
REVIEW OF NATURAL LANGUAGE PROCESSING IN

PHARMACOLOGY

Dimitar Trajanov1 2, Vangel Trajkovski1, Makedonka Dimitrieva1, Jovana Dobreva1,

Milos Jovanovik1, Matej Klemen3, Aleš Žagar3, Marko Robnik-Šikonja3
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ABSTRACT

Natural language processing (NLP) is an area of artificial intelligence that applies information tech-

nologies to process the human language, understand it to a certain degree, and use it in various appli-

cations. This area has rapidly developed in the last few years and now employs modern variants of

deep neural networks to extract relevant patterns from large text corpora. The main objective of this

work is to survey the recent use of NLP in the field of pharmacology. As our work shows, NLP is a

highly relevant information extraction and processing approach for pharmacology. It has been used

extensively, from intelligent searches through thousands of medical documents to finding traces of

adversarial drug interactions in social media. We split our coverage into five categories to survey

modern NLP methodology, commonly addressed tasks, relevant textual data, knowledge bases, and

useful programming libraries. We split each of the five categories into appropriate subcategories, de-

scribe their main properties and ideas, and summarize them in a tabular form. The resulting survey

presents a comprehensive overview of the area, useful to practitioners and interested observers.

Significance Statement

The main objective of this work is to survey the recent use of NLP in the field of pharmacology, in order to provide

a comprehensive overview of the current state in the area after the rapid developments which occurred in the last few

years. We believe the resulting survey to be useful to practitioners and interested observers in the domain.

Keywords: natural language processing, large language models, explainable artificial intelligence, named entity recog-

nition, relation extraction, embeddings, representation learning, knowledge graphs, adverse drug reactions, literature

based drug discovery, question answering, biomedical knowledge graphs, COVID-19.
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1 INTRODUCTION 8

1 Introduction

Information processing is indispensable to modern drug design, production, and application. A significant amount of

information is stored in textual format and located in scientific papers, clinical notes, ontologies, knowledge bases,

social media posts, and newspaper articles. Extraction and retrieval of this information rely on natural language

processing (NLP). NLP is a broad scientific area based on computer science, linguistics, and artificial intelligence

(Jurafsky and Martin, 2008, 2022). As the whole area of artificial intelligence, it has been completely transformed in

recent years by deep learning (Goodfellow et al., 2016). It has witnessed numerous new techniques and successful

applications, such as intelligent search, machine translation, and speech recognition.

Many general NLP techniques and approaches can be applied to the pharmacological area. However, often NLP

techniques have to be adapted to the specifics of the field in terms of available knowledge sources, text representation,

specific methods, terminology, etc. In this work, we survey modern NLP methodology, tasks, resources, knowledge

bases, and tools used and adapted to the area of pharmacology. The review aims to inform practitioners working in

the area of the pharmacology of exciting recent development and to give a solid starting reference material to new

entrants.

Several surveys summarise NLP in pharmacology but only cover specific areas of NLP methods. One of the first re-

views of NLP for clinical decision support (CDS) (Demner-Fushman et al., 2009) was published in 2009. The authors

observed that many CDS data is textual and reviewed existing NLP developments for CDS. Luo et al. (2017) present

a structured review of NLP for narratives in electronic health records (EHR) for pharmacovigilance. Dreisbach et al.

(2019) review NLP of symptoms from electronic patient-authored text data. A review of NLP in languages other than

English for clinic-related texts is presented by Névéol et al. (2018). Chen et al. (2021b) survey NLP addressing chal-

lenges related to COVID-19 pandemic. They present details related to several NLP tasks like information retrieval,

named entity recognition, literature-based discovery, question answering, topic modeling, sentiment and emotion anal-

ysis, caseload forecasting, and misinformation detection. In contrast to the listed surveys, we aim for a comprehensive

overview of NLP in pharmacology.

NLP is a subfield of much broader areas of machine learning (ML) and artificial intelligence (AI). Many ML algorithms

not related to text are applicable to pharmacological tasks. While the focus of this paper is the application of NLP in

pharmacology, we here refer to several recent survey articles that cover ML application in specific pharmacological

tasks, like drug discovery (Carracedo-Reboredo et al., 2021; Dara et al., 2022; Stephenson et al., 2019), drug-target

interaction prediction (Chen et al., 2018; Le and Le, 2016), drug repurposing (Yang et al., 2022), drug-drug interactions

(Han et al., 2022), ML applications for COVID-19 (Kamalov et al., 2021), pharmacometrics (Janssen et al., 2022;

McComb et al., 2022), cancer management (Kumar and Saha, 2022), microbiome therapeutics (McCoubrey et al.,

2021), exploratory pharmacovigilance (Kaas-Hansen et al., 2022), biomaterials (Kerner et al., 2021), and many more.

Recently, the primary methodological approach to NLP has been deep learning. Deep neural networks (DNNs) re-

quire that text is transformed (embedded) into numeric vectors in a process called representation learning. We present

general text embeddings as well as specific variants relevant to the area of life sciences and pharmacology. As phar-

macology is a knowledge-intensive area where relevant information is not stored only in text documents but also in
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1 INTRODUCTION 9

databases, ontologies, and linked data, we survey recent attempts to inject knowledge into DNNs. Due to the need to

understand the decisions and biases of DNNs, we discuss techniques that make their output more transparent.

Some NLP tasks are particularly important to the area of pharmacology. While they are often based on general

approaches, they are strongly adapted and use specific pharmacological resources. We discuss general tasks such as

named entity recognition, relation extraction, literature-based discovery, question answering, and field-specific tasks

such as detection of adverse drug reactions and drug discovery.

The basic precondition for applying NLP is the availability of language resources. In multiple studies, EHRs are the

main source of information (Jagannatha et al., 2019a; Li et al., 2018; Liu et al., 2019a; Wang et al., 2009; Wunnava

et al., 2019). EHRs contain patient data such as diagnoses, hospital admissions, prescriptions, and adversary drug

effects. The data in EHRs are well-structured and can be readily processed; however, different EHR components are

difficult to integrate. Many authors use molecular data (Park et al., 2011; Suthram et al., 2010), which can be integrated

with diseases (Goh et al., 2007). Other important sources of information are clinical data (Jung and Lee, 2013) (used in,

e.g., drug repurposing (Deftereos et al., 2011; Yang et al., 2017)), linked data, and the pharmacology-related semantic

web.

Linked data and knowledge graphs have recently emerged as general formalisms to represent knowledge in artificial

intelligence and the semantic web. Linked (open) data movement introduced new standards for representing, storing,

and retrieving data over the web (Bizer et al., 2009, 2008; Heath and Bizer, 2011; Hogan et al., 2021; Wood et al.,

2014), which enabled new distributed data sources and new applications. Knowledge graphs allow generating, consol-

idating, and contextually linking structured data. We present several knowledge graphs from the biomedical domain

and outline several COVID-19-related knowledge graphs.

Software tools and libraries are essential for using NLP in pharmacological research and practice. Mostly, these sup-

port the Python language. We present many general NLP tools and libraries as well as life-science and pharmacology-

specific variants.

We organize the survey along with five main areas: methodology, common tasks, datasets, knowledge graphs, and

software libraries. In Section 2, we structure NLP methodologies into three groups: representation learning (i.e.,

different embeddings), approaches to inject domain-specific knowledge into deep neural networks, and explainable

AI techniques used in pharmacology. The most frequently used NLP tasks in pharmacology are presented in Section

3. We cover the named entity recognition, relation extraction, adverse drug reactions, literature-based discovery, and

question answering. In Section 4, we first outline the approaches to finding data resources, followed by a survey

of existing data. We organize the overview into five categories: patient data, drug usage data, drug structure data,

question answering datasets, and general text processing datasets. Knowledge graphs used in the biomedical domain

and a specific example of COVID-19 disease knowledge graphs are covered in Section 5. We give an overview of

useful NLP software libraries and tools for the pharmacological domain as well as useful general NLP libraries in

Section 6. We conclude the survey in Section 7.
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2 NLP METHODOLOGY IN PHARMACOLOGY 10

2 NLP Methodology in Pharmacology

Recently, NLP has switched entirely to deep neural networks, mostly large language models (LLMs) that are pretrained

on huge quantities of text to capture various linguistic, general, and domain-specific knowledge. LLMs embed the text

data into a numeric representation preserving semantic relations between words. To be used for specific tasks, LLMs

are fine-tuned with problem-specific data.

In Section 2.1, we give an overview of modern text representations. We present static and contextual embeddings (i.e.,

LLMs) and specific variants relevant to the area of life sciences and pharmacology. While most of the work is focused

on English, we present some notable exceptions in other languages. As pharmacology is a knowledge-intensive area

where relevant information is not stored only in text documents but also in databases, ontologies, and linked-data,

we survey recent attempts to inject knowledge into deep neural networks in Section 2.2. Unfortunately, deep neural

networks often appear as black-box models, lacking transparency on how the decisions are taken. In Section 2.3, we

present general explanation techniques applicable to text prediction and focus on successful applications related to

pharmacology.

2.1 Representation Learning

In NLP, text representation is a crucial issue and research direction. Various text embeddings emerged that capture

both syntax and semantics of a given text. While traditional approaches were based on sparse representations such

as bag-of-words, dense representations such as word2vec (Mikolov et al., 2013), ELMo (Peters et al., 2018), and

BERT (Devlin et al., 2019) are based on neural networks and offer much more semantically valid and computationally

efficient representations. A common trait of these embeddings is to train a neural network on self-supervised text

classification tasks and use the weights of the trained neural network or the whole trained network to represent different

text units (words, sentences, or documents). The labels required for training these classifiers originate from large

corpora of general texts, e.g., web crawl, news, and Wikipedia. The usual classification tasks used in training these

representation models are predicting the next and previous word in a sequence or filling in missing words (also called

masked language modeling). Representation learning can be extended with other related tasks, such as prediction if

two sentences are sequential. The positive instances for learning are obtained from the text in the given corpus, while

the negative instances are mostly sampled from instances that are unlikely to be related.

We first briefly describe the principle of the most frequently used static embeddings, called word2vec, followed by

large language models such as contextual BERT. Next, we cover the adaptations of these representation techniques

for life sciences and pharmacology domains. We provide a summary of the presented embeddings at the end of the

section in Table 1.

2.1.1 Static Embeddings

The word2vec word embedding method (Mikolov et al., 2013) trains a shallow (one hidden layer) neural network

predicting the neighboring words of a given input word. The trained weights of the hidden layer produce a static

embedding in the sense that we get a single vector for each word. For example, the term bank may denote a financial

institution or land alongside a river, but it is represented with a single vector.
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2.1 Representation Learning 11

The word2vec method pre-trains a feed-forward neural network on a huge corpus, and the weights of the hidden layer

in this network are used as word embeddings. Pretrained word vectors for many languages are publicly available.

The published vectors are typically 100 or 300-dimensional, e.g., Google published vectors for 3 million English

words and phrases (https://code.google.com/archive/p/word2vec/). While the word2vec algorithm consists

of two related methods, we describe only the skip-gram method, which mostly produces more favorable results. The

method constructs a neural network to classify cooccurring words by taking a word and predicting its d preceding and

succeeding words, e.g., ± 5 words. In the actual neural network, one word is on the input (the central word) and one

word is on the output, where both are represented with one-hot encoding. The words and their contexts appearing in

the training corpus constitute the training instances of the classification problem. The first word of the training pair

is presented at the network’s input in the one-hot-encoding representation, and the network is trained to predict the

second word. The difference in prediction is evaluated using a loss function. For a sequence of T training words

w1, w2, w3, . . . , wT , the skip-gram model maximizes the average log probability:

1

T

T∑
t=1

∑
−d≤j≤d,j ̸=0

log p(wt+j |wt).

Once the network is trained with word2vec, vectors for each word in the vocabulary can be generated. As one-hot

encoding of the input word only activates one input connection for each hidden layer neuron, the weights on these

connections constitute the embedding vector for the given input word.

The resulting word embeddings’ properties depend on the context’s size. For a small number of neighboring words

(e.g., ± 5 words), we get embeddings that perform better on syntactic tasks. For larger neighborhoods (e.g., ± 10

words), the embeddings better express semantic properties.

Word2vec has attracted the immense attention of NLP researchers and practitioners. The word2vec precomputed

embeddings soon became a default choice for the first layer of many classification deep neural networks. Several

domain-specific variants have also been created and made publicly available. For life sciences, a well-known example

is the work of Pyysalo et al. (2013), who released two sets of word2vec vectors. The first, denoted PubMed-PMC, was

trained on 23M PubMed abstracts and 0.7M PubMed Central (PMC) articles. The second model, Wiki-PubMed-PMC,

was prepared using the same two corpora combined with 4M English Wikipedia articles. These static embeddings were

successfully used in many life-science applications (the paper received 492 citations by 13 March 2022). For example,

Habibi et al. (2017) have successfully applied the two embeddings to the biomedical named entity recognition problem

to detect genes, chemicals and diseases.

Note that the same technology to represent text can be applied to represent biological sequences, such as DNA, RNA,

and proteins (Asgari and Mofrad, 2015). The created bio-vectors (BioVec) refer to biological sequences in general,

protein-vectors are called ProtVec, and gene vectors are named GeneVec. A similar attempt to represent biological

sequences is dna2vec vectors (Ng, 2017).

Despite the successful use of static embeddings such as word2vec, contextual embedding models such as BERT have

become even more successful. Therefore, we skip the detailed review of static embedding models and focus on

contextual models.
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2.1 Representation Learning 12

2.1.2 Contextual Word Embeddings

The problem with word2vec embeddings is their failure to express polysemous words. During its training, all senses

of a given word (e.g., paper as a material, as a newspaper, as a scientific work, and as an exam) contribute relevant

neighboring words in proportion to their frequency in the training corpus. This causes the final vector to be placed

somewhere in the weighted middle of all words’ meanings. Consequently, rare meanings of words are poorly expressed

with word2vec, and the resulting vectors do not offer good semantic representations. For example, none of the 50

closest vectors of the word paper is related to science.

The idea of contextual word embeddings is to generate a different vector for each word’s context. The context is

typically defined sentence-wise. This solves the problems with word polysemy. The context of a sentence is mostly

enough to disambiguate different meanings of a word for humans and learning algorithms. Several contextual embed-

dings have been developed, e.g., ELMo, ULMFit, and BERT. As the latter achieves the best results in most NLP tasks,

we describe it below.

Contextual embeddings are based on the idea of language models, which predict either the next, previous or missing

word in a sequence. Training often combines several of these and other related tasks. Due to the network’s depth,

extracting vector representations from the network is no longer trivial, i.e., the trained deep networks store their

knowledge in weights spread over several layers. A frequently used approach concatenates weights from several

layers into a vector. Still, often it is more convenient to use the whole pretrained neural language model as a starting

point and fine-tune its weights further during the training on a specific task.

BERT (Bidirectional Encoder Representations from Transformers) embeddings (Devlin et al., 2019) generalize the

idea of language models (LMs) to masked language models, inspired by the gap-filling tests. The masked language

model randomly masks some of the tokens from the input. The task of an LM is then to predict each missing token

based on its neighborhood. BERT uses the transformer architecture of neural networks (Vaswani et al., 2017) in a

bidirectional sense (forward and backward). It introduces another task of predicting whether two sentences appear

in a sequence. The input representation of BERT is sequences of tokens representing sub-word units. The input is

constructed by summing the corresponding token, segment, and position embeddings.

Using BERT for classification requires adding connections between its last hidden layer and new neurons correspond-

ing to the number of classes in the intended task. The fine-tuning process is typically applied to the whole network.

All the BERT parameters and new class-specific weights are fine-tuned jointly to maximize the log-probability of the

correct labels.

BERT has shown excellent performance on many NLP tasks and is now a de-facto standard in NLP. In the initial

evaluation (Devlin et al., 2019), BERT showed improved performance on all eight tasks from the GLUE (general

language understanding evaluation) benchmark suite (Wang et al., 2018), consisting of question answering, named

entity recognition, and common-sense inference. A variant of BERT, called RoBERTa (Liu et al., 2019c), which only

uses masked language model training but on a larger dataset and for a longer time, has become a popular practical

choice due to its improved robustness and better parallel training capability.
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2.1 Representation Learning 13

Due to its success, BERT has spurred an immense tide of research, analyzing its capabilities and using and adapting it

for different purposes. An overview of research on BERT capabilities and inner workings is presented by Rogers et al.

(2020). Below, we overview the adaptations and applications relevant to pharmacology.

2.1.3 BERT Variants Relevant to Pharmacology

BERT has many extensions in architecture, training, and fine-tuning. A general improvement for science-related

text processing is SciBERT (Beltagy et al., 2019) that was trained on 1.14M scientific papers (3.17B tokens) from

Semantic Scholar instead of general text. The training data consisted of 18% computer science papers and 82% papers

from the biomedical domain. Upon its introduction, the SciBERT was compared to BERT and achieved improved

performance in a study involving four classification tasks based on scientific publications: named entity recognition

(NER), extraction of participants, interventions, comparisons, and outcomes in clinical trial papers, text classification,

relation classification, and dependency parsing (DP). The SciBERT has attracted considerable attention of the scientific

community with more than 1000 citations recorded by Google Scholar at the time of this writing.

In life sciences, there are several popular domain adaptations of BERT. BioMed-RoBERTa-base (Gururangan et al.,

2020) (almost 600 Google Scholar citations at the time of this writing) is an adaptation of RoBERTa (Liu et al., 2019c),

using long pretraining on 160GB of standard texts and additional 47GB (7.55B tokens from 2.68M papers) of abstracts

and full papers randomly sampled from PubMed repository. Using this domain-adapted pretrained model, the authors

improved classification for two domain-specific tasks. First, they improved the classification compared to the baseline

RoBERTa model for 2.3 micro F1 percent on the Chem-Prot database (Kringelum et al., 2016) that contains chemical-

protein-disease annotations enabling the study of systems pharmacology for a small molecule across multiple layers

of complexity from molecular to clinical levels. Second, they tested the BioMed-RoBERTa on the PubMed sequential

sentence classification task (Dernoncourt and Lee, 2017) and achieved 0.4 micro F1 percent advantage over RoBERTa.

The BioBERT (Lee et al., 2019) representation model (almost 2000 Google Scholar citations at the time of this

writing) was initialized with BERT weights and then pretrained using domain-specific literature, namely PubMed

abstracts (4.5B words) and PubMed Central full-text articles (13.5B words). The resulting model was successfully

fine-tuned for three biomedical text mining tasks: biomedical named entity recognition, biomedical relation extraction,

and biomedical question answering. The BioBERT model was further pretrained for clinical texts using 2M generic

clinical notes and discharge summaries (Alsentzer et al., 2019). The resulting Bio+Clinical BERT showed superior

results on clinical NER tasks and medical natural language inference task.

Clinical BERT (Huang et al., 2019) is similar to the above Bio+Clinical BERT model, but it is trained on 2 083 180

anonymized clinical notes from the MIMIC III database (Johnson et al., 2016) that consists of the electronic health

records of 58 976 unique hospital admissions from 38 597 patients in the intensive care unit between 2001 and 2012.

The model performed better than BERT on the clinical readmission prediction problem. A similar model is BLUE

BERT (Peng et al., 2019), trained on more than 4B PubMed abstracts and 500M MIMIC-III clinical notes. The model

showed good performance on BLUE (Biomedical Language Understanding Evaluation) benchmark that includes sev-

eral tasks relevant to pharmacology, like named entity recognition (see Section 3.1) and relation extraction (see Section

3.2).
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2.1 Representation Learning 14

In the light of COVID-19 epidemics, Khadhraoui et al. (2022) have prepared a specialized BERT model, called Cov-

BERT, intended to improve the COVID-19 literature review. The model, based on BERT, was pretrained on 4304

PubMed abstracts on several topics such as COVID-19 treatment, COVID-19 symptoms, virology, public health, and

mental health. CovBERT showed better classification accuracy on this dataset compared to baseline RoBERTa, Al-

BERT, SciBERT, BioBERT, and Bio+Clinical BERT.

Another popular adaptation to specific terminological areas is named CharacterBERT (El Boukkouri et al., 2020).

Instead of using subword tokenization, this approach starts with characters and first constructs words with a convo-

lutional neural network. The pretraining used around 1B tokens from the MIMIC-III clinical dataset and PubMed

abstracts. The effectiveness of this approach was originally demonstrated in the biomedical domain using four tasks:

medical entity recognition, medical natural language inference, relation extraction (Chem-Prot database and drug-drug

interactions), and clinical sentence similarity. The resulting CharacterBERT models performed on par or better than

BERT.

As evident from many citations, the BERT enhancements received, these models were successfully applied to many

relevant pharmacological problems. We list a sample of works addressing a few relevant problems and approaches in

Section 3.

2.1.4 Languages Other than English

While the majority of NLP in pharmacology is focused on English, there are also some exceptions. Akhtyamova (2020)

trains a domain-specific BERT model for Spanish on a relatively small dataset (87M tokens) and successfully applies

it to the problem of NER in Spanish. In the context of the annual workshop on BioNLP Open Shared Tasks, in 2019

(https://2019.bionlp-ost.org/) one of the tasks, PharmaCoNER (Pharmacological Substances, Compounds

and proteins and Named Entity Recognition track), addressed the mentioning of chemicals and drugs in Spanish

medical texts. The task included two tracks: one for the NER offset and entity classification and the other one for

the concept indexing. In their entry, Xiong et al. (2019) devised a system based on BERT for the NER offset and

entity classification and Bi-LSTM with max/mean pooling for concept indexing. On the same tasks, Sun et al. (2021)

compared several BERT variants (see Section 2.1.3): BLUE BERT (Peng et al., 2019), multilingual BERT (Devlin

et al., 2019), SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 2019), and Spanish BERT (Canete et al., 2020).

The results show that domain-specific pretraining is successful and better than the language-specific BERT variant.

For the adverse drug reaction relation extraction in Russian, Sboev et al. (2022) have preliminary trained multilingual

XLM-RoBERTa (Conneau et al., 2020), and Russian RuBERT (Kuratov and Arkhipov, 2019) models on Russian drug

review texts, followed by fine-tuning on the created training dataset. The results showed that the former multilingual

model is advantageous. Tutubalina et al. (2020) have created a consumer reviews corpus in Russian about phar-

maceutical products for the detection of health-related named entities and the assessment of pharmaceutical product

effectiveness. Using this corpus and the multilingual BERT they created domain specific RuDR-BERT which showed

favorable performance on medical named entity recognition and multilabel sentence classification.
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2.2 Injecting Pharmacological Knowledge into Deep Neural Networks 15

2.2 Injecting Pharmacological Knowledge into Deep Neural Networks

While large pretrained language models have significantly increased the performance of machine learning approaches

for most NLP tasks, many shortcomings still make the approaches less robust as desired. Examples of weaknesses are

processing of negation, uncertainty about factual knowledge, and lack of problem-specific knowledge (Rogers et al.,

2020).

The knowledge injection approaches attempt to address the shortcomings of large pre-trained models by utilizing

external knowledge resources in various forms, such as knowledge graphs (KGs, see Section 5) and other types of

knowledge bases. This can reduce the need for ever-larger language models while improving their interpretability.

In general, knowledge injection approaches differ in time of injection (during a pretraining phase, as an intermediate

task, or in a downstream task), type of injected knowledge (facts, linguistic knowledge, commonsense reasoning, etc.),

and type of evaluation (general language, domain-specific language, or probing).

To improve pretrained language models for the biomedical domain, the existing approaches usually use the Unified

Medical Language System (UMLS) knowledge base. UMLS is a medical terminology database with hundreds of

biomedical vocabulary entries, including definitions of terms and relationships between them. The basic BERT model

(Devlin et al., 2019) or any of the specific biomedical BERT models mentioned in Section 2.1.3, are used as a baseline

where the knowledge is injected.

Below, we present several approaches to knowledge injection in pharmacology. We divide them into the ones that mod-

ify existing pretraining tasks with general improvements in mind and those that focus on better concept representation

for a specific task. We summarize the presented models in Table 2.

2.2.1 Modification of Existing Pre-training Tasks for General Improvement

This group of knowledge injection approaches focuses on developing new pre-training tasks or adding new modules

to existing pretrained LMs.

Hao et al. (2020) improve biomedical LMs for medical downstream tasks by infusing the knowledge base information

into the pretraining phase of the Clinical BERT. The authors used the MIMIC-III dataset and continued pre-training on

the masked language modeling task and next sentence prediction. They also introduced the task of predicting whether

a relationship exists between two concepts in the UMLS knowledge base. Positive instances for this task are taken

from the existing relations in ULMS, while negative ones are created through negative sampling as relations in ULMS

are very sparse. The final loss function used in training is a combination of all three tasks. The resulting knowledge-

enhanced Clinical BERT was evaluated on two named entity recognition datasets and one natural language inference

dataset, and the results showed an improvement over the baseline biomedical models BioBERT and Clinical BERT.

UmlsBERT (Michalopoulos et al., 2021) also integrates external knowledge resources to improve biomedical language

models. The authors updated the masked language modeling in the pre-training step with the associations between the

words specified in the UMLS. Firstly, at the input level, medical terms are enhanced by their semantic types (UMLS

contains 44 unique semantic types). For example, the model receives information that ‘lungs’ are ‘body part’, ‘organ’

etc. This represents an additional input layer that must be trained. Words without semantic type are represented by a

zero-filled vector. Secondly, the masked language modeling (MLM) task is modified: instead of predicting one missing
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2.2 Injecting Pharmacological Knowledge into Deep Neural Networks 16

token, the model predicts all words associated with the same concept unique identifier (CUI). For instance, where the

standard MLM task predicts only ‘lung’, the modified one predicts ‘lungs’ and ‘pulmonary’ as well. UmlsBERT

achieves the best results in four out of the five tasks (one NLI and four NER tasks). The ablation study checking if

semantic type information improves the performance shows that the model performs significantly worse on all tasks

without it.

Meng et al. (2021) improve biomedical BERTs by partitioning a very large KG into smaller subgraphs and infusing

this knowledge into various BERT models using adapters. Adapters (Houlsby et al., 2019) are BERT additions that

add only a few new trainable parameters while the original weights remain fixed. This reduces the inefficiency of

fine-tuning large models for each task and allows a high degree of parameter sharing. Meng et al. (2021) construct two

KGs from the UMLS knowledge graph. The METIS algorithm (Karypis and Kumar, 1998) partition the knowledge

graph into n subgraphs. Following that, they train an adapter module for each sub-graph to predict the tail entity of

a triplet from the sub-graph. Finally, they use AdapterFusion mixture layers (Pfeiffer et al., 2021) to combine the

knowledge from adapter modules. They experimentally determined that 20 sub-graphs and PubMedBERT yielded the

best results. Their approach improves performance on QA, NLI, and document classification tasks in the biomedical

domain.

2.2.2 Improved Concept Representation for Specific Tasks

This group of knowledge injection approaches focuses on improving concept representations for specific tasks.

The same medical concepts can be represented by a variety of nonstandard names, misspellings, and abbreviations.

Term normalization is a task that addresses this problem. CODER (Yuan et al., 2022) proposes dual contrastive learn-

ing simultaneously on both terms and relation triplets from the UMLS KG. The approach is motivated by examples

such as that it is better to have “rheumatoid arthritis” closer to “osteoarthritis” than “rheumatoid pleuritis” because both

are subtypes of arthritis. Relations between terms express that and thus provide useful information during the training.

CODER maximizes similarities between positive term-term pairs and term-relation-term pairs from the KG. They

evaluate their approach on datasets in different languages consisting of term normalization, relation classification, and

conceptual similarity tasks. Their approach significantly outperforms existing medical embeddings in zero-shot term

normalization.

Liu et al. (2021) address the problem of entity linking, specifically, the heterogeneous naming of medical concepts.

The authors pre-train a transformer-based language model on the UMLS biomedical KG. They propose a metric

learning framework that learns to cluster synonyms of the same concept. The goal of a self-alignment pre-training step

is to learn such concept embeddings that maximize the similarity between two concepts based on the cosine similarity

measure. The learning setup consists of triplets in the form (xa, xp, xn), where xp is a positive match for xa and

xn is its negative match. This approach first samples hard triplets (triplets that contain negative pairs closer in space

than positive pairs with basic BERT embedding by some margin). It learns to push negative pairs away from each

other and positive pairs together by considering the multi-similarity loss function. The resulting SAPBERT improves

the accuracy across six medical entity linking tasks (up to 20%) compared to the domain-specific BERT models and

achieves state-of-the-art results.
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2.3 Explainable NLP in Pharmacology 17

Mao and Fung (2020) tackle the problem of measuring semantic relatedness between biomedical concepts (UMLS

concepts). Semantic similarity expresses the relatedness of two concepts in their meaning and is an important tool

for automatic spelling correction, information retrieval, and word sense disambiguation. Authors use pre-trained word

embedding models (e.g., BioWordVec (Zhang et al., 2019), variations of BERT, etc.) to generate concept sentence em-

beddings from UMLS, and various graph embedding models (e.g., GCNs (Welling and Kipf, 2016), TransE (Bordes

et al., 2013) and its variants). In addition to that, they combined both concept sentence embeddings and graph em-

beddings by concatenation. The similarity score between two embeddings was computed using the cosine similarity

measure. The combined word and graph embeddings produced the best results on three semantic relatedness datasets

and a one-word sense disambiguation dataset.

2.3 Explainable NLP in Pharmacology

Deep learning models commonly surpass standard machine learning models in terms of predictive performance. How-

ever, their decision-making process is typically opaque, meaning that it is difficult to explain why the model made a

certain prediction. Understanding models’ inner workings are helpful for debugging errors, possibly improving their

performance, and gaining scientific insights into the modeled process, e.g., why two drugs interact in the drug-drug

interaction identification. Additionally, as pharmacology is concerned with drugs affecting humans, it is essential that

predictions are safe and verifiable.

Depending on the time when an explanation is created, there are two types of explanation methods: intrinsic and post-

hoc (Madsen et al., 2022). Intrinsic methods use a model’s architecture or its components to construct an explanation.

A simple example is a linear regression model using binary bag-of-words features. The learned weights associated

with the input words represent an explanation of the prediction for the given input (positive weights indicate the

positive impact of words on the decision, and negative weights indicate negative impact). Another commonly used

intrinsic method used for large pretrained transformer models is the inspection of attention weights, which intuitively

represent the parts of the input the model focuses on. Attention, being the key component of the currently dominant

transformer-based models, is easy to compute. However, multiple attention heads may be difficult to comprehend,

and the alignment between attention explanations and the underlying model behavior (i.e. actual explanations) is

questionable (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019).

Post-hoc explanation methods construct an explanation after a model is trained. While intrinsic methods are based

on the design of a specific model, post-hoc methods are typically model-agnostic. An example of such methods are

perturbation-based explanation methods such as Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro

et al., 2016), SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017), and Interactions-based Method for

Explanation (IME) (Štrumbelj and Kononenko, 2013). They work by repeatedly modifying (perturbing) the input,

observing the changes in the output, and modeling their associations using a surrogate model. Post-hoc methods are

convenient due to their flexibility in the choice of used model architectures. However, the faithfulness of the produced

explanations may be poor (Frye et al., 2021; Slack et al., 2020) as they explain the model from an external perspective.

Both intrinsic and post-hoc methods have been successfully applied to general (Lai et al., 2019) and topic-specific

language tasks in bio-medicine (Moradi and Samwald, 2021). Below, we describe several cases of using explanation

methods in pharmacology. We provide an overview of the methods in Table 3.
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2.3 Explainable NLP in Pharmacology 18

Jha et al. (2018) make pre-trained word embeddings more interpretable by learning a transformation to a more in-

terpretable embedding space with the retained performance. The interpretable word embeddings correspond to cate-

gorical embeddings, trained separately using expert-provided definitions and additional knowledge from a biomedical

knowledge graph.

Wawrzinek et al. (2020) introduce an entity embedding-based explanation method for drug-disease association (DDA)

prediction. They construct explanations following the drug-centric and the disease-centric notion of similarity:

• drug-centric: “if two drugs are chemically similar, they likely have a similar relationship with the target

disease”;

• disease-centric: “a drug has the same relation for similar diseases”.

To obtain the explanation, they embed the drug and the disease from a DDA pair and retrieve k intermediate entities

(drugs or diseases) using a cosine similarity-based metric. An explanation instance is created based on the relationship

between the drug, disease, and the intermediate entity in existing publications. For example, if the intermediate entity

is a drug and the intermediate drug treats the input disease, the input drug is assumed to also treat the input disease

with confidence proportional to the embedding similarity. The obtained explanations using k intermediate entities are

aggregated into the final DDA prediction, e.g., using a majority vote.

Huang et al. (2020) include an interpretable component in their drug-drug interaction (DDI) prediction system. The

component projects the latent embedding of the input drug pair into a more interpretable subspace, whose basis consists

of frequently occurring molecular substructures. The substructures are extracted from a database of drug represen-

tations by finding substrings with a high enough frequency. The projection into the subspace aims to capture the

relevance of the molecular substructures towards the drug interaction prediction.

Yazdani-Jahromi et al. (2022) propose an attention-based drug-target interaction (DTI) prediction system, using the

attention weights as an explanation. They demonstrate the high predictive performance of their system on three

benchmark datasets, while they demonstrate the interpretation capability of their model on a DTI prediction example

via visualization.

Bradshaw et al. (2019) present a generator of product molecules from a set of common reactant molecules. It is

composed of

• an encoder-decoder model between a latent space and a list of reactant molecules, and

• a reaction prediction model that transforms the reactants into a list of product molecules.

The second component introduces interpretability to the model as it provides some insight on how the product

molecules are constructed out of the reactants. However, the authors do not put an emphasis on evaluating the in-

terpretability of their approach.

Jiang et al. (2019) present an approach for detecting potential adverse medication effects from social media posts. The

detection is posed as a word analogy task: given a known possible side effect of a drug, the task is to find similar pairs

of drugs and corresponding side effects with a similar relation. The known possible side effects are taken from the

SIDER database (Kuhn et al., 2016), while the static word embeddings are trained on unlabeled tweets. The found

potential side effects are subject to human examination along with relevant tweets expressing the effect.
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3 COMMON NLP TASKS AND APPLICATIONS 19

Rodrı́guez-Pérez and Bajorath (2020) present a usability study of the SHAP explanation method for explaining com-

plex compound activity prediction models. They find that SHAP produces consistent feature attributions across three

complex models. Additionally, they demonstrate how the obtained attributions can be used to find potential biases in

the models.

Pope et al. (2019) present adaptations of three explanation methods for explaining graph convolutional neural net-

works: contrastive gradient-based saliency maps, class activation mapping, and excitation backpropagation (EB).

They test the methods on molecular graph classification, where the task is to predict whether molecules possess cer-

tain properties, such as toxicity. The explanations are salient subgraphs, which can be interpreted as functional groups

responsible for the molecular property (according to the model). By analyzing the explanations using automated met-

rics (fidelity, contrastivity, and sparsity), the authors conclude that the gradient-weighted class activation mapping is

the most suitable out of the tested methods, although they emphasize the need for detailed studies of chemical validity

of the explanations in future work.

In summary, explanation methods have been adopted across a variety of pharmacology applications. We find that the

authors typically use the explanation methods in one of two ways, either using the explanations as a safety mechanism

for a semi-automatic use of the model predictions, or as a way to obtain plausible hypotheses that are then manually

verified, for example using additional experiments. The proposed explanation methods for pharmacology commonly

use a connection to an external knowledge source. We believe that the incorporation of external knowledge into

explanation methods is a promising direction for further research as the prediction may not be intuitively explainable

to humans in terms of only input components. In addition, external human-curated knowledge may naturally be more

intuitive to end-users.

3 Common NLP Tasks and Applications

Several NLP tasks are frequently tackled in the pharmacological context. Some of them are adapted from general NLP

tasks (e.g., named entity recognition, relation extraction, and question answering). In contrast, others are specific to

pharmacology (e.g., adverse drug reactions and literature-based drug discovery). We have mentioned some successful

uses of contextual BERT models on these tasks in Section 2.1.3, but this mainly demonstrated the usability of these

models. This section systematically analyzes the most important tasks in life sciences and pharmacology. As hundreds

of works tackle these problems exclusively or among other problems, we review a sample of recent works. The

overview is presented in Table 4.

3.1 Named Entity Recognition for Pharmacology

Named entity recognition (NER) – called entity identification, entity chunking, or entity extraction, is one of the most

popular NLP techniques that classifies named entities in text into pre-defined categories such as person, time, location,

organization, etc. In the biomedical context, the entities of interest can be cells, genes, gene sequences, proteins,

biological processes and pathways, diseases, drugs, drug targets, compounds, adverse effects, metabolites, tissues, and

organs (Bonner et al., 2021; Perera et al., 2020). NER is often used as the initial stage of analyses to provide semantic

interpretations of unstructured text by identifying and categorizing concept references. Various concepts are detected

with different degrees of difficulty. The critical issue in recognizing chemicals, for example, is the high variance in
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3.2 Relation Extraction for Pharmacology 20

concept names and chemical formulas. In contrast, the main challenge in identifying gene functions is the high degree

of uncertainty caused by species diversity.

In pharmacology domain, NER is often used as the first step of the relation extraction task (see Section 3.2) (Gu et al.,

2016; Kadir and Bokharaeian, 2013) or adverse drug reactions task (see Section 3.3) (Li et al., 2018). Many authors

start with the MADE 1.0 challenge dataset, e.g., Jagannatha et al. (2019a) find the medications and their attributes,

Chapman et al. (2019) apply the conditional random field method for medication recognition, Yang et al. (2019a)

developed the MADEx model based on LSTM networks for the same purpose, and Wunnava et al. (2019) apply the

Bi-LSTM model.

3.2 Relation Extraction for Pharmacology

The relation extraction task is part of information extraction (IE) and extracts semantic relationships from texts. The

extracted relationships connect two or more entities of the same kind that fit into one of many semantic categories

(for example, people, organizations, or places). Frequently, extracted relations are related to adverse drug reactions

(ADR) and drug-drug interactions (DDI), relations between medications, between their attributes such as dosage,

route, frequency, and duration (Jagannatha et al., 2019a). The ability of NLP models to automatically detect adverse

drug event (ADE) related terms in textual data helps avoid ADEs. This results in safer and better quality healthcare

services, lower healthcare expenditures, more educated and engaged customers, and improved health outcomes.

In pharmacology, relation extraction typically processes scientific papers that provide novelties from the pharmacol-

ogy. Classical approaches extracted semantic relationships with a pattern-based approach to find medical relations in

pharmaceutical texts (Ben Abacha and Zweigenbaum, 2011; Rosario and Hearst, 2004). Deep learning approaches

brought significant improvements (Li et al., 2018; Yang et al., 2019a). Lately used approaches apply pretrained lan-

guage models, e.g., SemRep (Kilicoglu et al., 2020). The extracted information is sometimes used to construct graphs

encoding drug-drug, and disease-drug relationships, representing the similarity between them (Zhou et al., 2020).

Although most approaches are based on textual data, relations are also discovered through the analysis of EHR data

(Chen et al., 2019).

3.3 Adverse Drug Reactions

Adverse drug reaction (ADR) is defined as a considerably damaging or unpleasant reaction occurring from an inter-

vention associated with the use of a pharmaceutical product. Adverse reactions frequently anticipate danger from

future administration and demand avoidance, particular therapy, or dose regimen modification (Pirmohamed et al.,

1998). ADRs have traditionally been divided into two categories. Type A responses are dose-dependent and predicted

based on the drug’s pharmacology (also known as enhanced reactions). In contrast, Type B responses, often known as

weird reactions, are distinctive and unpredictable from the pharmacological point of view.

Implementation-wise, ADR extraction is similar to relation extraction, where ADRs connected to to various diseases

and drugs are detected. Lately, large pretrained language models,such as BERT, are used in ADR extraction (Breden

and Moore, 2020; Hussain et al., 2021; Li et al., 2020b). Again, texts are not the sole source of information, and EHRs

are often used as additional information in ADR extraction (Chapman et al., 2019; Li et al., 2018; Wunnava et al.,

2019).
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3.4 Literature Based Drug Discovery 21

3.4 Literature Based Drug Discovery

LBD (literature-based discovery) is an automatic or semi-automatic method for discovering new information from the

literature. The amount of scientific literature is steadily growing, driving researchers to become more specialized and

making it challenging to track developments even in restricted fields (Henry and McInnes, 2017). If text is identified

that overtly asserts the knowledge that ”A is associated with B” and ”B is associated with C” in the Swanson ABC

co-occurrence model (Swanson and Smalheiser, 1997), then the implicit knowledge of ”A may be associated with C”

is obtained. LBD is essential for biomedical NLP since it allows finding implicit information that can help to enhance

biomedical research. A recent study presents the computational strategies utilized for LBD in the biomedical area

(Gopalakrishnan et al., 2019)

LBD applies several NLP tasks to process the pharmacological and medical literature, with the purpose to detect new

medical entities (Dobreva et al., 2020; Sang et al., 2018; Wang et al., 2020b), extract relations (Preiss et al., 2015;

Wang et al., 2017) or reactions (Zhou et al., 2017). Some approaches use scientific texts for protein engineering, and

visualization (Biswas et al., 2021). Frequent information source is the PubMed engine together with the PubTator

model (Wei et al., 2019) for automated annotation. The PharmKE tool (Jofche et al., 2023) labels pharmaceutical

entities and the relationships between them. In new diseases, such as COVID-19, LBD technique have proved useful

to extract relevant information (Martinc et al., 2020; Pinto et al., 2020). Another frequent task is drug reposition-

ing which helps to find another purpose for existing drugs, i.e., to use them in treating similar diseases (Xue et al.,

2018). Alternatively, novel drug indications can be discovered by analyzing the medical history, as exemplified in the

PREDICT model (Gottlieb et al., 2011).

3.5 Question Answering

Question answering (QA) is an NLP task that takes a question as input and returns an answer in the form of a ranked list

of relevant replies, or a summary answer snippet (Coleman and Coleman, 2005). In a classical (pre-neural) approach,

QA incorporates three tasks: information retrieval, retrieving relevant documents or passages for a particular query,

and text summarization that summarizes the reply from relevant passages. A related information retrieval task is called

”Learning by Doing” and searches the knowledge base for entities most related to the ones mentioned in the question.

This task is divided into ranking the texts found in the database and finding the correct answer among the recovered

paragraphs.

QA can summarize the pharmacological literature, e.g., for new diseases like COVID-19 (Su et al., 2020). The data

are mainly from PubMed articles, and in the case of COVID-19, also news about this disease (Lee et al., 2020). To

answer pharmaceutical questions, the QA task can be applied in many languages, even in low-resource languages such

as Persian (Veisi and Shandi, 2020). Another source of information can be linked data as used in the GFMed model

(Marginean, 2014).

4 Data Resources

As the application of open science and open data principles is rising (Burgelman et al., 2019), the number of publicly

available datasets is steadily growing. This makes finding and discovering appropriate datasets increasingly challeng-
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4.1 Finding and Discovering Datasets 22

ing. There are two strategies to find a dataset suitable for a given task. First, a bottom-up approach starts by searching

available datasets and evaluating their utility for the given problem. Second, a top-down approach first finds relevant

papers for the tackled topic and then explores the available datasets used in the papers.

We first present an overview of specialized search engines for discovering and finding datasets in 4.1. Then we give

an overview of the most important datasets utilized in published papers related to NLP in pharmacology. The covered

datasets are organized into five groups: patient data, drug usage data, drug structure data, question answering datasets,

and general pharmacological data. In Section 4.2, we present datasets containing patients’ history and medical notes.

The datasets in Section 4.3 contain drug characteristics according to the prescriptions to patients, while in Section

4.4, we cover datasets with information about drugs’ chemical composition. Datasets supporting question answering

systems in pharmacology are described in 4.5. Section 4.6 describes general resources useful for successful NLP in

pharmacology.

We include public and closed (private/commercial) data in the survey. The summary of datasets is contained in Table

5, where for each dataset, we include a list of references where the dataset was used, a short description, the size of

the dataset, and its typical usage.

4.1 Finding and Discovering Datasets

As the number of datasets rapidly grows, it becomes essential to have effective tools for finding them. As a solution,

there are several specialized search engines for discovering and finding datasets.

Google’s Dataset Search (https://datasetsearch.research.google.com/) currently indexes more than 30

million publicly available datasets. Filters can limit the results based on licensing (free or premium), format (CSV, im-

ages, etc. ), and update time. Alternatively, a specialized cloud platform data.world (https://data.world/) hosts

an enterprise data catalog with over 130,000 datasets and knowledge graphs. Another platform hosting public datasets

is Kaggle (https://www.kaggle.com/datasets), which is primarily a machine learning competition platform, but

it also includes a dataset search engine.

The NLP community usually publishes the source code and datasets in the Github (https://github.com/) repos-

itory so that this source control platform can be used for dataset discovery. A specialized platform indexing the code

and data related to research papers is Papers with Code (https://paperswithcode.com/datasets). This plat-

form offers research area-based organization of papers allowing for a convenient discovery and browsing of papers

and datasets. One of the most popular development platforms for NLP, the Huggingface, offers a good dataset search

engine organized by NLP task, category, language, size, and license (https://huggingface.co/datasets).

A specialized search engine for linked data is the Linked Open Data (LOD) Cloud (https://lod.openlinksw.

com/) that allows for text-based search and entity lookup. LOD Cloud is a distributed web of interconnected datasets

(over 1500 datasets) containing open data in a structured and semantically annotated format from multiple domains -

life sciences, publications, government, media, etc. The background on the LOD Cloud is described in Section 5.
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4.2 Patient Data 23

4.2 Patient Data

Datasets with the information about patients typically contain patients’ medical history or medical notes about them.

The main application of these datasets is to find novel relations between drugs and diseases. Below, we briefly describe

the most commonly used patient datasets.

MIMIC-III: Medical Information Mart for Intensive Care (Johnson et al., 2016) (https://mimic.mit.edu/)

is a dataset that contains data on patients hospitalized in large tertiary care hospitals critical care units. It contains

information on vital signs, medicines, laboratory measurements, care providers’ observations and notes, fluid balance,

procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival statistics, etc. This dataset contains

data on over 40 000 patients.

MADE1.0 Database (Jagannatha et al., 2019b) (https://bio-nlp.org/index.php/announcements) is a Elec-

tronic Health Record (EHR) database that is a part of the MADE1.0 competition. The structured dataset contains

information on taken drugs, experienced ADEs (Adverse Drug Events), and indications and symptoms of patients.

The competition addressed three tasks: NER, relation identification, and a joint NER-RI task. The dataset contains

1089 patient notes with detailed named entity and relation annotations.

n2c2 NLP Research Database (Henry et al., 2020) (https://portal.dbmi.hms.harvard.edu/projects/

n2c2-nlp/) is database used for Track 2 of the 2018 National NLP Clinical Challenges shared task. The data is

extracted from the MIMIC-III (Medical Information Mart for Intensive Care-III) clinical care database. The records

were chosen using a query that looked for ADEs in the description of records’ ICD (International Classification of

Diseases) code. The retrieved records were manually inspected to ensure that at least one ADE was present and

adequately annotated. The dataset contains 505 discharge summaries in textual format.

MarketScan (Adamson et al., 2008) (https://www.ibm.com/products/marketscan-research-databases)

dataset is a collection of administrative claims databases that includes information on in-patient and out-patient claims,

out-patient prescription claims, clinical usage records, and healthcare costs in US. The three main databases each con-

tain a convenience sample for one of the following patient populations: (1) employees with contributing employers’

health insurance, (2) Medicare beneficiaries with employer-paid supplemental insurance, and (3) Medicaid recipients

in one of eleven participating states. The data is not in textual format but can be used with NLP applications. The

database contains data on approximately 43,6 million persons.

4.3 Drug Usage Data

Datasets described in this section provide information on drugs’ usage, usage instructions, effects, pharmaceutical

properties, and composition.

DailyMed Database (of Health et al., 2014) (https://dailymed.nlm.nih.gov/dailymed/index.cfm) is a web

database provided by the National Library of Medicine (NLM) in US. The US Food and Drug Administration (FDA)

updates the material daily. The DailyMed contains prescription and nonprescription medications for human and animal

usage, medical gases, gadgets, cosmetics, nutritional supplements, and medical foods. The labeled drugs describe the

composition, form, packaging, and other properties of drug products according to the HL7 Reference Information

Model (RIM). These details are given in the descriptive text format. The database contains 142 981 labels.
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4.4 Drug Structure Data 24

DrugBank Database (Wishart et al., 2018) (https://go.drugbank.com/) is one of the biggest drug databases.

Besides drugs, it contains drug paths which show how the drug travels in the human body and allows search for

indications and drug targets. For an individual drug, the database contains all the brand names, background information

in the text form, its type, structure, weight, formula, other names it is called by, what it is used for, what therapies

it is used in, indications, doses, interactions, etc. All the details for each drug are available online and given in the

descriptive text format. The database contains descriptions of 14 665 drug entries.

4.4 Drug Structure Data

Datasets covered in this section contain drug characteristics regarding their chemical composition. Mainly, they are

used for discovering new drugs or finding protein-protein interactions between drugs.

ChEMBL Database (Gaulton et al., 2012) (https://www.ebi.ac.uk/chembl/) is an open-source database that

contains binding, functional, and ADMET (Chemical absorption, distribution, metabolism, excretion, and toxicity)

data for a wide range of drug-like bioactive chemicals. These data are regularly manually extracted from the published

literature, then selected and standardized to enhance their quality and usability across a variety of chemical biology and

drug-discovery research uses. The database includes 2.4 million bioassay measurements spanning 622 824 chemicals,

including 24 000 natural products. The contents were produced by sifting through over 34 000 papers published in

twelve medicinal chemistry journals. The data from the journals containing details can also be used.

UMLS: The Unified Medical Language Database (Bodenreider, 2004) (http://umlsks.nlm.nih.gov) is a

database of biomedical vocabularies. The NCBI (National Center for Biotechnology Information) taxonomy, Gene On-

tology, MeSH (Medical Subject Headings), OMIM (Online Mendelian Inheritance in Man), and the Digital Anatomist

Symbolic Knowledge Base are all included in the UMLS MetaThesaurus. The UMLS is not a textual database but

is frequently used in NLP tasks, such as extracting concepts, relationships, or knowledge of pharmacological entities

from texts. The UMLS has about 2 million names for over 900 000 concepts from over 60 biomedical vocabularies

and 12 million relationships between them.

PDB: The Protein Data Bank Database (Protein Data Bank contributors, 1971) (http://www.rcsb.org/pdb/) is

a global repository of structural data for biological macromolecules. To obtain the data, depositors used X-ray crystal

structure determination, NMR (Nuclear magnetic resonance), cryo-electron microscopy, and theoretical modeling.

The search queries also return the literature from which the data is extracted, e.g., the abstracts from medical articles

that can be further used for NLP. The number of papers accessible in the textual format is not available, but the database

contains 133 920 Biological Macromolecular Structures, each accompanied by a related abstract.

ChemProt Database (Taboureau et al., 2010) (https://biocreative.bioinformatics.udel.edu/news/

corpora/chemprot-corpus-biocreative-vi/) is a biology annotated database based on several chemical-

protein annotation resources, together with disease-associated protein-protein interactions (PPIs). ChemProt was uti-

lized in the BioCreative VI text mining chemical-protein interactions shared task. The data contains PubMed abstracts

in textual format together with annotated entities and interactions. The database has 1820 abstracts.
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4.5 Question Answering Data

This section covers some datasets that can be used to build pharmacological question answering models.

MQP Database (McCreery et al., 2020) (https://github.com/curai/medical-question-pair-dataset)

comprises 3048 question-answer pairs that are categorized as similar or distinct by medical experts (i.e. not par-

ticular to COVID-19). Two doctors collaborated on the annotation and their agreement on 836 question pairings in the

test set was above 85%.

COVID-Q Database (Wei et al., 2020) (https://paperswithcode.com/dataset/covid-q) is a collection of

1690 COVID-19-related questions divided into 15 general categories and 207 specific question classes. The dataset

was annotated in three stages by many curators. First, two curators discussed and categorized the questions. Second,

an external curator reviewed the work and, if necessary, proposed adjustments to the categories. Third, questions from

more than four different question classes were sampled and allocated to three different AMT (Amazon Mechanical

Turk) workers. The validation was based on the majority vote.

CovidQA Database (Zhao et al., 2020) (https://aclanthology.org/2020.nlpcovid19-acl.18/) is made up

of 124 question–article–answer triplets taken from 85 different articles in CORD-19 Kaggle challenge and covers

27 different categories. Five curators created annotations by synthesizing questions from the challenge organizers’

categories, then manually discovered relevant articles and replies.

4.6 General Pharmacological Data

In this section, we describe five resources that are general and useful for many tasks.

Wikipedia (Wikipedia, 2004) (https://en.wikipedia.org/) is a well known encyclopedia and web-based col-

laborative database consisting of over 15 billion articles. Wikipedia contains articles from different scientific fields

written in many languages.

PubMed (Canese and Weis, 2013) (https://pubmed.ncbi.nlm.nih.gov/) is a free web engine for primarily

MEDLINE, bibliographic database encompassing medicine, nursing, dentistry, veterinary medicine, the health-care

system, and preclinical sciences like molecular biology. More than 4600 biomedical journals are indexed in MED-

LINE, together with bibliographic citations and author abstracts. PubMed indexes more than 30 million articles and

abstracts.

LitCovid Database (Chen et al., 2021a) (https://www.ncbi.nlm.nih.gov/research/coronavirus/) is a cu-

rated literature site for tracking up-to-date scientific knowledge regarding the COVID-19 disease. It is the most com-

prehensive resource on the topic with central access to more than 255 935 relevant PubMed articles. The articles are

updated daily and divided into categories based on research themes and geographical areas.

CORD-19 (COVID-19 Open Research Database) (Wang et al., 2020a) (https://www.kaggle.com/datasets/

allen-institute-for-ai/CORD-19-research-challenge) contains metadata about papers related to COVID-

19. The main sources are PubMed, World Health Organization, bioRxiv and medRxiv. This database contains over

52 000 papers.
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5 KNOWLEDGE GRAPHS 26

DBpedia (Auer et al., 2007) (https://www.dbpedia.org/) is a structured open-source database with information

extracted from Wikipedia articles. For drugs, it contains basic information on uses, contained chemicals, drug type,

links to other languages, Wikipedia links, and other links used to extract information. The database contains more

than 10 000 drug type entries.

EMBASE (Excerpta Medica dataBASE) (http://www.Embase.com) is a biological and pharmacological biblio-

graphic database of published literature. It was created to assist information managers and pharmacovigilance in

adhering to the regulatory requirements of a licensed medicine. Embase database, created in 1947, contains more than

32 million entries from more than 8,500 published journals.

ClinicalTrials.gov (Zarin et al., 2011) (https://www.clinicaltrials.gov/) is a clinical trial registry and the

biggest clinical trials database. It is managed by the National Institutes of Health and contains registrations for over

329,000 studies from 209 countries.

5 Knowledge Graphs

The concepts of linked data and knowledge graphs introduced new standards for representing, storing, and retrieving

data over the Web, both publicly and privately (Bizer et al., 2009, 2008; Heath and Bizer, 2011; Hogan et al., 2021;

Wood et al., 2014). As a result of years of adoption of the linked data principles by various data publishers, the

Linked Open Data (LOD) Cloud (https://lod-cloud.net) has been created and populated with 1541 interlinked

datasets from the domains of geography, government, life sciences, linguistics, media, publications, social networking,

user-generated, and cross-domain.

Knowledge graphs, the latest trend in the semantic web and linked data, enable the generation, consolidation, and

contextual linking of structured data. The standards and technologies for knowledge graphs solve the problem of

having separate ‘data silos’ in traditional relational database systems, which have to be explicitly mapped to other

isolated databases to take advantage of interconnected data (Jovanovik and Trajanov, 2017).

The pharmaceutical industry is leading in using knowledge graph-based NLP techniques, especially in patient dis-

ease identification, clinical decision support systems, and pharmacovigilance (Dumitriu et al., 2021). The problem

of identifying patients with specific diseases can be mitigated by knowledge graphs generated from structured and

unstructured data from medical records, which capture explicit disease–symptom relationships (Chen et al., 2019).

Recently, knowledge graphs improved the classification of rare disease patients (Li et al., 2019). In the area of clini-

cal decision support, the combination of NLP and knowledge graphs is employed in inferring drug-related knowledge

which is not immediately observed in data, inferring cuisine-drug interactions based on knowledge graphs of drugs and

recipes, improving user interaction with relevant medical data, etc. (Goodwin and Harabagiu, 2016; Jovanovik et al.,

2015a; Liu et al., 2018; Ruan et al., 2019; Xia et al., 2018, 2022). In pharmacovigilance, the struggles of NLP engines

to understand complex language components (e.g., negation, doubt, historical medical statements, family medical

history, etc.) from individual case study reports have been significantly mitigated with the use of knowledge graphs

(Perera et al., 2013). Other examples include the use of knowledge graphs to improve NLP pipelines for detecting

medication and adverse drug events from EHRs (Ngo et al., 2018), as well as from Medline abstracts (Yeleswarapu

et al., 2014).
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Section 5.1 presents several knowledge graphs from the biomedical domain used in the mentioned application areas.

Given the ongoing COVID-19 pandemic, we outline several recent COVID-19-related knowledge graphs in Section

5.2.

5.1 Biomedical Knowledge Graphs

Several projects worked on the transformation of pharmacology-related and healthcare data into linked data and knowl-

edge graphs. Currently, 341 life science datasets are present in the LOD Cloud. These datasets contain healthcare data

from various subdomains, such as drugs, diseases, genes, interactions, clinical trials, enzymes, etc. The most notable

of them are presented below, and are outlined in Table 6.

Bioportal (Whetzel et al., 2011) (https://bioportal.bioontology.org/) project hosts ontologies covering

drugs, diseases, genes, clinical procedures, etc. With over 980 biomedical ontologies, which define a total of over

13 900 000 classes, it represents the largest such repository in the life-science domain.

Bio2RDF (Callahan et al., 2013a) (https://bio2rdf.org) is an open-source project which creates RDF datasets

from various life science resources and databases and interconnects them into one network (Belleau et al., 2008;

Callahan et al., 2013a,b). The latest release of Bio2RDF contains around 11 billion triples which are part of 35

datasets. These datasets contain various healthcare data: clinical trials (ClinicalTrials), drugs (DrugBank, LinkedSPL,

NDC), diseases (Orphanet), bioactive compounds (ChEMBL), genes (GenAge, GenDR, GOA, HGNC, HomoloGene,

MGD, NCBI Gene, OMIM, PharmGKB, SGD, WormBase), proteins (InterPro, iProClass, iRefIndex), gene-protein

interactions (CTD), biomedical ontologies (BioPortal), side effects (SIDER), terminology (Resource Registry, MeSH,

NCBI taxonomy), mathematical models of biological processes (BioModels), publications (PubMed), etc.

Macedonian drug data. Drug data from the Health Insurance Fund of North Macedonia has been transformed into

a knowledge graph and linked to other LOD Cloud datasets (Jovanovik et al., 2013). This knowledge graph was

further extended with linked data about Macedonian medical institutions, and drug availability lists from pharmacies

(Jovanovik et al., 2015b).

Cuisine - Drug interactions. This project used two knowledge graphs for analysis of connections between drugs

and their interactions with food, and recipes from different national cuisines, resulting in findings that uncovered the

ingredients and cuisines most responsible for negative food-drug interactions in different parts of the world (http:

//viz.linkeddata.finki.ukim.mk) (Jovanovik et al., 2015a).

Global drug data. In this research project, a pipeline-based platform was created to collect, clean, align, consolidate,

and create a publicly available knowledge graph of drug products registered in various countries (http://drugs.

linkeddata.finki.ukim.mk) (Jovanovik and Trajanov, 2017). The source of the data is the official country drug

registers. The generated RDF knowledge graph is publicly available through a web-based app (http://godd.finki.

ukim.mk).

5.2 COVID-19 Knowledge Graphs

COVID-19 pandemic turned the attention of many researchers to life sciences and healthcare domains. Below we list

some recent COVID-19-related knowledge graphs.
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TypeDB Bio (Covid) knowledge graph (https://github.com/typedb-osi/typedb-bio) contains data ex-

tracted from COVID-19 papers and from datasets on proteins, genes, disease-gene associations, coronavirus proteins,

protein expression, biological pathways, and drugs. For instance, it allows querying for specific viruses giving asso-

ciated human proteins related to the virus (e.g., a protein that helps in the replication of the virus). From here, it is

possible to identify drugs that inhibit the detected proteins, meaning they can be prioritized in research as potential

treatments for patients with the virus. To check the plausibility of this association and the implications, the graph can

be used to identify relevant papers in the COVID-19 literature where this protein has been studied.

Covid-19-DS (Pestryakova et al., 2022) (https://dice-research.org/COVID19DS) is an RDF knowledge graph

of scientific publications. The base of the graph is the CORD-19 dataset (Wang et al., 2020a) that is regularly updated.

The graph generation pipeline applies NER, entity linking, and link discovery to the CORD-19 data. The current

version of the resulting graph contains over 69 000 000 RDF triples and is linked to 9 other datasets with over 1 000 000

links.

KG-Covid-19 (Reese et al., 2021) (https://github.com/Knowledge-Graph-Hub/kg-covid-19/wiki) is a

framework that allows users to download and transform COVID-19 related datasets and generate a knowledge graph

that can be used in machine learning. The project also provides access to pre-built knowledge graphs along with public

querying.

6 Tools and Libraries

This section focuses on the technical part of NLP applications in pharmacology. In Section 6.1, we cover software

libraries and tools that help to build machine learning models for the tasks mentioned in Sections 2 and 3. For each

library, we also mention its recorded use in pharmacology. In Section 6.2, we present general text processing libraries.

Most covered libraries and tools are accessible as Python packages. Table 7 gives an overview.

6.1 Machine Learning Libraries

Natural Language Toolkit (NLTK) (Bird et al., 2009) (https://www.nltk.org/) is one of the most powerful

and popular NLP libraries. NLTK is a suite of open-source Python modules, data sets, and tutorials on language

processing. The toolkit consists of baseline text processing such as sentence splitting, tokenization, and part of speech

(POS) tagging. These tools may help in NER, to identify known medications, detect ADEs (Chapman et al., 2019), or

in evaluation of entity indicators for relation extraction (Qin et al., 2021).

MetaMap Transfer (MMTx) (Aronson, 2001) (https://github.com/theislab/MetaMap) is an extensively used,

Java-based, NER tool that maps biomedical free-form text to UMLS Metathesaurus concepts. In the process of creating

the first drug-drug interaction (DDI) corpus that, besides drugs, contains pharmacokinetic DDIs and pharmacodynamic

DDIs, the UMLS MetaMap Transfer tool pre-annotates the documents with pharmacological substance entities, i.e., it

is used to parse the documents to automatically recognize drug types (Herrero-Zazo et al., 2013). MetaMap’s intrinsic

function - identification of medical concepts - was used for extracting drug indication information from structured

product labels (Fung et al., 2013).
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CRFsuite (Okazaki, 2007) (http://www.chokkan.org/software/crfsuite/) implements the Conditional Ran-

dom Fields machine learning algorithm for labeling sequential data. It is used for NER in the MADEx system for

detecting medications and ADEs and their relations from clinical notes (Yang et al., 2019a).

Library for Support Vector Machines (LibSVM) (Chang and Lin, 2011) (https://www.csie.ntu.edu.tw/

~cjlin/libsvm/) is an open-source package that implements the Sequential minimal optimization (SMO) algo-

rithm for kernelized support vector machines (SVMs), supporting both classification and regression. The library was

used to classify relation types in the MADEx system (Yang et al., 2019a).

Stanford CoreNLP toolkit (Manning et al., 2014) (https://stanfordnlp.github.io/CoreNLP/) was initially

developed for English, but now supports German, French, Arabic, Chinese and Spanish. The Stanford CoreNLP

toolkit is a pipeline of NLP Java tools for linguistic annotations, such as tokenization, sentence splitting, part-of-speech

tagging, morphological analysis, NER, syntactic parsing, and coreference resolution. In pharmacology, CoreNLP was

applied in a joint model for entity and relation extraction from biomedical text, providing POS tagging and dependency

parsing (Li et al., 2017).

BRAT annotation tool (Stenetorp et al., 2012) (https://brat.nlplab.org/introduction.html) is an online

environment for annotating structured text, i.e. notes in a predefined form. The tool was used to create a corpus from

Twitter messages and PubMed sentences to understand drug reports better (Alvaro et al., 2017).

SpaCy library (Honnibal et al., 2020) (https://spacy.io/) is a free, open-source library for NLP. It contains

ML models for NER, POS tagging, dependency parsing, sentence segmentation, text classification, entity linking,

morphological analysis, etc. The library is employed for entity recognition for Pharmaceutical Organizations and

Drugs in PharmKE - a text analysis platform focused on the pharmaceutical domain (Jofche et al., 2023).

DOMEO Annotation Toolkit (Ciccarese et al., 2012) (https://github.com/domeo/domeo) (also called SWAN

Annotation Tool) is a web application enabling users to manually, semi-automatically, or automatically create

ontology-based annotation metadata. DOMEO (Document Metadata Exchange Organizer) can be customized with

additional plugins, e.g., for annotation of PDDI mentions in structured product labels (Hochheiser et al., 2016)

(https://github.com/rkboyce/DomeoClient).

Transformers - Hugging Face (Wolf et al., 2020) (https://huggingface.co/) package contains many state-of-

the-art NLP models, such as BioBERT (Lee et al., 2019), RoBERTa (Liu et al., 2019c), CharacterBERT (El Boukkouri

et al., 2020), etc. The package offers also tokenizers for several languages and tasks, as well as some popular datasets

for NLP tasks such as NER, NLI, QA, etc.

MedCat Tool (Kraljevic et al., 2021) (https://github.com/CogStack/MedCAT) (Medical Concept Annotation

Tool) is an open-source tool that uses unsupervised methods for NER and NEL in the biomedical field. The tools were

validated with the MIMIC-III program and MedMentions (biomedical papers annotated with mentions from critical

care databases). Dobreva et al. (2022) highlighted drug entities with the help of this tool in the process of extracting

drug-disease relations and drug effectiveness.

AllenNLP (Gardner et al., 2018) (https://allenai.org/allennlp) is an open-source research library, built on

PyTorch, for developing deep learning models for a wide variety of linguistic tasks. The PharmKe (Jofche et al., 2023)

model uses AllenNLP for NER of drugs and pharmaceutical organizations that appear in texts.
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Flair (Akbik et al., 2019) (https://github.com/flairNLP/flair) is a simple yet powerful framework for NLP,

such as NER, POS tagging, and text classification. The framework supports training new models and is used in many

research projects and industrial applications, e.g., Sun et al. (2021) use FLAIR to find sub-word embeddings.

Gensim (Řehůřek and Sojka, 2010) (https://radimrehurek.com/gensim/) is a Python library for topic modeling

- extraction of unknown topics from a large volume of text (feeds from social media, customer reviews, user feedback,

e-mails of complaints, etc.), document indexing, and similarity retrieval from large corpora. The library can handle

large text files without having to load the entire file into memory, has efficient multicore implementations of popular

algorithms, is platform-independent, and supports distributed computing. Dobreva et al. (2020) apply Gensim to NER.

6.2 General NLP libraries

JIEBA tool (Sun, 2012) (https://github.com/fxsjy/jieba) supports Chinese word segmentation based on word

frequency statistics with several functions such as POS tagging, TF-IDF weightig and TextRank keyword extraction.

It was used to generate POS tags of words (Qin et al., 2021).

TextBlob (Loria et al., 2018) (https://textblob.readthedocs.io/en/dev/) is a simple Python library, built on

top of NLTK and Pattern, that supports complex analysis and operations on text data. The library supports noun phrase

extraction, POS tagging, sentiment analysis, classification (Naive Bayes, Decision Tree), tokenization, word and

phrase frequencies, parsing, n-grams, word inflection (pluralization and singularization) and lemmatization, spelling

correction, etc.

Polyglot (Nystrom et al., 2003) (https://github.com/aboSamoor/polyglot) is a NLP pipeline that supports

multilingual applications and offers a wide range of analyses. It features tokenization (165 languages), language

detection (196 languages), NER (40 languages), POS tagging (16 languages), sentiment analysis (136 languages),

word embeddings (137 languages), morphological analysis (135 languages), and transliteration (69 languages).

Quepy (Andrawos et al., 2012) (https://github.com/machinalis/quepy) is a Python framework to transform

natural language questions to queries in a database query language.

In Table 7, we overview the mentioned libraries, together with references from the papers where they are used.

7 Conclusion

Text is an important source of information in pharmacology. To extract that information from increasingly large

collections of structured and unstructured documents, NLP is an essential approach. We present a survey of recent

NLP developments relevant to the pharmacological domain.

Our survey comprises five main pillars, each presented in its section: a modern methodology based on pretrained large

language models, frequently used tasks, useful datasets, knowledge bases, and software libraries. Each main topic

is further split into several components, giving our review a comprehensible hierarchical structure. We compress the

main contributions of each section into overview tables at the end of each section. In summary, our survey testifies to

swift developments in NLP and a surprising breadth of its use in pharmacology.
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7 CONCLUSION 31

While we reviewed over 250 works in our survey, the coverage is by no means exhaustive. In a few years, when next

such a survey will be needed, we expect the most exciting developments in the use and integration of multi-modal

resources, such as text, images, and 3D structural databases. In artificial intelligence, there is a tendency for large lan-

guage models, called foundation models (Bommasani et al., 2021), to capture as much human knowledge as possible,

coupled with the ability for logical and commonsense reasoning. We expect that life sciences and pharmacology will

be one of the first areas where domain-specific knowledge will be integrated into such models.

Finally, NLP is a subfield of machine learning and artificial intelligence, which have many uses in pharmacology

beyond NLP. We are not aware of any review comprehensively covering their applications in pharmacology, but such

a work would complement ours. Due to broadness and rapid progress in ML and AI, such a review would require

several research groups and a monograph format.
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Footnotes
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FOOTNOTES 50

Tables

Table 1: Representation models (i.e. embeddings for text and biological sequences) useful for pharmacology.

Name Description Trained on Usage

Static embeddings

word2vec

(Mikolov et al.,

2013)

General static word em-

beddings

Any collection of text, e.g.,

Wikipedia dump

Any general non-contextual text

processing.

PubMed-PMC,

WikiPubMed-

PMC (Pyysalo

et al., 2013)

Word2vec adapted to life-

sciences

PubMed abstracts and arti-

cles; in combination with

Wikipedia

Any non-contextual life-science

text processing, e.g., biomedical

NER for genes, chemicals and

diseases (Habibi et al., 2017)

BioVec,

ProtVec, Gen-

eVec (Asgari

and Mofrad,

2015) dna2vec

(Ng, 2017)

Word2vec style embed-

dings for biological se-

quences, genes, and pro-

teins

Different biological se-

quences, e.g., Swiss-Prot

Proteomics and genomics, e.g.,

structure prediction for proteins.

Contextual embeddings

BERT (Devlin

et al., 2019),

RoBERTa (Liu

et al., 2019c)

General contextual text

embeddings

Large general text corpora

such as Wikipedia and Com-

mon Crawl.

Any general text processing.

SciBERT

(Beltagy et al.,

2019)

Contextual embeddings

for scientific texts.

Scientific papers from Se-

mantic Scholar

NER for clinical use, text classi-

fication, relation classification

Character

BERT

(El Boukkouri

et al., 2020)

Character-level input al-

lows for easy adaptation

to different areas.

Clinical texts and PubMed ab-

stracts.

Medical NER, NLI, RE, and clin-

ical sentence similarity.

BioMed-

RoBERTa

(Gururangan

et al., 2020)

RoBERTa adaptation for

life-sciences

Standard texts, abstracts, and

full papers from PubMed.

Chemical-protein-disease anno-

tations, sequential sentence clas-

sification task

BioBERT (Lee

et al., 2019)

BERT adapted to life-

sciences

BERT further trained on

PubMed abstracts and papers

biomedical NER, RE, and QA
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Bio+Clinical

BERT

(Alsentzer

et al., 2019)

BioBERT adapted to clin-

ical texts

BioBERT further pretrained

with clinical notes and dis-

charge summaries.

Clinical NER and medical NLI.

Clinical BERT

(Huang et al.,

2019)

Suitable for clinical texts Clinical notes from EHR

for patients in intensive care

units.

Clinical readmission prediction.

BLUE BERT

(Peng et al.,

2019)

Suitable for clinical texts PubMed abstracts and clinical

notes.

Good performance on BLUE

benchmark, including NER and

RE.

CovBERT

(Khadhraoui

et al., 2022)

BERT adapted to

COVID-19.

BERT further pretrained

on PubMed abstracts with

COVID-19 relevant contents.

Tasks related to COVID-19.

RuDR-BERT

(Tutubalina

et al., 2020)

Multilingual BERT

adapted to pharmacology

in Russian

mBERT further pretrained on

consumer reviews about phar-

maceutical products

NER and multiclass classifica-

tion.
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FOOTNOTES 52

Table 2: Summary of knowledge enhanced models. All methods are evaluated on more than one pretrained model.

Here we report the one that achieved the best results. For CODER, we report the best monolingual in multilingual

versions of the models.

Name External knowledge Pretrained model Evaluation tasks

Hao et al. (2020) MIMIC-III, UMLS ALBERT NER, NLI

UmlsBERT

(Michalopoulos

et al., 2021)

MIMIC-III, UMLS Bio ClinicalBERT NER, NLI

Meng et al. (2021) UMLS PubMedBERT document classification, NLI, QA

CODER (Yuan et al.,

2022)

UMLS PubMedBERT, mBERT term normalization

SAPBERT (Liu

et al., 2021)

UMLS PubMedBERT entity linking

Mao and Fung

(2020)

UMLS BioWordVec semantic relatedness, WSD
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Table 3: An overview of the explanation methods used in NLP for pharmacology.

Reference Explanation

type

Short description Downstream tasks

Jha et al. (2018) intrinsic Interpretable word embed-

ding transformation

semantic concept categorization

Wawrzinek et al. (2020) intrinsic Embedding arithmetic (analo-

gies)

drug-disease association predic-

tion

Huang et al. (2020) intrinsic Interpretable subspace drug-drug interaction prediction

Yazdani-Jahromi et al.

(2022)

intrinsic Interpretable component (at-

tention weights)

drug-target interaction prediction

Bradshaw et al. (2019) intrinsic Interpretable component (re-

action predictor)

molecule generation

Jiang et al. (2019) post-hoc Present representative exam-

ples

detection of potential adverse

medication effects

Rodrı́guez-Pérez and Ba-

jorath (2020)

post-hoc Out-of-the-box method

(SHAP)

structure-activity relationship

modeling

Pope et al. (2019) intrinsic Adapt out-of-the-box meth-

ods (gradient-based saliency,

CAM, EB)

identification of biological molec-

ular properties
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Table 4: Overview of tasks related to the pharmacology.

Task Description Referenced papers

Named Entity Recognition Identifying pharmaceutical entities

in textual data

(Jagannatha et al., 2019a) (Chap-

man et al., 2019) (Wunnava et al.,

2019) (Gu et al., 2016) (Kadir and

Bokharaeian, 2013) (Li et al., 2018)

(Yang et al., 2019a)

Relation Extraction Finding relation between drugs and

diseases from scientific text re-

sources

(Ben Abacha and Zweigenbaum,

2011) (Li et al., 2018) (Chen et al.,

2019) (Kilicoglu et al., 2020) (Yang

et al., 2019a) (Rosario and Hearst,

2004) (Zhou et al., 2020)

Adverse Drug Reactions Anticipate danger from future ad-

ministration and demand avoid-

ance, particular therapy, or dose

regimen modification

(Breden and Moore, 2020) (Li et al.,

2020b) (Hussain et al., 2021) (Li

et al., 2018) (Wunnava et al., 2019)

(Chapman et al., 2019)

Literature Based Drug Discovery Discovering new pharmacological

information from existing litera-

ture.

(Zhou et al., 2017) (Biswas

et al., 2021) (Wei et al., 2019)

(Wang et al., 2020b) (Pinto et al.,

2020)(Martinc et al., 2020)(Sang

et al., 2018) (Jofche et al., 2023)

(Preiss et al., 2015) (Wang et al.,

2017) (Dobreva et al., 2020) (Xue

et al., 2018) (Gottlieb et al., 2011)

Question Answering Answers given question with the

most relevant response

(Su et al., 2020) (Lee et al., 2020)

(Farrar, 2002) (Veisi and Shandi,

2020) (Marginean, 2014)
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Table 5: Different types of pharmacology-relevant datasets.

Name Description Entries Usage

Patient Data

MarketScan (Adamson et al.,

2008)

Collection of administrative

claims

43,600,000 NER, ADE, Drug-drug

interaction

URL: https://www.ibm.com/products/marketscan-research-databases

MIMIC-III (Johnson et al.,

2016)

Data on patients hospitalized 40,000 Drug discovery, ADE,

Drug-drug interaction

URL: https://mimic.mit.edu/

MADE 1.0 (Jagannatha et al.,

2019b)

A challenge dataset with 21

EHRs of cancer patients

1,089 NER, ADE

URL: https://bio-nlp.org/index.php/announcements

n2c2 (Henry et al., 2020) Unstructured notes from the Re-

search Patient Data

505 ADE

URL: https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

Drug Usage Data

DailyMed (of Health et al.,

2014)

Drug label database 142,981 NER, Drug-drug interac-

tion, ADE

URL: https://dailymed.nlm.nih.gov/dailymed/index.cfm

DrugBank (Wishart et al.,

2018)

Database of drugs and drug

products

14,665 ADE, pharmacovigi-

lance, standardization,

interactions

URL: https://go.drugbank.com/

Drug Structure Data

ChEMBL (Gaulton et al.,

2012)

Binding, functional, and AD-

MET data

2,400,000 ADE, pharmacovigi-

lance, standardization,

interaction

URL: https://www.ebi.ac.uk/chembl/

UMLS (Bodenreider, 2004) Biomedical vocabularies 2,000,000 ADE

URL: http://umlsks.nlm.nih.gov

PDB (Protein Data Bank con-

tributors, 1971)

biological macromolecules 133,920 ADE, pharmacovigi-

lance, standardization,

interaction

URL: http://www.rcsb.org/pdb/
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ChemProt (Taboureau et al.,

2010)

Biological annotations 1,820 ADE

URL: https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/

Question Answering Data

MQP (McCreery et al., 2020) Collection of medical related

pairs of questions and answers

3,048 QA

URL: https://github.com/curai/medical-question-pair-dataset

COVID-Q (Wei et al., 2020) Collection of COVID-19-related

questions divided into 15 general

categories and 207 specific ques-

tion classes

1,690 QA

URL: https://paperswithcode.com/dataset/covid-q

CovidQA (Zhao et al., 2020) Collection of ques-

tion–article–answer triplets

taken from 85 different articles

in CORD-19

124 QA

URL: https://aclanthology.org/2020.nlpcovid19-acl.18/

General Pharmacological Data

Wikipedia (Wikipedia, 2004) Online free encyclopedia 15,000,000,000 ADE, Drug-drug inter-

action, Drug discovery,

NER

URL: https://en.wikipedia.org/wiki/Main_Page

PubMed (Canese and Weis,

2013)

Web engine for searching health

articles

30,000,000 ADE, Drug-drug inter-

action, Drug discovery,

NER

URL: https://pubmed.ncbi.nlm.nih.gov/

LitCovid (Chen et al., 2021a) Scientific PubMed articles re-

lated with COVID-19

255,935 ADE, Drug-drug inter-

action, Drug discovery,

NER

URL: https://www.ncbi.nlm.nih.gov/research/coronavirus/

CORD-19 (Wang et al.,

2020a)

Scientific papers relevant to

COVID-19 research

52,000 ADE, Drug-drug inter-

action, Drug discovery,

NER

URL: https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge
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DBpedia (Auer et al., 2007) Articles and structured data on

e.g., drugs and diseases

10,000 ADE, pharmacovigi-

lance, standardization,

interactions

URL: https://www.dbpedia.org/

EMBASE Biological and pharmacological

bibliographic database

32,000,000 ADE, pharmacovigi-

lance, standardization,

interactions

URL: http://www.embase.com

ClinicalTrials.gov (Zarin

et al., 2011)

Clinical trials database 329,000 ADE, pharmacovigi-

lance, standardization,

interactions

URL: https://www.clinicaltrials.gov/
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FOOTNOTES 58

Table 6: Covered knowledge graphs from the biomedical domain and their characteristics.

Name Unique Entities RDF Statements

Bio2RDF (Callahan et al., 2013a) 1,107,871,027 11,895,348,562

HIFM (Jovanovik et al., 2015b, 2013) 3,000 21,233

LinkedDrugs (Jovanovik and Trajanov, 2017) 248,746 99,235,032

Covid-19-DS 262,954 69,434,763

KG-Covid-19 (Reese et al., 2021) 574,778 24,145,556
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FOOTNOTES 59

Table 7: Commonly used machine learning and NLP software libraries and tools.

Name Usage Referenced Papers

Natural Language

Toolkit (NLTK) (Bird

et al., 2009)

Tokenization, Lemmatization, POS tag-

ging, NER, Word similarity

(Segura-Bedmar and Martı́nez, 2017)

(Khadhraoui et al., 2022) (Jagannatha

et al., 2019a) (Liu et al., 2019b) (Aldah-

dooh et al., 2021b) (Chen et al., 2020)

(Li et al., 2020a) (Chapman et al., 2019)

(Bird et al., 2009) (Turina et al., 2021)

(Sivasankari et al., 2017) (Prabadevi et al.,

2019) (Mahatpure et al., 2019) (Rabhi

et al., 2019)(Ren, 2021) (Romasanta et al.,

2020) (Sjögren et al., 2020) (Raghupathi

et al., 2018)

URL: https://www.nltk.org/

MetaMap Transfer tool

(MMTx) (Aronson,

2001)

NER, DD Interaction (Schriml et al., 2012) (Aronson, 2001)

(Ben Abacha and Zweigenbaum, 2011)

(Fung et al., 2013) (Gottlieb et al., 2011)

(Sang et al., 2018) (Preiss et al., 2015)

(Kilicoglu et al., 2020) (Yang et al., 2011)

(Jagannatha et al., 2019a) (Yang et al.,

2019a) (Perera et al., 2020) (Kamp et al.,

2013) (Mattes et al., 2013) (Chiaramello

et al., 2016) (Jiang and Zheng, 2013)

URL: https://github.com/theislab/MetaMap

CRFsuite library

(Okazaki, 2007)

NER, Drug Discovery, ADE (Pyysalo et al., 2013) (Chapman et al.,

2019) (Yang et al., 2019a) (Habibi et al.,

2017) (Bamburová and Neverilová, 2019)

(Hakala and Pyysalo, 2019) (Soysal et al.,

2018) (Ngo et al., 2018) (Liu et al., 2015)

URL: http://www.chokkan.org/software/crfsuite/

LibSVM (Chang and

Lin, 2011)

Classification, Regression (Yang et al., 2019a) (Shan and Song,

2019) (Kumari et al., 2010) (Yesmin, 2016)

(Huang and Li, 2004)

URL: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Stanford CoreNLP

toolkit (Manning et al.,

2014)

Tokenization, Lemmatization, POS tag-

ging, NER, Word similarity

(Yang et al., 2019a) (Wang et al., 2018)

(Dernoncourt and Lee, 2017) (Li et al.,

2020a) (Li et al., 2017) (Tang et al., 2019)

(Filannino and Uzuner, 2018) (Gu et al.,

2016) (Kilicoglu et al., 2020) (Dobreva

et al., 2020) (Perera et al., 2020) (Jofche

et al., 2023) (Cunha et al., 2019) (Žunić

et al., 2020)

URL: https://stanfordnlp.github.io/CoreNLP/

BRAT (Stenetorp et al.,

2012)

Annotating structured text (Yang et al., 2021) (Levitan et al., 2011)

URL: https://brat.nlplab.org/introduction.html

SpaCy library (Honni-

bal et al., 2020)

Tokenization, Lemmatization, POS tag-

ging, NER, Word similarity, SRL

(Peng et al., 2019) (Li et al., 2020a) (Jofche

et al., 2023) (Mao and Fung, 2020) (Do-

breva et al., 2020) (Liu et al., 2019c) (Lai

et al., 2019) (Gururangan et al., 2020)

(Chen et al., 2020) (Huang et al., 2019)

(Rivera and Martı́nez, 2019) (D’souza

et al., 2021) (Tarcar et al., 2019) (Oyewusi

et al., 2021) (Zeng et al., 2022) (Jang

et al., 2020) (Ramachandran and Arutchel-

van, 2021)

URL: https://spacy.io/

DOMEO (Ciccarese

et al., 2012)

Annotating structured text (Hochheiser et al., 2016) (Boyce et al.,

2012)

URL: https://github.com/domeo/domeo
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Transformers (Wolf

et al., 2020)

NER, NLI, QA, SRL, Classification,

Embeddings

(Kuratov and Arkhipov, 2019) (Hussain

et al., 2021) (Xiong et al., 2019) (Belt-

agy et al., 2019) (Huang et al., 2019)

(El Boukkouri et al., 2020) (Lee et al.,

2019) (Aldahdooh et al., 2021a) (Canete

et al., 2020) (Michalopoulos et al., 2021)

(Li et al., 2020b) (Sun et al., 2021)

(Akhtyamova, 2020) (Peng et al., 2019)

(Dobreva et al., 2020) (Rogers et al.,

2020) (Gururangan et al., 2020) (Jofche

et al., 2023) (Pfeiffer et al., 2021) (Bre-

den and Moore, 2020) (Houlsby et al.,

2019) (Khadhraoui et al., 2022) (Alsentzer

et al., 2019) (Li et al., 2020a) (Sboev et al.,

2022) (Mao and Fung, 2020) (Lai et al.,

2019)(Moradi and Samwald, 2021) (Liu

et al., 2021) (Perera et al., 2020) (Liu et al.,

2019c) (Conneau et al., 2020) (Aldahdooh

et al., 2021b) (Yuan et al., 2022) (Qin et al.,

2021)

URL: https://huggingface.co/

MedCat Tool (Kraljevic

et al., 2021)

NER+L (Dobreva et al., 2022) (Alicante et al.,

2016)

URL: https://github.com/CogStack/MedCAT

AllenNLP (Gardner

et al., 2018)

NER,NLI, QA, SRL, Classification,

Embeddings

(Jofche et al., 2023) (Beltagy et al., 2019)

(Wang et al., 2018) (Dobreva et al., 2020)

(Li et al., 2020a) (Peng et al., 2019) (Guru-

rangan et al., 2020) (Yang et al., 2021) (Li

et al., 2020c)

URL: https://allenai.org/allennlp

Flair (Akbik et al.,

2019)

NER, POS Tagging, Classification (Sun et al., 2021)(Akhtyamova,

2020)(Conneau et al., 2020)

URL: https://github.com/flairNLP/flair

Gensim (Řehůřek and

Sojka, 2010)

Text summarization, Embeddings (Dobreva et al., 2020) (Habibi et al., 2017)

(Joshi et al., 2022) (Dhrangadhariya et al.,

2020) (Zhu et al., 2020)

URL: https://radimrehurek.com/gensim/
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JIEBA tool (Sun, 2012) Chinese words: POS tagging, TF-IDF,

Text-Rank

(Zhong, 2021) (Yang et al., 2019b) (Li

et al., 2021) (Yang et al., 2020) (Lan and

Zhang, 2020)

URL: https://github.com/fxsjy/jieba

TextBlob (Loria et al.,

2018)

NER, NLI, QA, SRL, Classification,

Embeddings

(Sivasankari et al., 2017) (Saad et al.,

2021) (Ribeiro et al., 2021)

URL: https://textblob.readthedocs.io/en/dev/

Polyglot (Nystrom

et al., 2003)

NER, POS Tagging, Sentiment Analy-

sis, Embedding

(Li et al., 2020a) (Prasad and Sha, 2013)

(Ceusters and Bouquet, 2000)

URL: https://github.com/aboSamoor/polyglot

Quepy (Andrawos et al.,

2012)

NLP, question transformation to queries (Marginean and Marc, 2013)

URL: https://github.com/machinalis/quepy
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