been evolving exponentially due 

to significant increases in computational data processing and manipulation capacity along with 

more robust and cheaper technology for data generation, seen in the last decades. The ongoing 

increase in the generation of a diverse range of high throughput biomedical data has already 

rendered successful applications of Deep learning models in research and the clinic namely 

medical image-based detection of skin cancer (Esteva et al., 2017), breast lesions and 

pulmonary nodules (Cheng et al., 2016), early detection of diabetic retinopathy (Gulshan et al., 

2016), Alzheimer's Disease diagnosis and many more (Jo et al., 2019). CNN's deep learning 

models have also been trained to distinguish between different types of cells based on cell 

feature-specific assessment through microscopy (Buggenthin et al., 2017; Christiansen et al., 

2018; Kusumoto et al., 2018; Kusumoto and Yuasa, 2019; Moen et al., 2019).  

Kusumoto and colleagues developed a cellular senescence morphology-based classifier 

algorithm for a convolutional multi-layer neural network system, using input datasets composed 

of single-cell resolution level 50 × 50 pixels phase-contrast images of non-senescent and 

senescent Human umbilical vein endothelial cells (HUVECs) cells induced through H2O2 or 

anti-cancer agent camptothecin exposure or repetitive passage (Kusumoto et al. 2021). Since 

both senescence rate and the average senescence classification probability were proportional to 

the intensity of cellular senescence inducting stimulus, authors were able to establish a 

quantitative senescence score calculated by the pre-trained CNN that was named Deep 

Learning-Based Senescence Scoring System by Morphology (Deep-SeSMo) (Kusumoto et al., 
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2021). Pre-trained CNNs were further successfully used to distinguish between senescent and 

non-senescent cells in HUVEC datasets acquired from two institutes. Authors were also able to 

train the CNN to efficiently classify senescence in H2O2 or camptothecin-treated human diploid 

fibroblasts. Four anti-senescent candidate compounds (daidzein, PD-98059, Y-27632ꞏ2HCl, and 

terreic acid) were identified using Deep-SeSMo to quantify senolytic activity of individual 

compounds from a kinase inhibitor screened in HUVEC. Overall, Deep-SeSMo was shown to 

be a reliable tool for detecting cellular senescence in HUVEC cells and fibroblasts and might 

also display senescence detection capacity in other cell types. Thus, trained multilayered 

artificial neural network deep learning algorithms are a promising classification tool for cellular 

senescence detection and in the near future, we should see further improvements in their 

classification capacity. 

 

B. Senolytic mouse models developed for cellular senescence study 

Although many cell features have been associated with the development of cellular senescence, 

the majority of the characterization has been made through in vitro experiments. Some of these 

models include high passaged primary cultures of human cells as replicative senescence models, 

the use of irradiation, chemotherapeutic drugs, or oxidative reagents such as hydrogen peroxide 

to generate stress-induce senescence culture models or activation of oncogenes such as RAS to 

create in vitro OIS models (Beck et al., 2020; Yuan et al., 2020). Until very recently, 

senescence characterization in vivo was very limited given the shortage of appropriate tools for 

in vivo accurate senescent cell isolation and identification. Since culture conditions often do not 

mimic the natural environment where cell behavior and response are subjected to the influence 

of signals from the rest of the body, in vitro studies' findings might not match in vivo 

observations (Lidzbarsky et al., 2018). As such, efforts have been made to develop in vivo 

models where cellular senescence can be observed and senescent cells' clearance can be 

controlled to further characterize cellular senescence features, better understand both the 

pathological and physiological roles of cellular senescence and assess the effect of senescent 
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cell removal on the overall organism (Pajvani et al., 2005; Demaria et al., 2014; Hashimoto et 

al., 2016; Omori et al., 2020). 

 

INK-ATTAC 

To study the effect of senescence cell clearance in the adipose tissue, Baker and colleagues 

developed a genetic mouse model based on the earlier produced Fat apoptosis through targeted 

activation of caspase (FAT-ATTAC) mouse line (Pajvani et al., 2005). This model allowed for 

selective adipocyte apoptosis upon the administration of the synthetic drug named AP20187 

which triggers the dimerization of a membrane caspase named myristoylated FK506-binding-

protein–caspase 8 (FKBP–Casp8) fusion protein (Pajvani et al., 2005). This protein is expressed 

through the Fabp4 promoter which was replaced by a 2,617-bp fragment of the p16Ink4A gene 

promoter. As mentioned earlier, p16Ink4A is one of the most specific and sensitive biomarkers of 

cellular senescence as it is reported to be upregulated in almost all senescent cells. For clear 

detection and distinction of p16Ink4A senescent cells, it was added an internal ribosome entry site 

followed by an open reading frame coding for enhanced green fluorescence protein (EGFP) 

(Baker et al., 2011). This mouse model was named INK-ATTAC, and to test its effect on age-

related comorbidities it was bred with the BubR1 hypomorphic (BubR1H/H) cell line a gene 

known to code for a crucial member of the mitotic checkpoint, that is responsible for ensuring 

proper chromosome segregation during mitosis. BubR1H/H mice are known to accumulate 

p16Ink4a-positive cells in specific tissues which might be correlated with the early development 

of age-related pathological features including cardiac arrhythmias, fat loss, sarcopenia, 

lordokyphosis, arterial wall, and impaired wound healing (Baker et al., 2004, 2011). INK-

ATTAC was shown to significantly kill p16Ink4a-positive senescent cells in adipose tissue, 

skeletal muscle, and eye of BubR1H/H mice and delayed the onset and progression of age-related 

dysfunctions including such cataracts and lordokyphosis (Baker et al., 2011). This technique has 

since been used to study the role of senescent cells in various conditions in mice such as 

senescent glial cells’ role in tau-dependent pathology and cognitive decline (Bussian et al., 
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2018), age-related bone loss (Farr et al., 2017) or in age-dependent hepatic steatosis (Ogrodnik 

et al., 2017). 

 

p16-3MR (trimodality reporter) 

Another p16INK4A targeting senolytic mechanism was developed in 2014 by Demaria and 

colleagues. Mice were transfected with an engineered bacterial artificial chromosome where the 

p16INK4A controls the expression of truncated herpes simplex virus 1 thymidine kinase (HSV-

TK), the 3MR (trimodality reporter) fusion protein expression (composed of a fluorescence 

reporter gene mRFP and the functional domains of bioluminescence reporter gene called 

synthetic Renilla luciferase (LUC) that serves as a luminescence detector of 3MR-expressing 

cells(Ray et al., 2004). The administration of a cytotoxic drug called ganciclovir kills 3MR 

expressing cells due to its conversion, by the action of HSV-TK, into toxic DNA chain 

terminator that leads to fragmentation of mitochondrial DNA and consequently apoptosis 

(Demaria et al., 2014). In this study Demaria et al. used this model to assess the physiological 

role of senescent cells in vivo (which we already discussed in this review), and were able to 

gather solid evidence that a few days after a cutaneous injury, senescent endothelial cells and 

fibroblasts can be seen at the wound site (Demaria et al., 2014). These cells were shown to 

promote wound closure by inducing myofibroblast differentiation through the secretion of the 

SASP factor PDGF-AA. p16-3MR mice treated with ganciclovir displayed a significant wound 

closure delay in comparison with the wild-type and vehicle-treated p16-3MR mice supportinga 

role for SASP and cellular senescence in tissue repair (Demaria et al., 2014). 

 

p19ARF Toxin Receptor-mediated Cell Knockout 

More recently, Hashimoto and colleagues produced a mouse model using a different marker 

called p19ARF (p14ARF mouse homolog) known to be a cell cycle regulator expressed through the 

ARF promoter that plays a crucial role in the induction of cellular senescence in mice. In this 

study, senescent cells positive for p19ARF were successfully ablated in lung tissue from a 

transgenic model based on a described cell clearing mechanism using a toxin-mediated cell 
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knockout system called Toxin Receptor-mediated Cell Knockout (TRECK) improving the age-

related decreased lung function and reversing aging-associated gene expression profile 

(Hashimoto et al., 2016). In this model, expression of a diphtheria toxin receptor along with the 

bioluminescent enzyme luciferase is under the control of a tissue-specific promoter (in this case 

of ARF promoter), as administration of the diphtheria toxin leads to p19ARF positive senescent 

cells death (Hashimoto et al., 2016).  

 

p16-CreERT2-td Tomato mouse model 

In a recent study, Omori and colleagues generated a new mouse model for the study of cellular 

senescence through single-cell analysis in vivo called p16-CreERT2-tdTomato mice. To 

generate this model, CreERT2 was inserted into the endogenous Ink4a locus (p16 locus) of 

C57BL/ 6 embryonic stem cells through homologous recombination followed by an SV40 

polyadenylation site to exon 1α (first exon of the Ink4a locus) a methodology described by Burd 

and colleagues (Burd et al., 2013). p16Ink4a-CreERT2 mice were then crossed with Rosa26-

CAG-lsl-tdTomato (basic orange constitutively fluorescent protein) mice (Iwasaki et al., 2018) 

originating p16-CreERT2-tdTomato mice (Omori et al., 2020). This model was revealed to be 

highly efficient in detecting cells with high expression of p16 in combination with tamoxifen 

administration (controller of Cre activity) (Omori et al., 2020). In this study, cells with p16 high 

expression, impaired proliferation, and half-lives between 2.6 to 4.2 months were increased in 

aged mice, being detected in all organs.  Single-cell RNA-sequencing of kidney and liver tissues 

revealed that cells with high expression of p16 displayed widely heterogeneous senescent 

phenotype and were found in hepatic endothelium, renal proximal and distal tubule epithelial, 

and manny other cell types (Omori et al., 2020). Also, the elimination of cells with high 

expression of p16 in a nonalcoholic steatohepatitis mouse model prevented related hepatic 

lipidosis and ameliorated inflammation (Omori et al., 2020). 

V. Senotherapy & Aging-related diseases 

As already mentioned, cellular senescence is one of the 9 hallmarks of aging identified in the 

famous paper by López-Otín and colleagues (Lopez-Otin et al., 2013). Also, age-related 
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senescent cell accumulation in tissues has been suggested to be a major contributor to the 

development of several aging-associated pathologies such as cancer, osteoarthritis, Alzheimer’s 

disease type 2 diabetes, atherosclerosis, cataracts, and pulmonary fibrosis (Childs et al., 2015). 

In the last few years, efforts have been made to take advantage of the current knowledge 

regarding senescence mechanisms to produce several therapeutic strategies in order to treat 

aging-related conditions. These strategies can be divided into three main categories (Shetty et 

al., 2018):  

 

i) preventive non-pharmacological interventions that ameliorate the age-related senescent cell 

accumulation in tissues (e.g. caloric restriction) 

ii) pharmacological interventions for SASP modulation, referred to as senomorphics.  

iii) pharmacological interventions, referred to as senolytic therapies, that promote senescent cell 

death in order to decrease the senescent cell burden in tissues. 

While still in early stages, some compounds have already shown senolytic and senomorphic 

potential in pre-clinical studies and others have already been submitted to clinical 

experimentation which we are going to be discuss below. Table 2 summarizes the currently 

known features of these compounds.  

 

Cellular Senescence & Caloric Restriction (CR) 

The first evidence of the longevity and health-promoting effects of caloric restriction (CR) 

comes from experiments performed on rats in 1935 by McCay et al. (McCay et al., 1935). Since 

then, CR implementation featuring essential nutrient intake has been shown to extend lifespan 

and healthspan preventing or delaying the onset of many age-associated chronic diseases in 

multiple model organisms including fruit flies, worms, yeast, many rodents, and non-human 

primates (Fontana et al., 2010; Mattison et al., 2017; Fontana, Nehme, et al., 2018). Pioneer 

randomized clinical trials for the assessment of CR effect in aging and longevity biomarkers in 

nonobese human subjects were initiated by the US National Institute of Aging as part of a 

research program called Comprehensive Assessment of the Long-term Effects of Reducing 
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Intake of Energy 1 (CALERIE-1). These studies showed that 6 months to 1-year 

Implementation of CR with essential nutrient intake in overweighted (but not obese) men and 

women was associated with decreased risk for cardiovascular diseases, loss of weight, improved 

insulin sensitivity, reduced day-time and night-time core body temperature, downregulation of 

inflammatory markers, alterations in the circulating levels of many hormones including a 

decrease in the levels of insulin, leptin, testosterone, estradiol, and triiodothyronine and an 

increase in the levels of adiponectin and cortisol (Most et al., 2017). In following clinical trials 

(CALERIE-2) healthy non-obese young and middle-aged (mean age 38) men and women 

submitted to a two-year CR intervention displayed reduced whole-body oxidative stress 

indicated by the concentration of urinary F2-isoprostanes (a marker of nonenzymatic lipid 

peroxidation in humans that is formed from polyunsaturated fatty acids) (Yang et al., 2016; 

Il’yasova et al., 2018). Another CALERIE-2 study revealed a significant increase in serum 

IGFBP-1 and a reduction IGF-1:IGFBP-1 ration, leptin, and T3, after 2 years of CR (Fontana et 

al., 2016). Also, the skeletal muscle tissues of healthy and lean men and women (mean age 52.3 

± 11 years) submitted to a CR diet for 3–15 years displayed increased levels of key chaperones 

for the maintenance of proteostasis levels including HSP70 and Grp78 along with increased 

protein and mRNA levels of autophagic mediators such as beclin-1 and comparatively to control 

volunteers (Yang et al., 2016).  

Despite all this evidence, the exact mechanisms that underlie the beneficial effects of CR in 

humans and the conditions under which they are maximized have not been entirely described 

(Fontana, Nehme, et al., 2018; Austad and Hoffman, 2020). However, contrary to what was 

previously thought, it is now accepted that the beneficial effects of CR do not only result from 

the decreased ROS production as a result of low metabolic rate but also from active regulation 

of defense mechanisms against oxidative stress (Fontana, Nehme, et al., 2018). Interestingly the 

evidence in both animal models and human studies suggests that CR might be a considerable 

strategy for preventing abnormal senescent cell formation seen during aging (Fontana, Nehme, 

et al., 2018). Studies indicate that CR can stimulate the activity of some members of the sirtuin 

protein family including SIRT1 and SIRT3 which are known to be essential factors in the 
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antioxidant response (Fontana, Nehme, et al., 2018). CR promotes SIRT3 expression in mice 

which deacetylates two critical lysine residues on SOD2 and promotes its antioxidative activity 

(Qiu et al., 2010). Further, downregulation of SIRT3 can cause mitochondrial dysfunction 

which can lead to cellular senescence (Wiley et al., 2016). This suggests that CR might possess 

an anti-senescent effect by promoting antioxidant response through sirtuin upregulation (Wiley 

et al., 2016; Fontana, Nehme, et al., 2018).  As previously discussed, in some conditions, 

autophagy can have an anti-senescent effect by eliminating damaged macromolecules and 

organelles (Chapter 1). As mentioned above, CR can upregulate several proteins required for 

this process to function correctly which might be a factor in the CR-mediated prevention of the 

onset of cellular senescence (Yang et al., 2016; Fontana, Nehme, et al., 2018). CR has also been 

shown to prevent the age-related decrease in the function of DNA repair mechanisms in model 

organisms such as the non-homologous end joining, nucleotide excision repair , and base 

excision repair pathway. This might also contribute to the anti-senescent of CR since it can help 

prevent DNA damage, a known hallmark of cellular senescence (Fontana, Nehme, et al., 2018). 

As mentioned above, 2 years of CR implementation in humans has been shown to be associated 

with an increase in serum IGFBP-1 and a decrease in IGF-1:IGFBP-1 ratio (Fontana et al., 

2016). This can downregulate IGF-1 signaling which might produce an anti-senescent effect 

since chronic exposure to IGF-1 has been shown to induce premature senescence by the 

regulation of the SIRT1-p53 pathway (Tran et al., 2014; Fontana, Nehme, et al., 2018). CR can 

also mitigate the activity of mTOR in rodents that, as already mentioned in this review, is a 

known SASP regulator and its activation is associated with the induction of senescent 

phenotype (Fontana, Nehme, et al., 2018; Tulsian et al., 2018; Chen et al., 2019). Indeed, obese 

mice submitted to a 30% CR diet for 2 months displayed significant decreased levels of adipose 

tissue cytokines and chemokines known as important SASP factors such as IL-1Rα, IL-2, IL-6, 

CXCL16, and Monocyte Chemoattractant Protein-1 (MCP-1) (Kurki et al., 2012). Further, 

kidney tissue from aged mice submitted to 10 days of 40 % CR displayed lower levels of pro-

inflammatory mediators such as cyclooxygenase 2 (COX-2), inducible nitric oxide synthase 
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(iNOS), IL-1β, IL-6, and NF-κB (Jung et al., 2009; Kim et al., 2020). Lastly, studies suggest 

that CR can reduce senescence markers in the human colon (Fontana, Mitchell, et al., 2018). 

 

A. Senomorphics 

Several senomorphics compounds have been shown to contain the propagation of the 

senescence phenotype by regulating of SASP content (Martel et al., 2020). As mentioned 

earlier, SASP is regulated by a wide range of signaling pathways and transcription factors. 

Pharmacological targeting of these regulating elements can result in a significant disruptive 

effect in SASP. Due to SASP's high heterogeneity, each compound should be carefully studied 

taking into account that its effect might vary according to the cellular lineage or environmental 

context (Sieben et al., 2018; Sun et al., 2018). Chronic secretion of SASP pro-inflammatory 

mediators is involved in the development of a sterile systemic inflammation environment during 

aging referred to as inflammaging. Therefore, the pharmacological downregulation of SASP 

proinflammatory mediators is expected to act as a preventive measure against the development 

of inflammaging related pathologies. It is worth noting that most of the compounds included in 

this category have been approved for the treatment of other conditions (Zhu et al., 2020). In this 

subchapter we discuss what is currently known about each compound that has been proven to 

possess senomorphic activity. 

 

Metformin 

Metformin is a US Food and Drug Administration (FDA)-approved insulin sensitizer 

administrated orally that has been used for the treatment of type 2 diabetes mellitus for more 

than 60 years. (Newman et al., 2016). Despite its successful use, metformin's pharmacokinetic 

properties have not been completely unveiled, however, animal and human studies have shown 

that metformin can inhibit gluconeogenesis in the liver through impairment of mitochondrial 

redox shuttle (Flory and Lipska, 2019). Also, it is thought that the metformin effect is also 

extended to the gut lumen through various mechanisms (Flory and Lipska, 2019). It is worth 

noting that 25% of patients under metformin treatment have shown some adverse effects such as 
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nausea and diarrhea although these might be alleviated through careful dose titration (Bonnet 

and Scheen, 2017; Flory and Lipska, 2019). Also, 60 years of clinical data have not raised any 

safety concerns for the use of metformin apart from lactic acidosis caused by intake above the 

recommended dose or by patient’s predisposal conditions for lactic acidosis such as chronic 

kidney disease, hepatic impairment, and heart failure (Crowley et al., 2017; Flory and Lipska, 

2019).   

A systematic review found that the administration of the insulin sensitizer metformin in diabetic 

patients was correlated with a decrease in cancer rate and cardiovascular disease onset and 

overall appeared to extend the life span and health span of patients independently of its effect on 

diabetes (Campbell et al., 2017). Evidence suggests that these beneficial outcomes might be 

mediated by an anti-senescence effect. In a recent study, one of the mechanisms that might be 

behind metformin’s prevention of cardiovascular disease through the prevention of cellular 

senescence was unveiled (Karnewar et al., 2018). In this study, metformin was shown to 

coordinate the delay of endothelial senescence through mitochondrial function and biogenesis 

stimulation. The increased expression of AMPK as a result of metformin administration 

promoted the trimethylation of H3K79 resulting in SIRT3 upregulation. SIRT3 expression is 

known to promote PGC-1α expression which was shown to enhance the expression of hTERT 

(telomerase catalytic subunit) delaying endothelial senescence (Karnewar et al., 2018). 

Metformin has also been shown to inhibit the expression of genes coding for multiple 

inflammatory cytokines seen during cellular senescence (Moiseeva et al., 2013). In this study, 

the administration of metformin on prostate cancer cultures prevented the growth-stimulating 

effect of conditioned medium from senescent cells (Moiseeva et al., 2013). Metformin impaired 

NF-κB translocation to the nucleus and prevented the activation of the NF-κB pathway by 

inhibiting the phosphorylation of IκB and IKKα/β (Moiseeva et al., 2013). As already 

mentioned earlier, NF-κB is one of the main regulators of SASP, which might suggest that 

metformin administration might cause its disruption leading to SASP downregulation 

(Moiseeva et al., 2013).  Metformin was shown to possess therapeutic potential against 

intervertebral disc degeneration after its administration to model mice resulted in a reduction in 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 2 February 2023 as DOI 10.1124/pharmrev.122.000622 This article

at A
SPE

T
 Journals on A

pril 19, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


53 
 

disc degeneration. in vitro experiments revealed that this protective effect was in part mediated 

by prevention of nucleus pulposus cells senescence or apoptosis through autophagy stimulation 

(Chen et al., 2016). Another anti-senescence effect of metformin is thought to result from its 

capacity to upregulate the endoplasmic reticulum-localized glutathione peroxidase which is 

usually decreased in senescent cells (Fang et al., 2018). This was shown to be mediated by the 

metformin-induced accumulation of the nuclear factor erythroid 2-related factor 2 which is able 

to attach to the antioxidant response elements in the GPX7 gene promoter promoting its 

expression (Fang et al., 2018). 

 

Mammalian target of rapamycin (mTOR) suppressant rapamycin 

MTOR is a sensor of nutrient and growth signals whose relationship with aging and cellular 

senescence is widely described in the literature (Weichhart, 2018) however here we are only 

focusing on evidence regarding MTOR influence over the SASP. mTOR inhibition is known to 

increase the lifespan of most model organisms, although the responsible mechanism is not yet 

entirely clear (Weichhart, 2018). However, mTORC1 (mTOR complex) inhibition namely 

through rapamycin has been shown to downregulate SASP through a variety of mutually non-

exclusive mechanisms (Weichhart, 2018). The RNA-binding protein ZFP36L1 can inhibit the 

transcription of many SASP mediators, however, during senescence, mTORC1 upregulation 

promotes the translation of MAP kinase-activated protein kinase 2 (MAPKAPK2) that 

phosphorylates ZFP36L1 leading to SASP expression which is, therefore, subjected to 

inhibition by rapamycin administration (Herranz et al., 2015; Weichhart, 2018). Further, 

rapamycin has also been shown to prevent the secretion of pro-inflammatory SASP mediators 

by inhibiting IL-1A translation resulting in the downregulation of pro-inflammatory genes 

regulated by NF-κB (Laberge et al., 2015; Weichhart, 2018). In another study, rapamycin was 

shown to downregulate SASP independently from its Nrf2 (a pro-longevity signaling pathway 

shown to be decreased during cellular senescence-mediated cell cycle arrest) (Volonte et al., 

2013; Wang et al., 2017; Weichhart, 2018). 
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Rapamycin is a macrolide known to inhibit mTOR that is produced by Streptomyces 

hygroscopicu  bacterium, originally discovered in soil samples from Easter island (Vézina and 

Kudelski, 1975). It has been shown to impair protein translation in T-cells through the inhibition 

of the incorporation of amino acids into proteins leading to a decrease in their proliferation rate. 

Also, rapamycin has a similar structure to that of FK506 which is another macrolide known to 

inhibit IL-2 production and calcineurin activity in T cells (Martel et al., 1977; Bierer et al., 

1991; Arriola Apelo and Lamming, 2016). in fact, the FDA has already approved rapamycin for 

immunosuppressive treatment during solid organ transplantation and its analogs are referred to 

as “rapalogs” temsirolimus and everolimus for the treatment of advanced renal cancer 

carcinoma. In 2011, everolimus was also approved for the treatment of progressive 

neuroendocrine tumors of pancreatic origin (Li et al., 2014). However, despite the pro-longevity 

effects shown in model organisms, it has shown some side effects in rodents including increased 

rates of kyphosis and cataracts. In humans, rapamycin and rapalogs administration has been 

associated with the development of aphthous ulcers and metabolic dysfunction along with 

impaired wound healing (Newman et al., 2016). As such, possible future rapamycin-based 

semomorphic therapeutics should be designed to circumvent these adversities.  

 

JAK inhibitors 

Evidence suggests that the JAK pathway is one of the main regulators of SASP-associated pro-

inflammatory cytokine production. This pathway has been found to be highly activated in aged 

adipocytes and its inhibition with a 3-day ruxolitinib treatment could prevent proinflammatory 

SASP secretion from preadipocytes and endothelial cells by 40–60%  while at 10-day treatment 

aged mice showed reduced frailty and inflammation (Xu, Tchkonia, et al., 2015). Ruxolitinib is 

a JAK1/2 inhibitor that was approved by the FDA and European Medicines Agency (EMA) for 

the treatment of myelofibrosis in 2011 and 2012 respectively and later in 2014 for the treatment 

of hydroxyurea (HU)-resistant or -intolerant polycythemia vera. Both these pathologies are 

myeloproliferative neoplasms characterized by the abnormal activation of the JAK-STAT 

pathway (Ajayi et al., 2018). It has also shown great results in vitro and in vivo research 
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revealing a great senotherapeutic potential (Zhu et al., 2020) In human progerin expressing 

fibroblasts, ruxolitinib was shown to reverse cellular senescence traits including cell cycle arrest 

aberrant nuclei shape and in progeric mice delayed the onset of aging phenotypes, including 

bone mineral content, bone fractures and loss of grip strength (Griveau et al., 2020). Further, in 

another study, aged mice (22-month-old) submitted to a ruxolitinib 8-week treatment displayed 

increased insulin sensitivity, reduced circulating activin A (adipogenesis downregulating 

hormone shown to be highly secreted by primary human senescent fat progenitors), reduced 

lipotoxicity and preserved fat mass (Xu, Palmer, et al., 2015).  However, a clinical study that 

aimed to assess the therapeutic effect of ruxolitinib in myelofibrosis patients, despite promoting 

a reduction in associated frailty also reported some side effects such as thrombocytopenia and 

anemia (Verstovsek et al., 2012). Also, since ruxolitinib is metabolized by Cytochrome P450 

Family 3 Subfamily A Member 4 (CYP3A4) its administration also limits the simultaneous use 

of potent CYP3A4 inhibitors with the risk of side effect aggravation (Ajayi et al., 2018). 

Therefore, despite the great potential displayed by this SASP inhibiting drug, translation to a 

clinical application should require great optimization in treatment strategy. 

 

B. Senolytic treatments  

For years now, researchers have been looking for ways to disrupt the senescence process in 

order to delay aging and treat aging-related diseases. However, as further discussed in previous 

chapters, senescent cells do not always have nefarious effects on tissues, in fact, it is well 

known that transient senescence plays a role in some physiological processes (Figure 2). Also, 

induction of cellular senescence can prevent dysfunctional cells from proliferating which could 

potentially be harmful to the organism, as with the case of tumor cells (Di Micco et al., 2006; 

Kuilman et al., 2010; Rufini et al., 2013). So, to circumvent this conundrum, more advanced 

senolytic therapies were developed with the intent of killing the already existing senescent cells 

instead of preventing their formation. However, there are still challenges that need to be 

addressed to translate these therapeutic strategies to the clinic (Palmer et al., 2019). These 

include: i) the already mentioned need for stablisment specific and reliable senescence 
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biomarkers in order to unmistakably identify senescent cells; ii) to investigate possible 

variations of the senolytic therapies effect in the various diseases stages along with the 

fluctuation of the formation/reestablishment of cellular senescence according to the variation of 

possible age-related insults; iii) the long term safety of these therapies. 

 In this subchapter, we discuss what is currently known about each compound that has been 

proven to possess senolytic activity. 

 

B-cell lymphoma/leukemia-2 (BCL-2) protein family inhibitors  

To prevent cell death as a result of external or their apoptotic SASP signaling, senescent cells 

use different but inter-related senescent cell anti-apoptotic pathways (SCAPs) to maintain their 

viability which has been shown to include the p53-p21 and PI3K-Akt pathways as well as other 

intervenient proteins such as tyrosine kinases, ephrins, and serpine (Zhu et al., 2015; Hu et al., 

2022). Other important regulators in apoptosis resistance in cellular senescence are the B-cell 

lymphoma/leukemia-2 (BCL-2) protein family including BCL-2 (the first element of this family 

to be discovered), BCL-XL, BCL-W, MCL-1, and A1 (Wang, 1995). Proteins from this family 

are characterized by a conserved BH3 region (an interactive site composed of 16–25 amino 

acids) that has since been targeted by a variety of inhibiting compounds, some displaying 

senolytic activity which we will further discuss below (Anantram and Degani, 2019). 

 

ABT-737 

In 2005, Abbott laboratories developed the first BH3 mimetic, a synthetic small-molecule called 

ABT-737 (Oltersdorf et al., 2005). This compound can bind with high affinity (Ki < 1 nM) to 

Bcl-2, Bcl-w, and Bcl-xL but with low affinity (Ki > 460 nM) while binding to other members 

of the antiapoptotic BCL-2 family members, and was proven to display effective 

antitumorigenic activity in cancer cell lines (Anantram and Degani, 2019). Its senolytic 

capacities were indicated by a study where it was able to induce lung and epidermis senescent 

cell apoptosis by Bcl‐xL and Bcl‐W inhibition leading to an increase in hair-follicle stem cell 

proliferation (Yosef et al., 2016). Further, a recent study found that ABT-737 treatment was 
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able to significantly eliminate Cox2-expressing senescent cells in mice reducing tumor 

development (Kolodkin-Gal et al., 2022). However, ABT‐737 showed poor oral bioavailability 

in animal models and its low aqueous solubility prevents intravenous delivery. 

 

Navitoclax (ABT-263)  

Navitoclax is an orally active homolog of ABT-737 that was generated through modifications in  

3 important backbone regions (Anantram and Degani, 2019). Due to its low aqueous solubility, 

Navitoclax displays a prolonged dissolution rate-limited oral absorption. This compound was 

shown to possess low plasma clearance values, low volumes of distribution in mice, rats, 

monkeys, and dogs (bioavailability after oral gavage of 20% ), and plasma elimination half-lives 

after i.v. dose of 4.6 to 8.4 hours. bioavailability and oral elimination are increased up to 50% 

and 8.9 hours respectively in dogs if the compound is orally administered in lipid-based 

formulations (Tse et al., 2008). This anti-cancer drug is also an inhibitor of the BCL-2 protein 

family including Bcl-2, Bcl-xL, and Bcl-w (Zhu et al., 2016). Together, in 2016 two 

independent studies showed that this compound was able to induce apoptosis in cultured 

senescent human umbilical vein epithelial cells, IMR90 human lung fibroblasts, murine 

embryonic fibroblasts and reduce the levels of senescent bone marrow hematopoietic stem cells 

and senescent muscle stem cells in normally aged and sublethally irradiated mice, however, 

failed to induce apoptosis in human senescent preadipocytes (Chang et al., 2016; Zhu et al., 

2016). In a more recent studies, the administration of Navitoclax attenuated the post-traumatic 

osteoarthritis incidence through selective senescent cell clearance in the cartilage tissue along 

with the decrease in the production and secretion of SASP cytokines (Yang et al., 2020) and 

ameliorated osteoarthritis thermal and mechanical hyperalgesia and peripheral sensitization in a 

mouse model of osteoarthritis aged mice through reduction in nociceptive neuron projection to 

the synovium, expression of axon guidance proteins such as nerve growth factor NGF/TrkA, 

decrease in nociceptive neuron projection to the synovium and knee joint angiogenesis along 

with reduction in dorsal root ganglion and subchondral bone marrow  (Gil et  al.,  2022). Also, 

Navitoclax administration to osteoarthritis chondrocyte monolayer and 3D pellet culture 
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triggered senescent cells’ apoptosis resulting in the stimulation of cartilage matrix aggregation 

along with the decrease in the expression of inflammatory cytokines (Yang et al., 2020). Post-

traumatic osteoarthritis-related subchondral bone and cartilage deformations were alleviated by 

ABT263 intra-articular injection (Yang et al., 2020). Navitoclax administration was also found 

to deplete the senescent cell burden from atherogenic plaques of atherosclerotic mice (Childs et 

al., 2016). Despite these beneficial effects, toxic side effects such as transient neutropenia and 

thrombocytopenia have been associated with pre-clinical and clinical navitoclax administration 

(Rudin et al., 2012; Chang et al., 2016). However, a recent study by Lim et al. reports 

promissing results about a new strategy that could significantly reduce these toxic side effets 

(Lim et al., 2022). In this study, navitoclax was loaded into poly(lactic-co-glycolic acid) 

nanoparticles and intradiscally administered into injury-induced intervertebral disc degeneration 

rat models promoting Intervertebral disc navitoclax local delivery. This strategy promoted 

selective amelioration of senescent cell burden and downregulation of pro-inflammatory 

cytokines and matrix proteases from degenerative mouse intervertebral disc leading to 

retardation of  progression of intervertebral disc degeneration, and even restructuring of the 

intervertebral disc structure (Lim et al., 2022). Further, a drug combinatorial strategy involving 

the simultaneous administration of navitoclax and pan-mTOR inhibitors such as PP242 and 

AZD8055 was shown to decrease the requeired dosage or timespan of navitoclax needed for 

reaching IC50 and LT50 in senescent cells while extending the lifespan of premature-aged 

Drosophila and delaying the onset of aging-related phenotype (Xu et al., 2022). 

 

A1331852 & A1155463 

In the earlier mentioned study, the BCL-XL-selective inhibitors A1331852 and A1155463 also 

displayed senolytic activity in umbilical vein epithelial cells and IMR90 human lung fibroblasts 

(Y Zhu et al., 2017). Given that these compounds only inhibit BCL-XL, they might benefit from 

the lack of neutrophil toxicity that was generated by navitoclax-associated BCL-2 inhibition. 

 

Dasatinib & Quercetin 
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This drug combination is one of the most widely used senolytic therapy for cellular senescence  

study in model mice and in fact, human clinical trials are currently taking place to assess its 

potential for the treatment of age-related diseases associated with increased senescent cell 

burden. Dasatinib (D) is a tyrosine kinase inhibitor that has been previously used for cancer 

treatment and is known to target the EFNB-dependent suppression of apoptosis which lead to 

cell apoptosis of particularly senescent human adipocyte progenitors. In contrast, Quercetin (Q) 

is a plant flavonol, that targets mostly the SCAP present in human endothelial cells and mouse 

bone marrow-derived mesenchymal stem cells which include the ones mediated by BCL-2 

protein family, HIF-1α, PI3-kinase or p21. Further, its administration on HFD submitted mice 

was proven to decrease fibrosis of renal tissue along with cellular senescence markers and to 

promote the increase in renal oxygenation and creatinine levels (Kim et al., 2019). Given that 

neither Q targets senescent human adipocyte progenitors efficiently nor D targets senescent 

human endothelial cells, a combination of the two drugs (D + Q) was established as a potential 

senolytic treatment by Zhu and colleagues in 2015 (Zhu et al., 2015). More studies since then 

have been published, proving the senolytic effect of this treatment in many more mouse cells 

and tissues such as senescent embryonic fibroblasts, Aβ-induced senescent oligodendrocyte 

progenitor cells, skeletal muscle tissue of old mice, articular cartilage and synovium from 

osteoarthritis mouse models, in the liver of hepatocellular carcinoma mouse models and in in 

ovaries of obese mice (Demaria et al., 2017; Nath et al., 2018; Xu et al., 2018; PS Zhang et al., 

2019; Dungan et al., 2022; Gil et al., 2022; Hense et al., 2022; Thadathil et al., 2022). 

D + Q was submitted to its first clinical trial in January 2019 where 14 patients with idiopathic 

pulmonary fibrosis (fatal senescence-associated disease) showed improved physical function 

along with decreased levels of SASP (Justice et al., 2019). Later in September 2019, another 

clinical trial revealed decreased SASP factors in the skin biopsy specimens of patients suffering 

from systemic sclerosis, upon continuous D treatment (Martyanov et al., 2019). In the same 

month, for the first time, it was shown that D + Q decrease senescent cell burden in human 

subjects, through an open-label Phase 1 pilot study. Subjects with diabetic kidney disease (the 

most common cause of end-stage kidney failure) which is characterized by increased cellular 
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senescence, displayed decreased adipose tissue senescent cell burden, increased SA-β-gal 

activity, and high p16INK4A and p21CIP1 expression, 11 days after a 3-day oral D + Q treatment 

course. Further, skin senescent cell burden was also alleviated, and SASP factors which 

included the Metalloproteases MMP9 and MMP12 along with the interleukins IL-6 and IL-1α 

were reported to be decreased in circulation (Hickson et al., 2019). Oral D + Q treatment has 

elimination half-life of <11 h in humans and according to this study, a “hit-and-run” treatment 

regimen is enough to alleviate the senescent cell burden in humans maintaining low levels of 

senescent cells from days to weeks coinciding with the average time  (>2 weeks) for the 

development of new senescent cells in in vitro conditions (Hickson et al., 2019). 

 

Fisetin 

This quercetin-related natural flavonoid can be found in a variety of fruits including 

strawberries, grapes, apples, and persimmon, and in some vegetables such as onions and 

cucumbers (Khan et al., 2013). A flavonoid-rich diet is correlated with a reduced risk of 

coronary heart disease and cardiovascular disease (Terao 2017, Kim and Je 2017) and is thought 

to protect brain function during aging-associated neurodegenerative diseases (Maher, 2015). 

Despite poor solubility (10.45 μg/mL) and relatively low oral bioavailability (44%), fisetin was 

firstly found to selectively induce apoptosis in senescent cells but not proliferating human 

umbilical vein endothelial cells while failing to kill senescent human lung fibroblast IMR90 

cells or primary human preadipocytes (Y Zhu et al., 2017). In a following senolytic activity in 

vitro screen assessment of 10 natural flavonoid compounds (quercetin included) in senescent 

induced human and murine fibroblasts, fisetin was revealed to possess the highest senolytic 

potency. After in vitro assays, acute or intermittent fisetin administration to progeroid model 

mice carrying a p16INK4a-luciferase reporter caused a reduction in p16Ink4A and p21 expression 

along with impairments in the secretion of SASP mediators in multiple tissues. Fisetin reduced 

senescence in a subset of cells in human and adipose tissue explants while its administration to 

old wild-type mice reduced age-related pathology, restored tissue homeostasis, and extended 

median and maximum lifespan, causing fewer adverse reactions in mice than quercetin 
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(Yousefzadeh et al., 2018). Fisetin capacity for PI3K/AKT pathway inhibition is thought to be 

behind its apoptosis-promoting effect on senescent cells (Syed et al., 2013; Zhu et al., 2020). 

Fisetin-based treatments have not yet been proven to have senotherapeutic effects in humans, 

however according to clinicaltrials.gov, as of 2020 clinical testing is ongoing.  

 

Piperlongumine 

Piperlongumine is a natural compound that can be found in long pepper and is thought to have 

anti-cancer properties. Piperlongumine has a solubility of ± 26 μg/ml in water (27 fold higher 

with the addition of 10% Tween 80), however, it dissolves better in organic solvents including 

dimethyl sulfoxide (20 mg/ml), ethanol (0.150 mg/ml) and dimethylformamide (20 mg/ml) 

(Tripathi and Biswal, 2020). One study revealed that this compound was able to induce 

apoptosis (independently of ROS generation) of senescent human WI-38 fibroblasts generated 

by replicative exhaustion, ectopic expression of the oncogene Ras or exposure to ionizing 

radiation. Piperlongumine’s senolytic capacity was shown to be synergistically augmented 

through simultaneous navitoclax administration (Wang et al., 2016). 

 

FOXO4-DRI Peptide 

Forkhead box O4 protein  (FOXO4) is a transcription factor that jointly with p53 can regulate a 

wide range of pathways involved in metabolism, cell cycle, and apoptosis making them 

important regulators of cellular senescence (Bourgeois and Madl, 2018). Administration of a 

cell-permeable D-Retro Inverso (DRI)-isoform-FOXO4 Peptide (FOXO4-DRI) capable of 

disrupting p53-FOXO4 interaction was shown to cause p53 nuclear exclusion and activation of 

the intrinsic apoptotic arm in senescent human and mouse cell cultures. It also alleviated the 

senescent cell burden of doxorubicin exposed mice and preserved renal function, mice fitness, 

and fur density in old wild-type and accelerated-aging model progeroid mice (XpdTTD/TTD mice) 

(Baar et al., 2017). FOXO4-DRI is fused with a basic and hydrophilic sequence named HIV-

TAT to enhance its cellular uptake which has been shown to happen around 2-4h after being 

administrated (remained detected after a least 72h) (Baar et al., 2017). 
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Epigallocatechin gallate 

Epigallocatechin gallate (EGCG) is a compound found in green tea whose study has revealed 

possible therapeutic effects in age-associated immune disorders and organ dysfunction (Kumar 

et al., 2019). EGCG is absorbed by paracellular diffusion without hydrolysis or de-conjugation 

mainly through the epithelial lining of the ileum and jejunum. It then undergoes a series of 

metabolic reactions including sulfation, methylation, and glucuronidation in erythrocytes and 

liver cells (Cione et al., 2020). Due to its capacity to activate the antioxidant gene regulator the 

nuclear factor-erythroid 2-related factor 2 (Nrf2), a 2016 study sought to assess a possible 

association between EGCG’s antioxidant promoting role and cellular senescence in human 

mesenchymal stem cells. Indeed, senescence-induced cells through H2O2 exposure displayed 

decreased levels of acetyl-p53 and p21 upon EGCG treatment and Nrf2-knockdown leading to 

EGCG loss of antioxidant effect maintaining acetyl-p53 and p21 high levels. This suggests that 

EGCG possess an oxidative stress-induced senescence prevention function (Shin et al., 2016).  

Further, EGCG applied treatment to U251 glioblastoma cells caused telomere shortening and 

disruption of genome integrity, which led to cellular senescence. Given that the DNA damage 

marker phosphorylation of γ-H2AX histone and micronuclei was upregulated during specific 

timepoints and treatment doses displaying no telomere shortening, the authors of this study 

concluded that EGCG treatment induced both telomere-shortening-cellular senescence and 

genotoxicity independently (Udroiu et al., 2019). More recent experiments in 3T3-L1 

preadipocytes with prematurely induced cellular senescence through exposure to Hydrogen 

peroxide at a sub-lethal concentration (150 µM), revealed another possible mechanism behind 

the therapeutic effect of EGCG as its administration resulted in significant downregulation of 

mTOR/PI3K/Akt/ and AMPK signaling, the suppression of SASP, Cox-2, ROS, iNOS and NF-

κB along with cell cycle inhibition through p53 signaling. Also, EGCG prevented the 

accumulation of anti-apoptotic protein Bcl-2 in senescent cells leading to cellular apoptosis 

(Kumar et al., 2019).  
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Gingerenone A 

As a result of a drug screen performed on in radiation-induced WI-38 senescent human 

fibroblasts in a recent study by Moaddel et al. extract from Zingiber officinale Rosc. (ginger) 

(known to have anti-inflammatory effects) revealed senomorphic and senolytic potential 

(Moaddel et al., 2022). The main active compound was identified as gingerenone A and it 

displayed higher selectivity for senescent cells clearance compared to the known and already 

mentioned senolytic cocktail (D+Q). Gingerenone A, was shown to decrease senescent cell 

viability and SA-β-Gal activity, increase the expression of the anti-inflammatory cytokines IL-

10 and IL-13 and reduce the secretion of pro-inflammatory factors, such as IP-10, MCP-1, IL-6 

as well increasing the pro-inflammatory cytokines IL-1B and IL-8 (Moaddel et al., 2022). 

The distinct effect of gingerenone A in the expression of IL-6 and IL-8 suggests that the 

mechanism of action is probably independent of IL-1A which is known to mediate the 

activation of both IL-6 and IL-8 through amplification of C/EBPβ activation (Moaddel et al., 

2022). Gingerenone A treatment was not able to increase p53 levels either in senescent or 

proliferating cells, however, it downregulated the expression of Bcl-XL in senescent cells 

leading to an increase in caspase-3, which Is a strong indicator that gingerenone A senolytic 

effect is p53-independent and mediated by caspase-3 cleavage (Moaddel et al., 2022). 

 

Cardiac glycosides 

Cardiac glycosides are a family of organic compounds used in the treatment of congestive heart 

failure and cardiac arrhythmias although commonly associated with secondary toxicity. They 

are Na+, K+-ATPase pump inhibitors, however, evidence suggests that they might have other 

targets (Prassas and Diamandis, 2008). Na+/K+ ATPase inhibition can lead to membrane 

depolarization and intracellular acidification through disruption of cells’ natural electrochemical 

gradient. As previously mentioned, abnormal intracellular acidic pH and depolarized plasma 

membrane are both typical traits of senescent cells which in theory might increase their 

susceptibility to the effects of this family of compounds. Following this line of thought, two 
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recent studies (Guerrero et al., 2019; Triana-Martinez et al., 2019) sought to explore this 

vulnerability in order to assess if cardiac glycosides could be used for future senotherapeutic 

strategies. Indeed, drug screens revealed a senolytic activity by some of this family members in 

oncogene- and therapy-induced senescence cells (IMR90 ER: RAS, etoposide/doxorubicin-

IMR90, human lung adenocarcinoma cell line, Bleomycin-A549,  Palbociclib-SK-MEL-103 

melanoma cell line) (Guerrero et al., 2019; Triana-Martinez et al., 2019). Senolytic activity of 

identified elements of the cardiac glycoside family including digoxin, digitoxin, CGP-74514A 

(a CDK1 inhibitor), and ouabain was confirmed in the following in vitro assays. Digoxin and 

digitoxin, often used in the treatment of atrial fibrillation and heart failure showed senolytic 

activity, the last at a concentration similar to the found in the plasma of treated cardiac patients 

(20–33nM), which is a good indicator of safe clinical senotherapeutic application in the future 

(Guerrero et al., 2019). Further, Digoxin treatment was shown to reduce cell viability of SA-β-

gal expressing primary chondrocytes from osteoarthritic donors compared to healthy controls 

(Triana-Martinez et al., 2019). Digoxin senolytic activity was not only extended to A549 cells 

treated with Bleomycin but as well to cells treated with another senescence-inducing 

chemotherapeutic drug including Doxorubicin, Gemcitabine, Palbociclib, and Etoposide 

(Triana-Martinez et al., 2019). Curiously, Guerrero and colleagues verified that both ouabain 

and digoxin promoted the expression of several pro-apoptotic Bcl2 family proteins mainly 

NOXA which seemed to mediate its senolytic effects. In addition, ouabain was also shown to 

induce the activation of JNK, GSK3-ß, and p38 in senescent which was shown to be involved in 

the upregulation of NOXA (Guerrero et al., 2019). 

Ouabain administration to mid-passage cultures of primary bronchial epithelial cells led to a 

decrease in senescent p16INK4a-positive-cells while showing no effect in normal (p16INK4a-

negative) cell population while also revealing cytotoxic effect in high expressing RAS non-

senescent cells (Guerrero et al., 2019). Both ouabain and digoxin showed potential in 

preventing secondary tumors with increased aggressiveness as a result of the accumulation of 

senescent cancer cells after chemotherapeutic treatment. Triana-Martínez and colleagues 

showed that simultaneous gemcitabine (chemotherapeutic drug) and digoxin treatment reduced 
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tumor mass formed as a result of subcutaneous injection of luciferase-expressing A549 cells in 

Immunodeficient nude mice compared to controls (Triana-Martinez et al., 2019). Also, ex vivo 

patient-derived xenograft obtained from a breast tumor patient was shown to be susceptible to 

the simultaneous treatment of Digoxin and Doxorubicin (senescent inducing chemotherapy 

agent), and the same was verified when transplanted to nude mice submitted to the same dose 

adapted pharmacological intervention (Triana-Martinez et al., 2019). In addition, Guerrero and 

colleagues showed that ouabain or digoxin significantly decreased cell viability of cancer cell 

lines (SKHep1, HuH7, and HLF liver cancer, A549 lung cancer, SK-Mel-5 melanoma, MCF7 

breast cancer, HCT116 colon cancer) submitted to a variety of senescent inducing 

chemotherapeutic treatments, while showing no significant effects in cells treated with 

chemotherapeutic drugs which do not induce senescence, revealing high senescence specificity 

(Guerrero et al., 2019). Further, OIS cell burden in the liver triggered the transposon-mediated 

transfer of oncogenic NRAS (NRASG12V) to hepatocytes in immunosuppressed mice was 

significantly alleviated by ouabain treatment (Guerrero et al., 2019). Also, ouabain treatment 

was able to selectively induce apoptosis of senescent β-catenin positive cells in preneoplastic 

clusters formed as a result of adamantinomatous craniopharyngioma in embryonic pituitaries 

dissected and cultured ex vivo without affecting other cell types (Guerrero et al., 2019). Ouabain 

treatment was also able to minimize the expression of inflammatory cytokines including Il1α or 

Il6 and the accumulation of bystander senescent cells in the lung of irradiated mice (where the 

accumulation of these cells after irradiation are often first seen) (Guerrero et al., 2019). 

Similarly, in Triana-Martínez study, a ten-day digoxin treatment to immunodeficient mice, three 

weeks after intratracheal instillation of gamma-irradiated senescent human fibroblasts IMR90 to 

the lungs led to a decrease in fibrosis and senescence markers in lung tissue (Triana-Martinez et 

al., 2019). Altogether, this evidence stands out the potential that cardiac glycosides might 

possess as synergetic anti-cancer agents as they seem to promote cancer cell death and eliminate 

bystander senescent cells from tissues that are correlated with the development of side effects 

associated with current anti-cancer treatments. 
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In the Guerrero study, old female mice subjected to 5 rounds of intermittent ouabain treatment 

showed improvements in motor condition, displayed an increment in low phosphate and 

albumin levels, and a decrease in abnormally high levels of amylase in the blood observed 

during aging and related pathology (Guerrero et al., 2019). Further, comparatively, to their age-

matched counterparts, old mice treated with ouabain, showed a significant reduction in 

p16INK4a levels in many tissues including heart, kidney, and liver where there was also a 

significant reduction in SA-ß-Gal activity, immune infiltration, and markers of inflammation. 

Upon ouabain treatment, there was not any significant alteration in blood immune composition 

nor increased infiltration of granulocytes (Ly6G+) and platelets (CD42b+) suggesting that 

ouabain treatment might have an effect on cell-specific local immune infiltration (Guerrero et 

al., 2019). Results from these in vitro, in vivo, and ex vivo experiments suggest that cardiac 

glycosides, mainly ouabain and digoxin, are promising compounds for the development of 

future senolytic approaches for the treatment of age-related conditions. However, some 

obstacles still need to be surpassed, such as toxicity considerations and the current restriction of 

mice studies to the use of immunodeficient mice due to the known insensitivity of rodents to 

cardiac glycosides (Mijatovic et al., 2007), which is thought to be due to differences in the 

ATP1A1 protein (alpha subunit of the Na+/K+ATPase pump) (Price and Lingrel, 1988). 

 

Autophagy modulation to promote senolysis  

Some piece of evidence suggests that modulation of autophagy can induce apoptosis of 

senescent cells. However, autophagy-induced senolysis has been shown to be achieved by both 

inhibiting and activating autophagy (Dörr et al., 2013; Wakita et al., 2020; L’Hôte et al., 2021, 

2022). A recent study performed by Hôte et al., found that compounds from the previously 

mentioned cardioglycoside family, specially ouabain, have a potent senolytic effect on OIS-

fibroblast model through expression of BRAF-V600E (involved in development of melanoma 

and other types of cancer) (this model was named BRafSen cells). Cardioglycosides are known 

Na,K-ATPase pump inhibitors, however, the senolytic effect of oubain was shown to be 

mediated by Na,K-ATPase pump signaling rather than inhibition of ion transport. The 
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expression of BRAF-V600E in BRafSen cells promoted ER stress and autophagy suggesting 

that these cells require an elevated autophagy flux for survival. Authors concluded that this 

autophagy dependence by BRafSen cells makes them susceptible to ouabain and other 

cardioglycosides which were shown to inhibit autophagy flux through Na,K-ATPase pump 

signaling (L’Hôte et al., 2021).  The most recent evidence that autophagy activation leads to 

senolysis comes from a study by Wakita, et al., which after performing an unbiased high-

throughput screening of a 47,000 small molecule chemical compound library, found that a BET 

family protein degrader (BETd), also known as ARV825, a small molecule developed by Lu J, 

et al, displayed senolytic effect (Lu et al., 2015; Wakita et al., 2020). BETd is able to block 

BRD4, a protein from the BET family that protects cells from onset of cellular senescence 

through activation of the non-homologous end joining (NHEJ) repair and the downregulation of 

autophagy promoting genes (Sakamaki et al., 2017). BETd was able to promote the elimination 

of senescent hepatic stellate cells in obese mouse livers while reducing liver cancer 

development, and the elimination of chemotherapy-induced senescent cells by BETd which led 

to increased efficacy of chemotherapy against xenograft tumors in immunocompromised mice 

(Wakita et al., 2020). This was thought to be mediated by the inhibition of BRD4 that led to a 

decrease in the non-homologous end joining (NHEJ) repair resulting DNA double-strand breaks 

(DSBs) that ultimately along with the up-regulation of autophagy-related genes led to 

autophagy-induced apoptosis in senescent cells (Wakita et al., 2020). BETd displayed more 

robust senolytic activity than senolytic drugs already discussed in this review including D + Q, 

ABT26319 and 17-DMAG25 (Wakita et al., 2020). This was verified in every type of a cellular 

senescence induction and at a concentration of 5-10 nM. It is however worth standing out some 

still limitations pointed out by the authors regarding this early stage senolytic therapy (Wakita et 

al., 2020). Firstly, authors were not entirely sure of every mechanism behind the senolytic effect 

mediated by BRD4 inhibition. This in particular is suggested by the fact that BET inhibitors 

have been shown to downregulate SASP factor expression in senescent cells (Tasdemir et al., 

2016) including senescent cell surviving promoting factors such as GM-CSF8 or PDGF 

(Demaria et al., 2014) which leads the author to suspect that the senolytic effect of BETd might 
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also be mediated through SASP factor downregulation depending on the biological context. 

Further, more studies are still needed to assess whether BETd can have senolytic effect in every 

kind of senescent cells in vivo. Given that BETd high concentration treatment (≤ 50 nM) 

resulted in a reduction in the proliferation of control cells, the authors stand out the importance 

of determining an optimal concentration for in vivo treatment (Wakita et al., 2020). 

 

HSP90 Inhibitors 

Hsp90 is a 90 kDa Heat shock protein with a variety of various isoforms, that is involved in a 

series of physiological processes including ensuring correct protein folding and stabilization 

against heat stress, chaperoning the irreversibly misfolded proteins to proteasome degradation 

preventing them from aggregating in large numbers. Some proteins stabilized by Hsp90 are 

essential for tumor growth of various cancer cell types which has made HSP90 a potential drug 

target, for cancer treatment (Fuhrmann-Stroissnigg et al., 2018). In a 2017 study, several 

autophagic regulators were submitted to a senescence associated β-galactosidase assay as a 

screening platform using progeroid Ercc1−/− primary murine embryonic fibroblasts with 

defective DNA repairing capacity, resulting in the discovery of the senolytic properties of the 

chaperone HSP90 inhibitors Geldanamycin and 17-AAG (tanespimycin), displaying low 

toxicity for heathy cells. These two compounds were also able to significantly induce cell death 

in senescent human cells in culture (vascular endothelial cells, WI-38 and IMR90 human lung 

fibroblasts and mesenchymal stem cells) (Fuhrmann-Stroissnigg et al., 2017). In addition, a 

third HSP90 inhibitor, known as 17-DMAG (alvespimycin) was able to extend lifespan of 

Ercc1−/− progeroid mice, downregulating  p16INK4A expression in the kidney tissue (although no 

significant change in liver tissue), improving overall body condition and delaying the onset of 

age-related problems such as loss of forelimb grip strength, kyphosis, coat condition, ataxia, 

dystonia, gait disorder and tremor (Fuhrmann-Stroissnigg et al., 2017). This study also 

suggested that the senolytic effect of these HSP90 inhibitors might result from the impaired 

HSP90 mediated AKT and p-AKT (S473) stabilization (regulators of the anti-apoptotic PI3K-

Akt pathway) (Fuhrmann-Stroissnigg et al., 2017). Due to this selective inhibition, treatments 
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based on these compounds might be more efficient in combination with inhibitors of other anti-

apoptotic pathways such as D + Q or navitoclax, although clinical testing should be cautiously 

prepared. 

 

C. Alternative Senolytic Strategies   

Senolytic CAR-T-Cells (Immunotherapy) 

Despite the major advances the clinical application of the diferent senolytic stategies, there has 

been consistent association with some significant grade of side effect toxicity. This might have 

to do with the lack of specificity given that the targeted pathways are also present in non-

senesent cells. Recently, Amor and colleagues were able to design a new senolytic strategy 

based on the anti-tumor Chimeric antigen receptor (CAR) T cells genetically modified cell-

based therapy, previously used for treating certain haematological malignancies (Amor et al., 

2020). CARs proteins are synthetically made receptors that prompt T-cells to recognize and kill 

cells expressing a specific target antigen independently of MHC-mediated antigen presentation. 

These receptors are composed of four subunits that vary accordingly to the target protein (the 

extracellular antigen-binding domain, a hinge bound to a intracellular signaling subunit through 

a transmembrane domain) (Rafiq et al., 2020). This therapeutic strategy showed very promising 

results in tumor treatment field as autologous CD19-targeting CAR T cells for treatment of 

pediatric and adult B-cell malignancies were the first therapeutic mechanism featuring a genetic 

engineering component to obtain FDA approval (Park et al., 2016).  

RNA-sequencing results from three senescent models (therapy-induced senescence in mouse 

lung adenocarcinoma, OIS in mouse hepatocytes, culture-induced senescence in mouse hepatic 

stellate cells) obtained in Amor’s study (Amor et al., 2020), revealed eight common upregulated 

genes, which after filtration of the highly expressed in non-senescent cells and in vital tissues 

led to the identification of a senescence-specific cell surface marker called urokinase-type 

plasminogen activator receptor (uPAR) (encoded by PLAUR gene) (Amor et al., 2020). This 

membrane protein is a promoter of extracellular matrix degradation during fibrinolysis, wound 

healing along with invasion, motility and survival of neoplasic cells (Amor et al., 2020). 
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Further, a previous study had already reported the in vitro effectiveness of a CAR T cells 

targeting uPAR therapy for ovarian cancer using the natural ligand part of the uPAR in 

alternative to single-chain variable fragment (Wang et al., 2019). Cells expressing uPAR 

displayed similar histological features as cells with high p16 and IL-6 expression along with 

high SA-β-gal activity, also, uPAR positive-cells were found to be abnormally present in 

pancreatic intraepithelial neoplasia lesions from patients suffering from pancreatic cancer and 

human atherosclerotic plaques from carotid endarterectomy specimens. uPAR can also be 

converted into a soluble formed (suPAR) (generated by cleaving a uPAR portion upon ligand 

binding) which is a component of the SASP (Coppe et al., 2008) and a serum biomarker for 

diabetes and kidney disease (Hayek et al., 2015). Amor and colleagues further confirmed uPAR 

upregulation in vitro and in vivo senescent models including replication-induced senescent 

human primary melanocytes and therapy-induced senescence in mouse KP lung cancer cells and 

therefore used uPAR as a target for CAR-T cell therapy. The designed uPAR-targeting CAR T-

cell therapy was shown to complement MEK and CDK4/6 inhibitors anti-tumor treatment of 

mice suffering from lung adenocarcinoma prolonging their survival, and to minimize diet 

induced liver fibrosis in mice. However, some specimens exhibited transient hypothermia along 

with weight loss and increased levels of inflammatory cytokines such as GM-CSF, G-CSF , 

IFN-γ and IL-6, characteristic of the CAR T-cell-associated cytokine release syndrome, a 

condition that has been reported as a main side effect in a wide range of previous CAR-T cells-

based trials along with the recently described immune effector cell-associated neurotoxicity 

syndrome (Borrega et al., 2019). Overall, this study is an indicator of the potential displayed by 

this uPAR-specific CAR T-cell therapy in the treatment of senescent-associated diseases. 

However, future clinical studies should pay attention to possible related toxicities since the 

development of several side effects was already described (Borrega et al., 2019; Rivera et al., 

2020).   

 

Galacto-oligosaccharide-coated nanoparticles for safe delivery of diagnostic or therapeutic 

agents (gal-encapsulation) 
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As mentioned earlier, senescent cells are characterized by abnormal increased activity of 

lysosomal SA-β-gal along with increased endosomal traffic (Kurz et al., 2000; Munoz-Espin 

and Serrano, 2014; Sharpless and Sherr, 2015; Udono et al., 2015). Despite not being a totally 

specific cellular senescence biomarker, SA-β-gal is enriched in damaged or pathological 

affected tissues (Sharpless and Sherr, 2015). An article by Muñoz-Espín and colleagues 

describes a versatile senescent cell-specific drug-delivery technique they named gal-

encapsulation, that takes advantage of the increased SA-β-gal activity seen in senescent cells 

(Munoz-Espin et al., 2018). This approach consists in the encapsulation of the chosen 

compound in spherical particles of ± 100 nm diameter of porous silica coated with galacto-

oligosaccharides that prevents the diffusion of the content out of the silica matrix (Agostini et 

al., 2012). These particles can enter cells by endocytosis travel to the lysosomes. In senescent 

cells, highly active SA-β-gal can promote the dissolution of the spherical particles’ galacto-

oligosaccharide coat releasing their inside content into the intracellular space, while in non-

senescent cells the particles stay intact and eventually are released by exocytosis. This should 

prevent drug delivery to non-senescent cells highly contributing to the reduction of drug-related 

toxicity. This study confirmed the senescent specific delivery capacity of this mechanism on in 

vitro (chemotherapeutic (Palbociclib) induced senescent human cells) and in vivo (palbociclib 

treated in tumor xenografts and in lungs damage using bleomycin). Gal-encapsulated 

doxorubicin (chemotherapeutic with senescent and non-senescent cell killing) was able to 

significantly improve lung elasticity and reduce fibrosis while non-encapsulated doxorubicin 

failed to restore lung function (Munoz-Espin et al., 2018). Curiously, Gal-encapsulated 

rhodamine (fluorophore) administrated to bleomycin treated mice, besides being found in lung 

cells, was also found in lung macrophages which, as already mentioned, despite not being 

senescent cells display similar abnormal increased levels of SA-β-gal activity (Hall et al., 2016, 

2017; Munoz-Espin et al., 2018). Despite being a further indicator of gal-encapsulation’s 

specificity to high activity SA-β-gal cells, this also stands out as a liability in this method for not 

being entirely specific to senescent cells. As such, off-target effects caused by affinity towards 

activated macrophages might vary according to the encapsulated compound or might not even 
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be clinically significant, more in vivo (and posteriorly clinical) experimentation should be 

employed in order to assess this. Both Gal-encapsulated doxorubicin and Gal-encapsulated 

navitoclax (reviewed above) in combination with palbociclib were able to promote xenograft 

tumor regression. Without palbociclib (senescence-inducing factor on tumors) administration, 

this effect was abrogated suggesting specificity for senescent tumor cells. Further, gal-

encapsulation reduced significantly navitoclax and doxorubicin known toxic effects such as 

thrombocytopenia and cardiotoxicity suggesting that gal-encapsulation might effectively 

prevent drug exposure to non-senescent cells. Finally, this mechanism has also been shown to 

serve has a cellular detection mechanism as it can be loaded with fluorophores such as 

rhodamine which allows for visualized by in vivo imaging (Munoz-Espin et al., 2018). 

 

Galactose-modified prodrugs (duocarmycin derivatives) 

Galactose-modification is described throughout literature as a pharmacokinetic enhancing 

system that promotes effective and specific drug delivery. One great example is a technique 

referred to as antibody-directed enzyme prodrug therapy (ADEPT) in which target-cell specific 

antibodies are conjugated with an enzyme that is able to convert a prodrug into a cytotoxic drug 

(Sharma and Bagshawe, 2017). The natural antibiotic duocarmycin is a DNA alkylator agent 

that inhibits DNA synthesis and can lead to cell death, its glycosidic derivatives are often used 

as prodrugs in ADEPT (Tietze et al., 2010). Considering SA-β-gal abnormal high activity 

during senescence, in a recent study, Guerrero and colleagues tested galactose-modified 

duocarmycin derivatives prodrugs mainly JHB75B (referred to as prodrug A) and seco-

duocarmycin analog dimer (JHB71A) for senolytic activity (Guerrero et al., 2020). This would 

not require the usual simultaneous treatment with antibody-enzyme (SA-β-gal) used in ADEPT, 

due to SA-β-gal increased activity being a highly specific cellular senescence trait which 

theoretically would promote the conversion of these galactose-modified duocarmycin 

derivatives prodrugs into cytotoxic drugs specifically by senescent cells. They verified that 

these drugs were able to eliminate multiple types of senescent cells in vitro including in OIS 

cells (lung fibroblast (IMR90 ER:RAS), human mammary epithelial cells (HMEC ER:RAS)), 
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IMR90 senescent cells induced by doxorubicin or etoposide treatment, serial passage or 

irradiation. Duocarmycin prodrugs also alleviated senescent cell burden in the lung of irradiated 

senescent mouse model and were able to clear pro-tumorigenic senescent clusters in Hesx1Cre/+; 

Ctnnb1lox(ex3)/+ adamantinomatous craniopharyngioma (pituitary pediatric tumor) mouse model, 

with no effect on other cell types in the pituitary gland (Guerrero et al., 2020). These prodrugs 

also seemed to prevent the accumulation of bystander senescent cells after whole-body 

irradiation treatment of mice. These results although very promising are still in early stages of 

development and therefore further studies are much needed for assessing efficiency and viability 

of this senolytic strategy before moving on to the clinic (Guerrero et al., 2020). 

 

VI. Conclusion and Future perspectives 

Discovery of new senotherapeutic strategies and optimization of the existing ones will be 

dependent upon the endeavor to find more solid and specific cellular senescence biomarkers 

which would benefit from more research elucidating more details about cellular senescence 

mechanisms and better describe the role that cellular senescence plays in disease. The 

heterogeneity of the senescence phenotype found throughout tissues has remained an obstacle 

for the deployment of current senotherapeutic strategies as different senescent cells express 

different senescence markers, adopt different SASP profiles and use different SCAP. Therefore, 

for producing a senolytic effect on multiple tissues, finding optimal combinations between 

multiple senotherapeutics that inhibit different SCAP might be a solution in the future (van 

Deursen, 2014; Zhu et al., 2015). Another problem that must be tackled in the future is the 

toxicity associated with current senotherapeutic therapies. Investment must be made in finding 

new ways to get around or compensate for the acute cellular senescence processes that might be 

affected by senescent cell elimination. This would require gathering more knowledge on how 

cellular senescence is important to the organism and the development or improvement of 

existing drug delivery mechanisms, such as gal-encapsulation developed by Muñoz-Espín and 

colleagues (described above) (Munoz-Espin et al., 2018) in order to increase senescence 

specificity and decrease off-target effects or even non-pharmacological approaches such as the 
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CAR-T cell-based senolytic immunotherapeutic strategy developed by Amor and colleagues 

(described above) (Amor et al., 2020). It would also be important to assess possible differences 

between cellular senescence in humans and model organisms. The prevention of the secretion of 

pro-inflammatory SASP mediators has rendered senomorphic therapy a potential treatment 

option for inflammaging associated diseases(Sun et al., 2018). However, senolytic therapy has 

revealed to be a more specific (given SASP mediators non-specificity for senescent cells) and 

feasible strategy as senolytic acute administration intermittently has been shown to alleviate 

senescent cell burden, therefore minimizing the effects of the associated toxicity and making 

future treatments more tolerable (Kirkland and Tchkonia, 2017; Kirkland et al., 2017). Overall, 

despite the Senotherapy field still being in its early days, the current work has laid many 

foundations for future success in treating aging-related conditions which we expect to have 

tremendous impact in the extension of the average human health span. 
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Tables 

Table 1- Summary of the Cellular Senescence Biomarkers currently used. 1. Examples of the presence of the 

Biomarker in different cells/cell types upon Senescence (Biomarker Expression); 2. Biomarker quality (Features); 3. 

Detection methodologies (Detection)  

Biomarker Biomarker Expression Features Detection 

Beta-galactosidase (SA-β-gal) 

(Dimri et al., 1996) (Kurz et al., 

2000) (Hall et al., 2016, 2017) 

(Castro et al., 2003) (Sousa-Victor 

et al., 2014) 

 

 

Present in the majority of 

senescent cells 

High activity at pH 

6.0  

Present in non-

senescent activated 

macrophages; Not 

present in senescent 

geriatric satellite cells 

(not 100% specific) 

 

Measurement using a 

commercial kit (β-

Galactosidase Staining Kit) 

 

p16INK4a  

(Rayess et al., 2012)( (Baker et al., 

2016; Shimizu and Minamino, 

2019) 

 

Present in the majority of 

senescent cells 

Exhibits low 

expression in healthy 

cells; phosphorylated 

in senescent epithelial 

cells; present in non-

senescent activated 

macrophages (not 

100% specific) 

Can be detected through RT-

qPCR, western blot, single-

cell RNA-seq, and 

p16(LUC);  

Senescence-Associated Secretory 

Phenotype (SASP)  

(Hari and Acosta, 2017) (Becher 

et al., 2016; Wang et al., 2017; 

Furue et al., 2020) (Lu et al., 

2006; Green, 2008; YZ Xiao et al., 

2020). 

 

 

Some SASP factors are 

ubiquitous to most senescent 

cells 

 

 

Feature of various 

non-senescent cells  

(Not specific)  

 

 

ELISA assay, Western blot, 

immunostaining & High 

Content Microscopy 

Analysis 

 

Tumor suppressor genes p53/p21 

& DDR markers (e.g. ATM, ATR, 

53BP1, γH2AX…etc) 

 (Wang et al., 2015; YZ Xiao et 

al., 2020)(Turinetto and Giachino, 

2015) 

 

 

Present in most cells in an 

irreversible cell cycle arrest 

state 

 

Not specific since can 

be upregulated during 

other processes 

apoptosis and 

transient cell cycle 

arrest 

 

 

RT-qPCR, western blot, 

single-cell RNA-seq 

Telomere length   Measured through Southern 
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(Kimura et al., 2010) (Lin et al., 

2019) (Bradford et al., 2009; YZ 

Xiao et al., 2020) 

Cells under replicative 

senescence  

Not senescence 

specific; 

Used as a 

confirmation marker; 

Blot or Flow cytometry & 

Flow-FISH 

 

Proliferation markers Ki-

67;PCNA 

(Nagai et al., 2014; El Hasasna et 

al., 2015) (Cuylen et al., 2016; YZ 

Xiao et al., 2020) 

 

Highly expressed in 

Proliferating Cells  

Complementary 

biomarkers, 

(Combined with high-

density DNA damage 

foci (γH2AX)) 

absence indicates cell 

proliferation arrest 

 

 

Immunohistochemistry 

 

Clusterin 

(Foster et al., 2019) (Zhou et al., 

2015) (Matos et al., 2012; Li et 

al., 2013) 

e.g. Senescent Glioblastoma 

multiforme cells or WI-38 

fibroblasts, upregulated in many 

metastatic cancers 

 

 

Low-grade specificity 

 

 

RT-qPCR or Western 

Blotting 

 

Senescence-associated 

heterochromatin foci (SAHF) 

 (Narita et al., 2003; Zhang and 

Adams, 2007). 

Cells undergoing irreversible 

cell cycle arrest e.g. primary 

human embryonic fibroblasts 

cell lines IMR90 and WI38 cells 

SAHF formation and 

senescence are not 

always coupled. It 

may not be a suitable 

biomarker for single 

detection of 

senescence, should be 

combined with other 

biomarkers such as 

SA-β-gal 

 

SAHF punctate can be 

observed using DAPI cell 

staining 

 

Lamin B1 & Lamin B receptor 

(LBR) (Dreesen et al., 2013) 

(Freund et al., 2012) 

e.g. HeLa, normal human 

diploid fibroblast TIG-7 cells, 

Senescent dermal fibroblasts, 

and keratinocytes  

Lamin B1 and LBR 

potential reliable 

cellular senescence 

biomarkers 

(Specificity and 

sensitivity still in 

question. 

 

RT-qPCR, Western Blotting, 

immunohistochemistry 
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Table 2 - Summary of all reviewed senotherapeutic compounds and strategies: Classified according to 

type, target elements, and type of existing evidence that support its potential for senotherapeutic use 

(Existence of Evidence (+) Absence of Evidence (Ø)). 

Compound(s)/ Stategy Type Target in vitro in vivo Clinical 

Metformin  

(Fang et al., 2018) (Chen et al., 2016) 

Karnewar et al., 2018) 

Senomorphic AMPK, NF-κB, 

NRF2 

+ + Ø 

Rapamycin 

(Volonte et al., 2013; Wang et al., 

2017;)(Laberge et al., 2015; Weichhart, 

2018) (Herranz et al., 2015) 

Senomorphic mTORC1  

+ 

 

+ 

 

Ø 

Roxolitinib 

Verstovsek et al., 2012) Xu et al., 2015a) 

(Xu, Tchkonia, et al., 2015) (Griveau et 

al., 2020) 

Senomorphic JAK1/2 + + Ø 

ABT-737 

Yosef et al., 2016) (Anantram and Degani, 

2019) (Oltersdorf et al., 2005) 

Senolytic Bcl-2, Bcl-w & Bcl-

xL 

 

+ 

 

+ 

 

Ø 

Navitoclax (ABT-263) 

(Anantram and Degani, 2019) (Zhu et al., 

2016) (Chang et al., 2016)  (Yang et al., 

2020) (Childs et al., 2016) 

Senolytic Bcl-2, Bcl-w & Bcl-

xL 

 

+ 

 

+ 

 

Ø 

A1331852  

(Y Zhu et al., 2017) 

Senolytic BCL-XL  

+ 

 

Ø 

 

Ø 

A1155463  

(Y Zhu et al., 2017) 

 

Senolytic BCL-XL  

+ 

 

Ø 

 

Ø 

Dasatinib 

(Demaria et al., 2017; Nath et al., 2018; 

Xu et al., 2018; PS Zhang et al., 2019) Zhu 

et al., 2015) (Hickson et al.,2019) 

(Martyanov et al., 2019) Justice et al., 

2019) 

Senolytic Ephrins  

+ 

 

+ 

 

+ 

Quercetin 

((Demaria et al., 2017; Nath et al., 2018; 

Xu et al., 2018; PS Zhang et al., 2019) Zhu 

Senolytic BCL-2 protein 

family, HIF-1α, PI3-

kinase or p21 

+ + + 
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et al., 2015) (Kim et al., 2019) (Hickson et 

al., 2019) (Martyanov et al., 2019)( 

Justice et al., 2019) 

Fisetin 

(Syed et al., 2013; Zhu et al., 2020 

(Yousefzadeh et al., 2018) (Y Zhu et al., 

2017) 

Senolytic PI3K/AKT pathway + + + 

Piperlongumine 

(Wang et al., 2016) 

Senolytic PI3K/Akt 

mTOR 

+ Ø Ø 

Geldanamycin 

Fuhrmann-Stroissnigg et al., 2017) 

Senolytic Hsp90 

PI3K-Akt pathway 

 

+ 

 

Ø 

 

Ø 

17-AAG (tanespimycin) 

Fuhrmann-Stroissnigg et al., 2017) 

Senolytic Hsp90 

PI3K-Akt pathway 

+ Ø Ø 

17-DMAG (alvespimycin) 

Fuhrmann-Stroissnigg et al., 2017) 

Senolytic Hsp90 

PI3K-Akt pathway 

+ + Ø 

FOXO4-DRI Peptide 

(Bourgeois and Madl, 2018) (Baar et al., 

2017) 

Senolytic  

FOXO4 

+ + Ø 

Epigallocatechin gallate 

(Kumar et al., 2019) (Udroiu et al., 2019) 

(Shin et al., 2016) 

 

 

 

Senolytic 

Nrf2, mTOR, 

PI3K/Akt, AMPK, 

Cox-2, ROS, iNOS 

and NF-κB, p53, 

Bcl-2 

+ Ø Ø 

uPAR-CAR T-cells  

(Amor et al., 2020) 

Senolytic 

 

uPAR + + Ø 

Gal encapsulation  

(Munoz-Espin et al., 2018) 

Senolytic drug 

delivery system 

Cells with high SA-

β-gal Activity 

 

+ 

 

+ 

 

Ø 

Galactose-modified prodrugs 

(duocarmycin derivatives) 

 (Guerrero et al., 2020) 

Senolytic SA-β-gal + + Ø 

Cardiac glycosides  

(Guerrero et al., 2019; Triana-Martinez et 

al., 2019) (L’Hôte et al., 2021). 

 

 

 

Senolytic 

Na+/K+ ATPase 

pump, Bcl2 proteins 

(mainly NOXA), 

JNK, GSK3-ß, p38 

 

+ 

 

+ 

 

Ø 

BET family protein degrader 

(BETd)(ARV825) 

(Wakita et al., 2020) 

 

Senolytic 

 

non-homologous 

end-joining (NHEJ) 

repair BRD4 

 

+ 

 

+ 

 

Ø 
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Gingerenone A 

(Moaddel etal., 2022) 

Senolytic 

Senomorphic 

Caspase-3 

(predicted) 

+ Ø Ø 
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Figure Legends 

Figure 1- Various mechanisms of Cellular Senescence and respective inducing stimuli. Cellular 

senescence can be divided into replicative senescence and non-replicative senescence. 

Replicative senescence (1) Is induced by the cell division-related gradual telomere erosion 

which leaves the chromosome ends vulnerable to stressing agents promoting the development of 

various senescence-related traits (Turner et al., 2019). Non-replicative senescence is triggered 

by various stressing elements that can emerge during aging and pathology. DNA Damage (2) 

which results in DDR activation can lead to cell cycle arrest through ATM or ATR kinases 

activation that signal p53 stabilization and subsequent p21 increased expression; this leads to 

Cyclin-dependent kinase 2 (CDK2) inhibition which allows Rb tumor suppressor protein (Rb) 

to remain attached and therefore inhibiting E2F (G1 to S phase transition inducing transcription 

factor);  DNA damage can also promote Rb mediated E2F inhibition through p16INK4a 

upregulation which inhibits CDK4/6 (Rb detachment promoter) Paracrine-induced senescence 

(3) mediated by: paracrine SASP components secreted by nearby senescent cells which trigger 

specific signaling such as IL-6 that upon binding to its receptor two GP130 molecules complex 

lead JAK-STAT signaling pathway activation (Jones, Scheller and Rose-John 2011); 

Mitochondrial Dysfunction-Associated Senescence (MIDAS)): mitochondrial dysfunction 

originates a distinct cellular senescence type (MIDAS); Dysfunctional mitochondria display a 

low NAD+/NADH ratio which promotes growth arrest through p53; p53 activation modulates 

SASP by downregulating the IL1-dependent inflammatory arm through an NF-kB-independent 

mechanism and promote the expression of other factors such as CCL27, TNFα and IL10 

(Gallage and Gil, 2016; Wiley et al., 2016). Oncogene-induced Senescence (OIS) 5) works as 

an intrinsic suppressive mechanism through impaired tumor cell proliferation (Di Micco et al., 

2006; Kuilman et al., 2010; Rufini et al., 2013); both oncogene activation and tumor suppressor 

repression can lead to DNA damage which can originate irreversible growth arrest through 

p53/p21 and p16INK4a pathways activation (Calcinotto et al., 2019). Epigenetically-induced 

Senescence (6) consists in the formation of senescence-associated heterochromatin foci 

(SAHFs) (discussed in 1.2.) specialized domains of facultative heterochromatin such as 
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H3k9me2/3 that result from the spatial repositioning of preexisting repressive marks to 

promoter sites of proliferation-inducing genes such as E2F target genes such as cyclin A 

(Pluquet et al., 2015). Oxidative stress-induced senescence (7): generation of reactive oxygen 

species (ROS) for example through endoplasmic reticulum (ER) stress can result in DNA and 

mtDNA damage which can trigger DDR and MIDAS respectively. Chemotherapy-induced 

Senescence (8): the absence of senescence associated tumor suppressors such as p53 and Rb, in 

tumor cells upon being submitted to chemotherapeutic agents (Ewald et al., 2010; Amaya-

Montoya et al., 2020); Senescent-related morphological features) Senescent cells display 

morphological alterations including enlarged and flat form along cytoskeleton abnormalities 

(Cho et al., 2004). This seems to be mediated by the increased expression of the integral 

membrane protein caveolin-1 in senescent cells which was shown to regulate focal adhesion 

kinase activity and actin stress fiber formation through activation of RhoA, Rac1, and Cdc42 

resulting in membrane ruffles/lamellipodia and filopodia formation (Cho et al., 2004). (Created 

with BioRender.com).  

 

Figure 2- ER stress response mechanisms. During cellular senescence, there is an accumulation 

of dysfunctional protein accumulation that can lead to ER stress. In response, cells activate the 

unfolded protein response (UPR) through the phosphorylation of 3 key proteins: I) 

Serine/threonine-protein kinase/endoribonuclease IRE1 (IRE1α) that upon activation leads to 

unconventional splicing of X-box binding protein 1 (XBP1) mRNA into XBP1s that migrates to 

the nucleus where it functions as a transcription factor increasing the expression of genes 

involved in protein quality control (QC) and several ER Stress response mechanisms II) Cyclic 

AMP-dependent transcription factor ATF-6 alpha (ATF6α) when activated, leaves the ER and is 

cleaved by two Golgi apparatus membrane proteases sphingosine-1-phosphate 1 and 2 (S1P and 

S2P). As a result, a 50-kDa ATF6α domain is released and travels through the cytosol to the 

nucleus where it promotes the expression of genes involved in the protein (QC) such as Binding 

immunoglobulin protein (BiP) and even XBP1. III) PKR-like ER kinase (PERK) when activated 

promotes downregulation of protein synthesis through the phosphorylation of the translation 
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initiation factor eIF2α and the upregulation of genes involved in Antioxidant (A.O.) and Amino 

acid (Aa) response through induction of ATF4 and BiP mRNA translation. (Created with 

BioRender.com). 

 

Figure 3- Cellular senescence and physiological functions. 1 Wound healing: senescent 

fibroblast and endothelial cells secrete PDGF-AA inducing myofibroblasts differentiation; 

senescent hepatic stellate cells prevent excessive fibrosis, the proliferation of damaged cells, and 

signal the immune system to remove senescent cells. 2. cellular senescence plays a role in the 

formation of some embryonic structures. 3. Oncogene-induced senescence (OIS), suppresses 

tumor cell proliferation and development. 4. Immune cell recruitment and activation by 

senescent cells promote dysfunctional cell clearance. (Created with BioRender.com). 
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