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ABSTRACT 

The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of 

drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, 

which poses a tremendous clinical problem to successfully treat CNS diseases. Understanding 

basic transporter biology, including intracellular regulation mechanisms that control these 

transporters, is critical to solve this clinical problem. 

In this comprehensive review, we summarize current knowledge on signaling pathways that 

regulate ABCB1/ABCG2 at the blood-brain barrier. In part I, we give a historical overview on 

blood-brain barrier research and introduce the role ABCB1 and ABCG2 play in this context. In 

part II, we summarize the most important strategies that have been tested to overcome the 

ABCB1/ABCG2 efflux system at the blood-brain barrier. In part III, the main component of this 

review, we provide detailed information on the signaling pathways that have been identified to 

control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is 

followed by part IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in 

the context of CNS disease. Lastly, in part V, we conclude by highlighting examples of how 

transporter regulation could be targeted for therapeutic purposes in the clinic. 
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SIGNIFICANCE STATEMENT 

The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to 

successful drug delivery to the brain. Here, we review signaling pathways that regulate blood-

brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes. 
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I. INTRODUCTION 

A. The Blood-Brain Barrier 

1. History of Blood-Brain Barrier Knowledge 

The discovery of the blood-brain barrier in 1885 by German microbiologist Paul Ehrlich was a 

serendipitous event that arose from Ehrlich’s work to determine the oxygen demand of the body 

(Ehrlich, 1885). In his experiments, Ehrlich injected rabbits intravenously with the “vital dyes” 

alizarin blue and indophenol blue and observed that all organs were stained by the dyes except 

for the brain. Several years later in 1909, Ehrlich’s student Edwin Goldmann repeated the 

original studies in mice and rats to determine the organ distribution of the “vital dye” trypan blue 

(Goldmann, 1909). After intravenous injection, Goldmann observed that all peripheral organs 

were stained, albeit at a different staining intensity, while the cerebrospinal fluid (CSF) and all 

other parts of the central nervous system (CNS) remained unstained (Goldmann, 1909). 

Goldmann inferred such differences in dye distribution to be due to differences in secretion and 

architecture of the respective organs and concluded that a “physiological barrier membrane” 

(Physiologische Grenzmembran) separated the blood from the CNS. To test his hypothesis, 

Goldmann injected trypan blue into the mouse cranium and observed that the brain parenchyma 

and spinal cord were stained whereas the peripheral organs were not – the opposite effect of 

intravenous dye injection (Goldmann, 1913). This finding supported Goldmann’s hypothesis and 

provided further evidence for the existence of a barrier between the peripheral blood circulation 

and the CNS. 

Today, Ehrlich’s and Goldmann’s experiments are considered the dawn of blood-brain barrier 

research. However, the term “blood-brain barrier” was not introduced until 1921 when Russian 

physiologist Lina Stern referred to it as “barrière hémato-encéphalique” (Stern and Gautier, 
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1921). Stern coined this term based on a series of experiments in which she injected guinea pigs, 

rabbits, cats, and dogs with a variety of substances, including bromides, strychnine, or bile salts, 

and then analyzed blood, CSF, and urine using colorimetric assays. After intravenous injection, 

Stern detected these substances only in blood and urine, whereas after intraventricular injection, 

she detected them only in the CSF. These results convinced Stern that the blood-brain barrier 

was not an anatomical, but a functional structure that protects the CNS, prevents the uptake of 

toxic substances, and maintains normal physiological conditions in the brain (Stern and Gautier, 

1921). 

In the years following these fundamental discoveries, a heated scientific controversy erupted 

over the nomenclature, location, and physiological function of the blood-brain barrier. After 

much discussion, Hugo Spatz hypothesized in the early 1920s that barrier function must reside in 

the brain’s capillary endothelial cells (Spatz, 1934). Danish Nobel Laureate in Physiology or 

Medicine, August Krogh, argued that the blood-brain barrier could not be completely 

impermeable as Spatz had suggested years earlier, since Krogh’s own studies showed that 

nutrients and ions reached the brain parenchyma (Krogh, 1946). Definitive proof of blood-brain 

barrier location and function was provided by the seminal work of Reese and Karnovsky (1967) 

and Brightman and Reese (1969). These researchers intravenously injected mice, chicken, and 

goldfish with the enzyme horseradish peroxidase. Using electron microscopy, they showed in 

fixed brain slices that horseradish peroxidase remained confined in the lumen of brain 

microvessels due to brain endothelial tight junctions that prevented paracellular diffusion of the 

enzyme into the brain (Brightman and Reese, 1969; Reese and Karnovsky, 1967). These findings 

unequivocally demonstrated that the tight junctions that had been identified between brain 

capillary endothelial cells several years earlier by Muir and Peters (1962) restrict paracellular 
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diffusion of solutes across the blood-brain barrier (Brightman and Reese, 1969; Reese and 

Karnovsky, 1967). 

2. The Neurovascular Unit 

In the early 2000s, a new concept arose: Barrier function is not solely based on endothelial cell 

properties, but rather relies on the anatomical and functional interaction of endothelial cells with 

pericytes, astrocytes, and neurons. Together, these cells form an anatomically complex and 

functionally highly regulated and dynamic multi-cell structure referred to as the “Neurovascular 

Unit” (Figure 1; SPRG, 2002). 

In the neurovascular unit, brain capillary endothelial cells form the first layer of barrier function. 

Characteristics of brain capillary endothelial cells that contribute to barrier function include high 

expression levels of tight junction proteins, lack of fenestration, low pinocytic activity, and a 

large number of mitochondria that provide ATP to support a high energy demand (Betz et al., 

1980; Betz and Goldstein, 1978; Brightman and Reese, 1969; Oldendorf and Brown, 1975; 

Oldendorf et al., 1977; Reese and Karnovsky, 1967; Yoshida et al., 1988). Brain capillary 

endothelial cells also have polarized expression of transporters and enzymes. Alkaline 

phosphatase and other enzymes localize to the luminal membrane facing the blood, while 

Na+/K+-ATPase and the Na+-dependent small amino acid carrier are located in the abluminal 

membrane, facing the brain. This polar protein expression is the prerequisite for directional 

transport across the blood-brain barrier and has been described for glucose and several amino 

acids, including leucin and isoleucine (Betz et al., 1975; Raichle et al., 1975). Moreover, protein 

expression also changes along the vascular continuum of the blood-brain barrier, a phenomenon 

recently described as “vascular zonation”, indicating location-specific functions in different areas 

along the vasculature of the blood-brain barrier (Vanlandewijck et al., 2018). Brain capillary 
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endothelial cells are surrounded by a basement membrane that consists of collagens, laminins, as 

well as proteins involved in extracellular matrix and basement membrane reorganization, e.g., 

matrix metalloproteinases (Bonnans et al., 2014; Joutel et al., 2016). The basement membrane 

provides structure and support for endothelial cells and is involved in signal transduction 

between brain capillary endothelial cells and brain parenchymal cells (Baeten and Akassoglou, 

2011; Hynes, 2009; Nehra et al., 2022). Embedded within the basement membrane are pericytes 

(multi-functional mural cells), the second cell type of the neurovascular unit, that cover the 

abluminal brain capillary surface (Armulik et al., 2005; Armulik et al., 2010; Cuevas et al., 1984; 

Sweeney et al., 2016; Winkler et al., 2011). Depending on the brain region, pericytes cover 20%-

99% of the abluminal surface of brain capillaries (Berthiaume et al., 2018; Hartmann et al., 2015; 

Herndon et al., 2017; Mathiisen et al., 2010). Astrocytes, the third cell type of the neurovascular 

unit, have end feet that sit on top of the basement membrane and cover approximately 60% of the 

abluminal surface area of brain capillaries (Korogod et al., 2015; Mathiisen et al., 2010; Wolff, 

1963). The fourth and last cell type at the neurovascular unit are neurons. Neurons interact with 

the neurovascular unit either through astrocytic connections or through direct interaction of 

interneurons with endothelial cells (Gotoh et al., 2001; Niwa et al., 2000). 

Together, the neurovascular unit, consisting of endothelial cells, pericytes, astrocytes, and 

neurons, maintains brain homeostasis, protects the CNS from neurotoxic compounds and is 

responsible for communication between the periphery and the CNS. 

2.1 Communication at the Neurovascular Unit 

The neurovascular unit represents a critical blood-brain interface that ensures regulated bi-

directional communication between the periphery and the CNS (Chen et al., 2020; Marchi et al., 

2013; Stern and Gautier, 1921; Terrando et al., 2011) and is a highly regulated anatomical 
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structure that senses and responds to information flowing from the periphery to the brain and 

vice versa (Chen et al., 2020; Wyss-Coray and Rogers, 2012). 

To enable communication, cells of the neurovascular unit are highly specialized and equipped 

with a myriad of signaling molecules. For example, brain capillary endothelial cells express a 

multitude of receptors and signaling molecules (Joo, 1985; 1993; Karnushina et al., 1980; 

Pardridge et al., 1985; Stefanovich, 1979). Among these proteins are signaling molecules like 

cAMP (Karnushina et al., 1980; Stefanovich, 1979), insulin receptor (Frank and Pardridge, 1981; 

Pardridge et al., 1985), hormone receptors (Edvinsson and Owman, 1975), as well as receptor 

tyrosine kinases like PDGFR (Smits et al., 1989). Additionally, enzymes involved in the 

synthesis and degradation of signaling molecules like cyclooxygenase (Baba et al., 1985) and 

phosphodiesterases (Stefanovich, 1979) are also present at the blood-brain barrier (Joo, 1985; 

1993; Saunders et al., 2014). These signaling molecules enable endothelial cells to communicate 

between the periphery and the brain. 

Pericytes are in direct, basolateral contact with brain capillary endothelial cells, which allows for 

direct communication between the two cell types through gap junctions (Armulik et al., 2005; 

Armulik et al., 2010; Cuevas et al., 1984; Sweeney et al., 2016; Winkler et al., 2011). Pericytes 

play a vital role in blood-brain barrier development and maintenance of barrier function. In this 

regard, loss of pericyte function results in abnormal capillary development and increased 

capillary permeability (Armulik et al., 2010; Hellström et al., 2001). 

Astrocytes cover a large area of the basolateral side of brain capillary endothelial cells and, 

therefore, are in an ideal position to communicate with brain capillary endothelial cells and 

regulate barrier function. Signaling from astrocytes to brain capillary endothelial cells is essential 

for development of tight junctions and localization of transporters and other endothelial proteins. 
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One such regulatory pathway involves the signaling peptide sonic hedgehog (SHH) that is 

released by astrocytes. After secretion, SHH binds to the Patch-1 receptor on brain capillary 

endothelial cells inducing downstream activation of the transcription factor GLI family zinc 

finger 1 (GLI1) (Alvarez et al., 2011; Alvarez et al., 2013). Activation of GLI1, in turn, increases 

the expression of the tight junction proteins claudin 5 and occludin, decreasing blood-brain 

barrier permeability (Alvarez et al., 2011). Astrocytes are uniquely located between endothelial 

cells and neurons and enable communication between those two cell types (Gotoh et al., 2001; 

Niwa et al., 2000). Astrocyte-endothelial cell communication is referred to as neurovascular 

coupling, indicating the close interaction of neuronal activity and cerebral blood flow. Cerebral 

blood flow is selectively increased in areas with high neuronal activity to compensate for higher 

energy consumption (Chaigneau et al., 2003; Cox et al., 1993). Additionally, interneurons 

regulate cerebral blood flow by releasing vasoactive molecules, such as prostaglandins or NO 

(Gotoh et al., 2001; Iadecola, 2017; Niwa et al., 2000). Together, cells of the neurovascular unit 

work together to ensure effective communication among themselves as well as the periphery and 

the brain. 

3. Barrier Function 

Barrier function is pivotal for protecting and ensuring nutrient supply to the brain. The blood-

brain barrier achieves this through tightly regulated interplay among enzymes, transporters, and 

structural proteins that cooperate through four different mechanisms. First, tight junction proteins 

form a physical barrier by sealing off paracellular pathways, which prevents passive diffusion of 

hydrophilic endo- and xenobiotics (Brightman and Reese, 1969; Reese and Karnovsky, 1967; 

Saunders et al., 2014). Second, metabolic enzymes expressed in endothelial cells form a 

metabolic barrier by degrading, and thereby deactivating, CNS-active drugs before they can 
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reach their targets (Dauchy et al., 2009; Ghersi-Egea et al., 1994; Saunders et al., 2017). Third, 

influx transporters facilitate the uptake of specific nutrients like glucose and amino acids 

(Daneman et al., 2010; Oldendorf, 1971; Saunders et al., 2017). These transporters belong to the 

solute carrier superfamily (SLC) and are either facilitative, secondary, or tertiary active 

transporters (Deng et al., 2014; Morris et al., 2017; Yan et al., 2019b). Fourth, ATP-driven efflux 

transporters export metabolic waste and limit xenobiotics, including a myriad of therapeutic 

drugs, from entering the brain (Bauer et al., 2006; Cooray et al., 2002; Cordon-Cardo et al., 

1989; Hartz, 2005; Hartz and Bauer, 2010a; Hartz et al., 2010b; Hartz et al., 2009; Hartz and 

Bauer, 2010b; Miller et al., 2010; Saunders et al., 2017). Notably, influx and efflux transporters 

make up approximately 15% of blood-brain barrier specific proteins indicating a high relevance 

for proper barrier function (Kamiie et al., 2008; Li et al., 2001; Pardridge, 2007; Shusta et al., 

2002; Uchida et al., 2011; Uchida et al., 2014). 

B. ABC Efflux Transporters 

Efflux transporters belong to the ATP-binding cassette (ABC) transporter super-family of 

primary active transporters and are organized based on their gene structure, amino acid sequence, 

and phylogenetic analyses into seven subfamilies (ABCA-ABCG; Robey et al., 2018; Sarkadi et 

al., 2006). ABC transporter structure and function are conserved across the different subfamilies 

as well as across multiple species, including fungi, bacteria, protozoa, insects, fish, and mammals 

(Gebhard, 2012; Klokouzas et al., 2003; Kovalchuk and Driessen, 2010; Kowalski et al., 2020; 

Luckenbach et al., 2014). The human genome contains 48 different ABC transporters (Morris et 

al., 2017; Robey et al., 2018; Vasiliou et al., 2009); 19 of these transporters are expressed in the 

CNS, most of them at the blood-brain barrier (Hartz, 2011). Common structural features of ABC 

transporters include two transmembrane domains (TMD) and two nucleotide binding domains 
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(NBD); (Loo et al., 2002). The TMDs form the substrate binding pocket and facilitate substrate 

movement across the blood-brain barrier and other membranes, while the NBDs hydrolyze ATP 

to provide the energy for active substrate movement against a concentration gradient (Loo et al., 

2002). The NBD structure is highly conserved across the seven ABC subfamilies and across 

species. Common motifs, including the Walker A (G-x(4)-GK-[TS]) and B ([RK]-x(3)-G-x(3)-

LhhhD) motifs, are preserved throughout all ABC transporters (Dean, 2002; Hyde et al., 1990). 

The TMD sequences on the other hand are highly variable, which allows a broad, diverse 

substrate spectrum that includes lipophilic drugs, hydrophilic metabolites, glucuronides, and 

sulfate conjugates (de Vries et al., 2007; Dean, 2002; Kruh et al., 2007). The two most prominent 

efflux transporters at the blood-brain barrier, P-glycoprotein (ABCB1, P-gp) and breast cancer 

resistance protein (ABCG2, BCRP), are the main topic of this review and will be discussed in 

detail below. 

1. History of ABCB1 

The development of mustard gas derivatives, antimetabolites, and antibiotics as anticancer drugs 

in the 1940s and 1950s significantly improved the survival of cancer patients (DeVita and Chu, 

2008; Goodman et al., 1946; Hitchings and Elion, 1954; Pinkel, 1959). Success in treatment, 

however, also revealed that patients could be resistant to anticancer drugs (Law, 1952; Niero et 

al., 2014). Work analyzing this drug resistance in bacterial and mammalian cells eventually led 

to the discovery of ABCB1 and other ABC transporters (Figure 2). 

In 1970, June Biedler postulated that resistance to actinomycin D and other anticancer drugs in 

Chinese hamster ovary cells was caused by changes in cell permeability (Biedler and Riehm, 

1970). Biedler’s experiments showed that multidrug resistance was established through stable 

chromosome changes, possibly in membrane-related genes (Biedler and Riehm, 1970). Later, 
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Juliano and Ling determined that the expression of a 170 kDa glycoprotein in the membrane of 

drug-resistant Chinese hamster ovary cells correlated with the level of drug resistance (Juliano 

and Ling, 1976). Since the protein was not expressed in wildtype cells and drug resistance 

corresponded with changes in drug permeation, Juliano and Ling postulated that this new 

glycoprotein changed the permeability of the cell membrane and, therefore, named it 

“permeability glycoprotein” or P-glycoprotein (P-gp; old nomenclature: PGY1, MDR1, CLCS; 

current: ABCB1 (human protein), Abcb1a/Abcb1b (rodent proteins), Abcb1a/Abcb1b (rodent 

genes), ABCB1 (human gene) (Juliano and Ling, 1976)). Homolog genes and proteins were later 

detected in bacteria as well as in mice and humans, where the gene is located on chromosome 7 

(chromosome 5 in mice; Callen et al., 1987; Chen et al., 1986; Fojo et al., 1986; Gros et al., 

1986). 

In human samples, ABCB1 localizes to the apical surface of epithelial and endothelial cells of 

excretory and barrier organs and tissues such as liver, kidney, intestine, colon, and placenta, 

suggesting a role in secretion, elimination, and protection (Croop et al., 1989; Thiebaut et al., 

1987). The role of ABCB1 in protecting critical organs was further demonstrated when it was 

detected at the human blood-brain barrier in 1989 (Cordon-Cardo et al., 1989). At the blood-

brain barrier, ABCB1 is expressed in the luminal membrane of brain capillary endothelial cells 

(Biegel et al., 1995). Even though ABCB1 had been identified at the blood-brain barrier, its role 

and significance was initially obscure. Based on tissue distribution and expression in drug-

resistant cancer cells, the leading hypothesis was that ABCB1 was involved in the active 

excretion of toxic xenobiotics and metabolites from the brain and other excretory tissues. To test 

the physiological role of Abcb1, Schinkel et al. developed an Abcb1a (originally referred to as 

mdr1a) knockout mouse (Schinkel et al., 1994). Shortly after establishing this unique knockout 
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mouse, unexpected circumstances led to a serendipitous finding. Due to a mite infestation of 

Schinkel’s mouse colonies, all animals – wildtype and Abcb1a knockout – were treated with 

ivermectin, a standard veterinary anthelmintic drug. After treatment, all Abcb1a knockout mice, 

presented with paralytic symptoms and died from neurotoxicity; however, none of the wildtype 

mice died. Toxicological testing showed that Abcb1a knockout mice had 90-fold higher 

ivermectin brain levels compared to wildtype or heterozygous littermates, which correlated with 

a 100-fold increase in sensitivity to ivermectin-induced neurotoxicity (Schinkel et al., 1994). 

Today, Abcb1 deficiency is well-recognized in dogs and cats and is routinely screened for in pets 

to prevent ivermectin-induced toxicity (Mealey et al., 2022; Roulet et al., 2003). Based on their 

observations in mice, Schinkel and coworkers concluded that blood-brain barrier Abcb1a was 

important for protecting the brain and creating a pharmacological sanctuary. This was further 

corroborated by results from Kim et al. showing that knocking out Abcb1a increased oral 

absorption and brain uptake of HIV protease inhibitors (Kim et al., 1998a; Kim et al., 1998b; Lee 

et al., 1998). Combined, these findings indicated that Abcb1a acts as a double-edged sword at the 

blood-brain barrier: on the one hand, Abcb1a-mediated efflux is vital for protecting the brain; on 

the other hand, Abcb1a prevents uptake of potentially CNS-active drugs, significantly limiting 

their CNS efficacy. 

At that time in the 1990s, initial models were proposed to explain ABCB1-mediated transport 

function. The original model hypothesized a central pore that facilitates active substrate 

expulsion through the apical plasma membrane (Borst and Schinkel, 1997). However, the first 

3D structure for ABCB1 proposed by Rosenberg and colleagues showed that ABCB1 is closed 

towards the cytoplasm side contradicting the pore model (Rosenberg et al., 1997). A second 

model attempting to explain ABCB1 transport function, referred to as the “hydrophobic vacuum 
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cleaner model”, postulates that a substrate moves laterally through the membrane until ABCB1 

removes it through a flipping process, indicating that ABCB1 acts as a flippase (Gottesman and 

Pastan, 1993; Higgins and Gottesman, 1992). Additional data from experiments to elucidate 

ABCB1 structure showed a central, polyspecific substrate binding chamber that is accessible 

from the cytoplasm as well as the lipid membrane, suggesting that ABCB1 efflux function is 

most likely based on a combination of both models (Aller et al., 2009; Chang and Roth, 2001; 

Rosenberg et al., 2005). However, understanding ABCB1 function is further complicated by 

several synonymous SNPs that are inconsequential for ABCB1 protein structure but affect 

function and substrate binding (Dickens et al., 2013; Fung and Gottesman, 2009; Hattori et al., 

2018; Kimchi-Sarfaty et al., 2007). Recently, Alam et al. found multiple substrate binding 

pockets in the ABCB1 molecule and concluded that the pocket a compound binds to determines 

if this compound is an ABCB1 substrate or inhibitor (Alam et al., 2019). In addition,  Dastvan et 

al. (2019) demonstrated that ABCB1 substrate binding decreases the activation energy for ATP 

hydrolysis and showed that ATP hydrolysis must occur before or simultaneously to substrate 

translocation (Dastvan et al., 2019). To this date, exactly how ABCB1 functions remains unclear, 

and more research is necessary to fully elucidate the mechanism of ABCB1-mediated efflux 

transport. 

 

2. History of ABCG2 

In 1992, Nakagawa et al. discovered that exposing MCF-7 human breast cancer cells to the 

ABCB1 inhibitor verapamil did not reverse mitoxantrone resistance (Nakagawa et al., 1992). 

Moreover, daunorubicin and rhodamine 123 efflux from MCF-7 cells was not affected by the 

ABCB1 inhibitor cyclosporin A, but was reversed by depleting ATP (Lee et al., 1997). These 
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data indicated the existence of another active, ATP-driven efflux transporter in cancer cells. In 

1998, Doyle et al. (Doyle et al., 1998) compared gene expression in parental vs. doxorubicin-

resistant MCF-7 cells and revealed a differentially expressed mRNA that coded for a new ABC 

transporter: breast cancer resistance protein (old nomenclature: EST157481, MXR, BCRP, 

ABCP, CD338; current: ABCG2 (human protein), Abcg2 (rodent protein), Abcg2 (rodent gene), 

ABCG2 (human gene; Figure 3A; Doyle et al., 1998)). 

Physiologically, ABCG2 is expressed in barrier organs and tissues including the blood-brain 

barrier, where ABCG2 localizes to the luminal plasma membrane of endothelial cells and 

facilitates directional efflux across the blood-brain barrier from brain to blood (Cooray et al., 

2002; Eisenblaetter and Galla, 2002; Zhang et al., 2003). However, in contrast to other ABC 

transporters, ABCG2 codes for only one transmembrane domain with one nucleotide binding site, 

resulting in a protein of approximately 70 kDa, which is half the size of other ABC transporters. 

Therefore, ABCG2 is a so-called half transporter that needs to homodimerize to fully function 

(Figure 3B; Abele and Tampe, 1999; Kage et al., 2002; Rocchi et al., 2000). 

Structural studies, homology modeling, and transport studies with ABCG2 mutants identified 

multiple substrate binding sites that confirmed an overlapping substrate spectrum with ABCB1 

(Clark et al., 2006; Nakanishi et al., 2003; Rosenberg et al., 2010; Xu et al., 2007). The exact 

mechanism of transport function, however, was unknown until Manolaridis et al. (2018) recently 

constructed cryo-EM structures of ABCG2 in substrate- and ATP-bound pre- and post-

translocation states. These different conformations revealed that substrates bind to a central, 

hydrophobic binding pocket that faces the cytoplasm. Upon ATP binding and hydrolysis, a 

conformational shift collapses the substrate binding pocket, which opens an external cavity and 

pushes the substrate across the membrane and out of the cell (Manolaridis et al., 2018). Hofman 
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et al. (2019) confirmed these findings and found two distinct Cryo-EM structures of an ABCG2 

bacterial homolog. Based on these structures, the authors determined that transporter 

conformation depends on substrate and ATP binding state and suggested sequential 

conformation changes during the transport process. In addition to exogenous drug transport, 

ABCG2 has also been implicated in the transport of endogenous metabolites including estrogens, 

steroids, and folates (Ifergan et al., 2005; Ifergan et al., 2004; Imai et al., 2003; Suzuki et al., 

2003). 

Like ABCB1, several SNPs in ABCG2 have been identified in patients (Delord et al., 2013; 

Furukawa et al., 2009; Zamber et al., 2003). For example, Allegra et al. (2018) recently 

demonstrated that the SNP 1194+928 rs13120400 T>C (position 89033527), an intronic variant 

of ABCG2, is associated with decreased brain uptake of ceftriaxone in patients. 

Together, at the blood-brain barrier, ABCB1 and ABCG2 restrict brain uptake of substrate drugs 

and decrease their efficacy, representing a formidable obstacle to the successful therapy of many 

CNS diseases (Figure 3C). Thus, understanding ABCB1 and ABCG2 substrate specificities can 

make the difference between therapeutic failure or success. 

 

3. ABCB1/ABCG2 Substrates 

ABCB1 and ABCG2 were first described as mediators of anticancer drug resistance in cancer 

cells. While ABCB1 was implicated in resistance against daunorubicin, ABCG2 was found to 

contribute to resistance against mitoxantrone, doxorubicin, and daunorubicin, indicating 

important roles for both transporters in multidrug resistance (Biedler and Riehm, 1970; Doyle et 

al., 1998; Juliano and Ling, 1976). de Vries et al. confirmed these findings and showed that 
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Abcb1a/Abcb1b and Abcg2 have overlapping substrate spectra and work together in concert in 

restricting topotecan brain uptake (de Vries et al., 2007). 

Over the last decades, many anticancer drugs have been identified as substrates of either 

ABCB1, ABCG2, or in many cases both transporters (Agarwal and Elmquist, 2012; de Vries et 

al., 2007; Traxl et al., 2019). ABCB1/ABCG2 restrict the brain uptake of anticancer drugs and 

significantly limit their efficacy in the treatment of primary and metastatic brain tumors 

(Agarwal et al., 2011; de Gooijer et al., 2018a; de Vries et al., 2012; Laramy et al., 2017; 

Marchetti et al., 2008; Sorf et al., 2018; Taskar et al., 2012). Substrates of ABCB1/ABCG2 are 

not restricted to a specific class of anticancer drugs but span the entire spectrum of 

chemotherapeutic compounds. ABCB1/ABCG2 substrates include antibiotics, such as 

daunorubicin (Juliano and Ling, 1976), alkylating agents like temozolomide (de Gooijer et al., 

2018b), microtubule inhibitors including paclitaxel (Kemper et al., 2004; Kemper et al., 2003), 

topoisomerase inhibitors (Marchetti et al., 2008), cell cycle disruptors such as ribociclib (Sorf et 

al., 2018), and tyrosine kinase inhibitors like lapatinib or sorafenib (Agarwal et al., 2011; Polli et 

al., 2008; Polli et al., 2009). While many anticancer drugs show promising effects against 

different brain cancer cell lines in vitro, their efficacy in vivo and in clinical trials has been 

marginal at best, in large part due to ABCB1/ABCG2-mediated efflux at the blood-brain barrier. 

Since the seminal work by de Vries et al. in 2007, the overlap in ABCB1 and ABCG2 substrate 

spectra was expanded from anticancer drugs to include a multitude of other drug classes. ABCB1 

significantly restricts brain uptake of some antiseizure drugs and limits their efficacy in the 

treatment of epilepsy (Cox et al., 2001; Tang et al., 2017; van Vliet et al., 2006). Other drugs that 

are ABCB1/ABCG2 substrates include HIV protease inhibitors (Kim et al., 1998a; Kim et al., 

1998b; Lee et al., 1998), the dopamine hydroxylase inhibitor etamicastat (Bicker et al., 2018), 
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riluzole, one of the few FDA-approved drugs for ALS therapy (Jablonski et al., 2014), and a 

myriad of drugs including opioids (Bauer et al., 2006; Chaves et al., 2016; Dagenais et al., 2004; 

Hassan et al., 2007; Letrent et al., 1999; Schaefer et al., 2018; Sharma and Ali, 2006; Yousif et 

al., 2012; Yousif et al., 2008). For example, since oxycodone, morphine, and methadone are 

weak Abcb1a substrates, they can cross the blood-brain barrier, resulting in substantial brain 

uptake and CNS activity (Gibbs et al., 2018). On the other hand, active efflux of opioids at the 

blood-brain barrier has been exploited to develop peripherally active opioids for the treatment of 

diarrhea. Take loperamide as an example, which is a good Abcb1a/b substrate, and therefore, 

does not easily enter the brain (Watari et al., 2019). Loperamide has a four-times higher Abcb1a-

mediated transport rate compared to methadone, which significantly restricts loperamide brain 

uptake (Gibbs et al., 2018). 

Taken together, ABCB1 and ABCG2 have largely overlapping substrate spectra that comprise a 

wide range of compounds including anticancer drugs, antiseizures drugs, HIV protease 

inhibitors, opioids, and a large number of other therapeutically used drugs. The consequence of 

this overlap in substrates is that both transporters compensate for each other. In other words, 

drugs directed to the brain have to overcome not one, but two transporters – the ABCB1/ABCG2 

drug efflux system. 

II. OVERCOMING THE ABCB1/ABCG2 DRUG EFFLUX SYSTEM 

The blood-brain barrier is a challenge for the treatment of many CNS diseases. Over the decades, 

multiple strategies to overcome the blood-brain barrier have been developed with the goal to 

improve drug therapy of CNS disorders. These strategies can largely be divided into transporter-

independent and transporter-dependent strategies. 
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Transporter-independent strategies to overcome the barrier include blood-brain barrier disruption 

with focused ultrasound (Burgess et al., 2011; Hynynen et al., 2001; Mainprize et al., 2019), 

hyperosmotic solutions (Angelov et al., 2009; Chakraborty et al., 2016; Doolittle et al., 2000; 

Lesniak et al., 2019; Neuwelt et al., 1986), transport vehicles that target receptor-mediated 

transcytosis (Kariolis et al., 2020; Pardridge, 2001; Ullman et al., 2020), direct drug delivery via 

intraparenchymal infusion, waver implantation (Valtonen et al., 1997) or convection-enhanced 

delivery (Laske et al., 1997; Lidar et al., 2004), intranasal delivery (Frey, 1997; 2001; Thorne et 

al., 1995), or the use of liposomes and nanoparticles (Fan et al., 2018; Huwyler et al., 1996; 

Ulbrich et al., 2009). Currently, only intraarterial injection of hyperosmotic mannitol and 

implantable drug wavers are FDA-approved therapeutics (NCI, 2022). Other transporter-

independent strategies exist (Doolittle et al., 2000; Duntze et al., 2013; Hynynen et al., 2001; 

Kariolis et al., 2020; Mainprize et al., 2019; Ullman et al., 2020; Westphal et al., 2003). 

In the following section, we discuss advantages and disadvantages of the main transporter-

dependent strategies. Transporter-dependent strategies (Figure 4) focus on inhibiting and 

overcoming ABCB1- and ABCG2-mediated drug efflux using siRNA, antibodies, non-

transporter substrates or transporter inhibitors. 

1. siRNA 

In vitro, siRNAs (small interfering RNA) reduce ABCB1/ABCG2 mRNA and ABCB1/ABCG2 

protein expression in drug-resistant cancer cells such as U87 glioblastoma cells or hepatocellular 

carcinoma cells (Fisher et al., 2007; Li et al., 2012; Zhao et al., 2008). ABCB1/ABCG2 

knockdown also decreases transporter function, increases the accumulation of rhodamine 123, 

and enhances the cytotoxicity of doxorubicin (Fisher et al., 2007; Li et al., 2012; Rittierodt et al., 

2004; Zhao et al., 2008). However, synthetic siRNAs have not yet been tested in vivo. 
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While superficially similar to siRNA, microRNAs (miRNA) have several specific differences. 

Both are endogenous, small non-coding RNAs that act as a recognition sequence to permit the 

RNA-induced silencing complex (RISC) to bind target mRNAs. However, siRNAs silence genes 

by cleaving mRNA before translation, while miRNAs function to silence the translation 

apparatus. In addition, siRNA targeting relies on (near) 100% complementarity, whereas miRNA 

binding requirements are less stringent. The stem-loop structures that give rise to miRNAs are 

also shorter than the long dsRNA that gives rise to siRNA (Mack, 2007; Qureshi et al., 2014). 

miRNAs target the 3’-untranslated region (3’-UTR) of an mRNA. Binding of the 3’-UTR 

prevents the assembly of the translational complex and decreases the expression of the target 

protein (Ambros, 2004; Bartel, 2004). However, in some instances, miRNAs target other regions 

of an mRNA, including the 5’-UTR and the protein-coding sequence, and miRNA activity 

upregulates translation of some targets (Long et al., 2019) Several groups have identified 

differentially expressed miRNAs in tumor cells and at the blood-tumor barrier in samples from 

glioblastoma patients. For example, expression of miR-145 is decreased in tumor samples from 

glioblastoma patients. Transfecting U87 glioblastoma cells with synthetic miR-145 decreases 

both ABCB1 and ABCG2 protein levels, which in return increases sunitinib cytotoxicity (Liu et 

al., 2015). Another miRNA, miR-4539, altered expression of ABCB1 in T98G glioblastoma cells 

and aligned strongly with the 3’-UTR mRNA sequence of ABCB1. Co-treatment of cells with 

doxorubicin and miR-4539 increased toxicity by at least 40%, depending on miRNA dose 

(Medarova et al., 2020). 

While these in vitro data seem promising, only few in vivo studies have been conducted in 

animal disease models. Li et al. showed that miR-378 increases the treatment response in 

orthotopic glioblastoma mouse models in vivo (Li et al., 2018). Deng et al. found that miR-146a-
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5p expression is lower in the brains of rats after status epilepticus compared to control rats (Deng 

et al., 2019). Downregulation of miR146a-5p increased Abcb1 protein levels at the blood-brain 

barrier of rats with status epilepticus. Additionally, injecting miR-146a-5p into the hippocampus 

of rats with status epilepticus decreased Abcb1 mRNA and protein expression (Deng et al., 

2019). However, these authors did not evaluate treatment response. To fully evaluate the impact 

of siRNA and miRNA approaches on drug brain delivery and efficacy, further studies in animal 

models are necessary. 

2. Antibodies 

Several anti-ABCB1 antibodies have been tested both in vitro and in vivo. The antibodies 

MRK16 and MRK17 inhibited Abcb1-mediated efflux in vitro and in animal tumor models, and 

increased doxorubicin efficacy (Broxterman et al., 1988; Mechetner and Roninson, 1992; Tsuruo 

et al., 1989). MRK16 also increased efficacy of other anticancer drugs in ABCB1-

overexpressing cells but had no effect on the parent cells (Hamada and Tsuruo, 1986; Pearson et 

al., 1991). Other antibodies, such as MRK17 and UIC2, had cytotoxic effects themselves, 

possibly through antibody-dependent cytotoxicity (Hamada and Tsuruo, 1986; Mechetner and 

Roninson, 1992). While these initial studies were promising, this strategy was not further 

developed since the mid-1990s. 

 

3. Non-Transporter Substrates 

Another approach has been to develop compounds that are pharmacologically active in the CNS 

but not substrates for blood-brain barrier efflux transporters. Among these non-transporter 

substrates are the EGFR inhibitors buparlisib and avitinib (de Gooijer et al., 2018c; Heffron et 

al., 2016a; Heffron et al., 2016b; Sio et al., 2014; Wang et al., 2018; Wu et al., 2017). However, 
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both drugs are associated with significant adverse effects (Borson-Chazot et al., 2018; Di Leo et 

al., 2018). The PI3K/Akt/mTOR inhibitor GDC-0084 had promising brain distribution and 

efficacy in preclinical models (Heffron, 2016; Salphati et al., 2016) but was ineffective in a 

recent phase 1 clinical trial in patients with recurrent glioblastoma (Wen et al., 2020). Thus, 

developing CNS drugs that are neither an ABCB1 nor an ABCG2 substrate is challenging. 

 

4. ABCB1/ABCG2 Inhibitors 

In the past decades, the most research efforts in the drug efflux transporter field have been spent 

on developing inhibitors for ABCB1, ABCG2, or dual inhibitors for both transporters. Tsuruo et 

al. were the first to discover that the calcium channel blocker verapamil overcomes ABCB1-

mediated resistance against vinca alkaloids (Broxterman et al., 1988; Tsuruo et al., 1981). 

However, due to its primary effect on the cardiovascular system, verapamil is associated with 

cardiovascular toxicity (Pennock et al., 1991). Similarly, cyclosporin A, another promising first 

generation ABCB1 inhibitor, is associated with immunosuppression, nephrotoxicity, and 

hemodynamic adverse events (Desrayaud et al., 1997; Mechetner and Roninson, 1992; Tsuji et 

al., 1993). While both verapamil and cyclosporin A enhanced brain delivery of several drugs in 

animal brain cancer and epilepsy models (Chikhale et al., 1995; Cox et al., 2001; Drion et al., 

1996; Tatsuta et al., 1992), responses were small due to their low ABCB1 binding affinity and 

competitive transporter inhibition that was easily overcome (Cisternino et al., 2001; Kemper et 

al., 2003; Thomas and Coley, 2003). Today, first-generation ABCB1 inhibitors are used as PET 

tracers to test the efficacy of newly developed transporter inhibitors in humans (Bankstahl et al., 

2008; Bauer et al., 2017; Hendrikse et al., 1999). 
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Second generation ABCB1 inhibitors, like valspodar (PSC833), were developed with increased 

potency and reduced off-target effects and toxicity (Boesch et al., 1991; Friche et al., 1992; List, 

1996; Thomas and Coley, 2003; Tidefelt et al., 2000). Data from in vivo studies in mice show 

that valspodar increased brain levels of several Abcb1 substrates without affecting their plasma 

pharmacokinetics (Cisternino et al., 2001; Desrayaud et al., 1997; Drion et al., 1996; Hubensack 

et al., 2008; Kemper et al., 2003; Mayer et al., 1997). Fellner and colleagues (2002) 

demonstrated that valspodar given in combination with paclitaxel reduced tumor volume by 90% 

in a mouse glioblastoma model and concluded that Abcb1 inhibition would potentially allow 

anticancer drugs to reach a tumor in the brain (Fellner et al., 2002). However, second-generation 

ABCB1 inhibitors inhibit several other ABC transporters due to their low selectivity and are 

highly bound to plasma proteins (Simon et al., 1998; Thomas and Coley, 2003). Moreover, many 

second generation ABCB1 inhibitors are metabolized by CYP 450 enzymes, resulting in drug-

drug interactions (Kemper et al., 2003; O'Byrne et al., 2001; Wandel et al., 1999). 

Third generation ABCB1 inhibitors such as tariquidar (XR9576) and elacridar (GF120918) are 

highly specific and lack CYP 450 enzyme interactions (Thomas and Coley, 2003). These 

inhibitors induce long lasting, dose-dependent Abcb1 inhibition without causing adverse effects 

in mice (Abraham et al., 2009; Abraham et al., 2001; Cisternino et al., 2001; Dorner et al., 2009; 

Ferry et al., 2001; Stewart et al., 2000; Thomas et al., 2001). Both elacridar and tariquidar 

increase the delivery of drugs into the brain, including anticancer drugs, opioids, and HIV 

protease inhibitors (Agarwal et al., 2011; Bankstahl et al., 2008; Chen et al., 2009; Choo et al., 

2006; Edwards et al., 2002; Fox and Bates, 2007; Hendrikx et al., 2014; Hubensack et al., 2008; 

Kemper et al., 2003; Kurnik et al., 2008; Lagas et al., 2010; Lagas et al., 2009; Letrent et al., 

1999; Mittapalli et al., 2016; Pusztai et al., 2005; Traxl et al., 2015; van Vliet et al., 2006; 
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Walker et al., 2004). Tariquidar and elacridar inhibit the ATPase activity of human ABCB1 and 

mouse Abcb1 and were initially thought to not interact with the substrate binding site (Cisternino 

et al., 2001; Dorner et al., 2009; Martin et al., 1999; Mistry et al., 2001). However, tariquidar has 

recently been shown to be both an ABCB1 and ABCG2 inhibitor and substrate (Kannan et al., 

2011). Drawbacks of third generation ABCB1 inhibitors include that they are poorly soluble and 

have highly variable pharmacokinetics depending on the route of administration (Matzneller et 

al., 2018; Sane et al., 2012; Ward and Azzarano, 2004). Today, third generation ABCB1 

inhibitors are also used in PET imaging to determine brain uptake in the preclinical and clinical 

setting (Bauer et al., 2010; Bauer et al., 2019; Traxl et al., 2019; Wagner et al., 2009). 

Current research efforts are focused on developing extended-release formulations to overcome 

solubility and pharmacokinetic issues associated with transporter inhibitors (Matzneller et al., 

2018). The development of ABCB1/ABCG2 inhibitors is further complicated by species 

differences in transporter expression and activity levels. These differences become apparent 

when comparing rodents with humans, but also when comparing humans with other higher 

species, including monkeys or dogs (Haritova et al., 2008; Ito et al., 2011; Kamiie et al., 2008; 

Roulet et al., 2003; Uchida et al., 2011). Thus, the “ideal” transporter inhibitor is yet to be found. 

In summary, none of the described transporter-dependent strategies to overcome the blood-brain 

barrier in general or ABCB1/ABCG2 specifically were clinically successful, mostly due to low 

efficacy, high toxicity, and frequent adverse events, especially in combination with standard of 

care treatment. Therefore, new strategies to overcome ABCB1/ABCG2-mediated efflux at the 

blood-brain barrier and to improve the treatment of CNS disorders need to be pursued. One such 

strategy is to pharmacologically target molecules that, directly or indirectly regulate the 

expression and activity of ABCB1 and ABCG2 at the blood-brain barrier (Hartz and Bauer, 
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2010a). In the following section we summarize current knowledge of ABCB1 and ABCG2 

regulation and discuss target molecules that could be used to modulate blood-brain barrier 

transporter expression and activity. 

III. Regulation of ABCB1/ABCG2 at the Blood-Brain Barrier 

Three main pathways regulate ABCB1 and ABCG2 at the blood-brain barrier: A) nuclear 

receptors, B) inflammatory and oxidative stress signaling, and C) receptor tyrosine 

kinase/growth factor signaling. In the following sections we describe these pathways in detail 

and highlight their clinical significance where appropriate. We also summarize other signaling 

mechanisms involved in ABCB1/ABCG2 regulation and briefly describe their clinical relevance. 

A. Nuclear Receptors 

Nuclear receptors are critical transcription factors. By binding directly to DNA and inducing or 

inhibiting the transcription of target genes, nuclear receptors regulate important cellular functions 

in development, homeostasis, and metabolism (Evans, 1988; Olefsky, 2001). Ligands of nuclear 

receptors are classified as hormones, vitamins, or xenobiotic endocrine disruptors (Overington et 

al., 2006). After activation by their respective ligands, nuclear receptors form homo- or 

heterodimers with heat shock protein (HSP) or retinoid X receptor (RXR) that bind to specific 

response elements in the promotor regions of their target genes (Amoutzias et al., 2007; Klinge 

et al., 1997; Linja et al., 2004). For ABCB1 and ABCG2, the response elements for several 

nuclear receptors are located in their respective proximal promotor (Nakanishi and Ross, 2012). 

Therefore, activation of nuclear receptors regulates the transcription of ABCB1 and ABCG2 

changing transporter expression and activity at the blood-brain barrier, but also in other barrier 

organs, such as placenta, testes, intestine, liver, and kidney (Rigalli et al., 2019b). With a few 
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exceptions, this process involves transcription and translation and is, therefore, relatively slow 

(Miller and Cannon, 2014). 

1. Corticoid Receptors 

In 1992, Loffreda et al. were the first to detect nuclear receptors at the blood-brain barrier. 

(Loffreda et al., 1992). These researchers found mineralocorticoid (MR) and glucocorticoid 

receptor (GR) mRNA in isolated rat brain capillaries. Stimulating MR and GR with 

dexamethasone increases Abcb1 and Abcg2 expression in vitro in primary rat brain capillary 

endothelial cells and in vivo at the mouse blood-brain barrier (Chan et al., 2013; Chaves et al., 

2017; Miller, 2015; Narang et al., 2008; Petropoulos et al., 2010; Yasuda et al., 2015; Zhao et al., 

1993). This effect was dose-dependent, reversible, and could be inhibited with GR antagonists 

(Narang et al., 2008). 

In general, corticoid receptors are activated by endogenous hormones such as glucocorticoids as 

well as exogenous xenobiotics (Figure 5A). Upon activation, the receptor translocates from the 

cytoplasm to the nucleus, where it binds to the response element of its target genes, resulting in 

transcription (Miller, 2010; Zhao et al., 1993). Corticoid signaling is critical during blood-brain 

barrier development. Activation of maternal GR during development induces early Abcb1 

expression in brain capillaries isolated from Guinea pig fetuses at different developmental stages 

(Iqbal et al., 2016). 

Glucocorticoids are often used to prevent edema in patients with brain tumors. However, 

glucocorticoid activation of GR upregulates ABCB1/ABCG2 at the blood-brain barrier. Increased 

efflux transporter expression and activity then further restricts brain uptake of anticancer drugs, 

limiting their efficacy in the treatment of brain tumors (Petropoulos et al., 2010). 
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2. Retinoid Acid Receptor (RAR) and Retinoid X Receptor (RXR) 

In 1997, El Hafny et al. showed that retinoic acid increases Abcb1 expression and ABCB1 

activity in a rat brain capillary endothelial cell line in a concentration-dependent manner. 

Retinoic acid binds to RAR and induces the formation of heterodimers with RXR (Figure 5B). 

The RAR-RXR heterodimer activates the retinoic acid response element in the Abcb1 promotor 

resulting in transporter upregulation (El Hafny et al., 1997). A similar process involves several 

other RAR ligands (Chan et al., 2013; Sarkadi et al., 2006; Xu et al., 2005). 

3. Pregnane X Receptor (PXR) 

In 1998, Kliewer and colleagues discovered PXR (Kliewer et al., 1998). PXR functions as a 

xenobiotic sensor and its activation increases levels of proteins involved in detoxification and 

xenobiotic clearance (Kliewer et al., 1998). Upon activation, PXR forms heterodimers with RXR 

(Bauer, 2005) or other orphan nuclear receptors (Xu et al., 2005) and binds to its response 

element in the promotor region of its target genes (Figure 5C; Miller et al., 2008; Song et al., 

2004). In 2001, Synold et al. (2001) showed that PXR regulates ABCB1 protein levels. We 

found that PXR is expressed in isolated rat brain capillaries and first reported that PXR 

activation upregulates rodent Abcb1 protein levels and transport activity at the blood-brain 

barrier (Bauer et al., 2004; Bauer et al., 2006; Hartz and Bauer, 2010a). Other groups later 

confirmed our findings and also showed that PXR activation increases Abcb1 and Abcg2 protein 

levels and activity at the blood-brain barrier in rodents (Chan et al., 2011; Chaves et al., 2017; 

Yasuda et al., 2015). 

Many drugs that are ABCB1 and ABCG2 substrates increase their own efflux at the blood-brain 

barrier through PXR-mediated upregulation. For example, antiretroviral drugs, antiseizure drugs 

and several other drugs, including rifampicin and hyperforin, are PXR agonists. These drugs 
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induce ABCB1/ABCG2 expression at the blood-brain barrier by activating PXR, and thus, restrict 

their own brain uptake and efficacy (Chan et al., 2011; Potschka, 2012; Chan et al., 2013). 

4. Constitutive Androstane Receptor (CAR) 

Upon activation, CAR forms heterodimers with RXR, which bind to the retinoic acid response 

element in the promotor sequence of target genes (Sarkadi et al., 2006; Xu et al., 2005; Figure 

5D). Both Abcb1 and Abcg2 are among those target genes. In this regard, xenobiotics and drugs, 

such as phenobarbital, increase the expression of both Abcb1 and Abcg2 and their accompanying 

proteins’ activity in isolated brain capillaries from mice and rats (Wang et al., 2010; Yasuda et 

al., 2015) This also occurs in hCMEC/D3 cells, a human brain microvascular endothelial cell 

line (Chan et al., 2011). ABCB1 mRNA and ABCB1 protein levels increased after exposing 

hCMEC/D3 cells to the CAR ligand 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-

carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). This upregulation was inhibited by co-

exposing the cells to CITCO and the CAR inhibitor meclizine (Chan et al., 2011). In a follow up 

study, Chan et al. demonstrated that the antiretroviral drugs abacavir, efavirenz, and nevirapine 

are CAR ligands and upregulate ABCB1 in hCMEC/D3 cells (Chan et al., 2013). 

Acetaminophen is a common over-the-counter pain and fever relieving agent. High doses of 

acetaminophen activate CAR, which increases Abcb1 mRNA levels and accompanying protein 

activity in isolated rat brain capillaries (Slosky et al., 2013). In addition, five FDA-approved 

drugs were identified that facilitate CAR transport into the nucleus, including the 

antihypertensive drug telmisartan (Lynch et al., 2013). These drugs could potentially affect 

transporters at the blood-brain barrier. 
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5. Peroxisome Proliferator-Activated Receptor (PPAR) 

Three types of peroxisome proliferator-activated receptors (PPARα, PPARβ, PPARγ) have been 

identified, but only PPARα and PPARγ are involved in ABC transporter regulation (Xu et al., 

2005). Clofibrate, linoleic acid, and other PPARα agonists increase expression levels of Abcb1 

and Abcg2 mRNAs and accompanying proteins as well as transporter activity in isolated mouse 

brain capillaries and in hCMEC/D3 cells (Chan et al., 2013; Hoque et al., 2012; Hoque et al., 

2015; More et al., 2017). After heterodimerizing with RXR, the PPARγ/RXR complex binds to 

the PPAR response element upstream of the Abcg2 promotor, which induces drug resistance in 

cancer cells (Nakanishi and Ross, 2012; Figure 6A). PPARγ also regulates ABCB1 and ABCG2 

in human glioblastoma cell lines in vitro (Han et al., 2015; Szatmari et al., 2006). Cannon et al. 

(2020) showed that GenX (Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate), 

a chemical precursor used in the production of Teflon, rapidly inhibits Abcb1 transport activity in 

isolated rat brain capillaries and that this inhibition is dependent on PPARγ activity. 

Fibrates, a class of drugs used treat hypercholesterolemia, are PPARα agonists. Clofibrate 

upregulates Abcb1/Abcg2 mRNA and associated protein levels as well as efflux transporter 

activity in isolated rat brain capillaries and in hCMEC/D3 cells in vitro (Hoque et al., 2015; 

More et al., 2017). The thazolidinediones are a class PPARγ agonists approved for treatment of 

type II diabetes and include pioglitazone, rosiglitizone, and lobeglitazone. Of these, pioglitazone 

increases docosahexaenoic acid trafficking into the brain (Low et al., 2020), crosses the blood-

brain barrier, and reduces tumor growth in a human xenograft model (Grommes et al., 2013). 

Rosiglitizone, on the other hand, appears to reinforce the integrity of the blood-brain barrier 

(Sivandzade and Cucullo, 2019; Zhao et al., 2019). 
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6. Estrogen Receptor (ER) 

Estrogen receptors are hormone-activated nuclear receptors (ER and ERβ) or G-protein coupled 

membrane receptors (GPR30, ER-X and Gq-mER). Estrogen binding to these receptors triggers 

either a rapid (minutes) response through nongenomic pathways or a slow response (hours-days) 

through genomic signaling pathways (Figure 6B). 

In 2002, Imai et al. (2002) showed that 17β-estradiol enhances the cytotoxicity of several 

anticancer drugs in vitro by decreasing expression of ABCG2 in human leukemia cells (Imai et 

al., 2002). The estrogen response element (ERE) was detected in the ABCG2 promotor region 

(Ee et al., 2004). In addition to the genomic regulation of ABCG2, Imai et al. (2005) also 

discovered that 17β-estradiol activation of ERα increases topotecan cytotoxicity via a 

nongenomic pathway through posttranscriptional regulation of ABCG2 in human breast cancer 

cells (Imai et al., 2005). In 2010, we showed that estrogen signaling regulates Abcg2 at the 

blood-brain barrier (Hartz et al., 2010a; Hartz et al., 2010b). We found that 17β-estradiol 

decreased Abcg2 activity within minutes and this effect did not involve transcription, translation, 

or proteasomal degradation, indicating a nongenomic mechanism (Hartz et al., 2010b). 

Experiments with ERα and ERβ knockout mice showed that rapid loss of Abcg2 activity was due 

to E2 signaling through both receptors. In a follow-up study we demonstrated that 6-hour E2 

exposure of isolated brain capillaries resulted in a loss of Abcg2 activity that was accompanied 

by reduced Abcg2 protein expression levels. Altogether, we found that the signaling process 

responsible for these effects in isolated rat brain capillaries involved E2 signaling through ERβ, 

which inhibits the PTEN/PI3K/Akt/GSK3 pathway leading to Abcg2 proteasomal degradation 

(Hartz et al., 2010b). Thus, E2 acting through either ER can signal an initial loss of Abcg2 
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transport activity, but only signaling through ERβ mediates reduced ABCG2 protein expression 

and activity levels. 

Another estrogenic compound, the synthetic xenoestrogen bisphenol A, is a common component 

of plastic products that also activates ERs. Bisphenol A decreased Abcg2 protein and activity 

levels in isolated rat brain capillaries via an ERα-dependent genomic pathway (Nickel and 

Mahringer, 2014). Specifically, upon bisphenol A-mediated activation, ERα binds to the ERE in 

the Abcg2 promotor where it acts as negative regulator resulting in a slow decrease in Abcg2 

expression and activity levels in isolated mouse brain capillaries (Shin et al., 2018; Zhang et al., 

2010). Phytoestrogens from soybeans also induce ABCG2 expression and protein activity 

through a genomic signaling pathway in breast cancer cell lines (Rigalli et al., 2019a; Rigalli et 

al., 2019b). However, this particular pathway has not yet been identified at the blood-brain 

barrier. A similar ERβ-dependent, nongenomic pathway for ABCB1 that is activated by 

androstanes also exists (Zuloaga et al., 2012). Further information on ER-dependent, 

nongenomic ABCB1 and ABCG2 regulation is in Section C.3. 

7. Aryl Hydrocarbon Receptor (AhR) 

The aryl hydrocarbon receptor does not belong into the family of 48 known human nuclear 

receptors but is a member of the bHLH-PAS family (basic Helix-Loop-Helix - 

Period/ARNT/Single minded) of dimerizing transcription factors. Similar to xenobiotic-sensing 

nuclear receptors, after binding and activation by aromatic aryl hydrocarbons, from which its 

name derives, AhR translocates into the nucleus and dimerizes with the aryl hydrocarbon 

receptor nuclear translocator (Arnt; Xu et al., 2005; Figure 6C) resulting in the regulation of its 

target genes, including transporters. AhR is highly expressed in hCMEC/D3 cells (Dauchy et al., 

2008; Dauchy et al., 2009) and increases Abcb1 and Abcg2 mRNA expression levels and activity 
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levels of the respective proteins in several tissues, including the blood-brain barrier of mice and 

rats (Campos et al., 2012; Chan et al., 2013; Chaves et al., 2017; Klaassen and Slitt, 2005; Le 

Vee et al., 2015; Nakanishi and Ross, 2012). AhR inhibition with ethanol decreases Abcb1 and 

Abcg2 mRNA expression and associated protein levels at the rat blood-brain barrier (Hammad et 

al., 2019), but other AhR signaling in brain endothelial cells is unknown. 

8. Thyroid Receptors 

Thyroid hormone signaling regulates processes including growth, development, and metabolism. 

The main thyroid hormones are thyroxin (T4) and 3,3,3’-triiodo-L-thyronine (T3), which enter 

the brain by crossing the blood-brain barrier. The role of thyroid hormones in the regulation of 

ABCB1 and ABCG2 at the blood-brain barrier, however, is not well-investigated and limited to 

few studies. In this regard, Saljé et al. (2012) treated rats with thyroxin (T4; 9 μg/kg for 9 days) 

and showed upregulation of Abcb1 protein expression in brain and liver tissue (Figure 6D). 

Kassem and colleagues (2007) found that ABCB1 regulates T4 levels in the CSF by facilitating 

T4 transport between the choroid plexus, the brain, and the CSF. However, thyroid regulation of 

blood-brain barrier ABCB1 and ABCG2 remains largely unexplored. 

 

9. Other Nuclear Receptors 

Several other nuclear receptors such as FXR, LXR, and VDR have been implicated in transporter 

regulation at the blood-brain barrier. Thus far, however, they have not been studied in detail and 

little is known about their role in transporter regulation at the blood-brain barrier. For example, 

the FXR ligand chenodeoxycholic acid upregulates the efflux transporter Abcc2 in isolated rat 

brain capillaries, indicating that FXR could be involved in the regulation of its target genes at the 

blood-brain barrier (Bauer et al., 2008a). Further, the vitamin D receptor (VDR) regulates protein 
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expression levels of both ABCB1 and ABCG2 (Chan et al., 2013; Chaves et al., 2017; Sarkadi et 

al., 2006). In contrast, the liver X receptor (LXR) regulates Abca1 mRNA levels in an 

immortalized rat brain capillary endothelial cell line (TR-BBB13) but has no effect on Abcg2 

mRNA levels (Akanuma et al., 2008). More studies are needed to understand the role FXR, 

LXR, and VDR play in transporter regulation at the blood-brain barrier. 

B. Inflammatory and Oxidative Stress Signaling 

B1. Inflammation 

The brain is not immune-privileged, as originally anticipated, and immune cells do cross the 

blood-brain barrier and enter the brain (Engelhardt et al., 2017). The barrier, itself, contributes to 

inflammation and brain capillary endothelial cells respond to inflammatory stimuli and release 

cytokines. Neuroinflammation is common among all CNS diseases including epilepsy (Alyu and 

Dikmen, 2017; Choi and Koh, 2008; Rana and Musto, 2018), brain tumors (Couto et al., 2019; 

Jiang et al., 2017), and Alzheimer’s disease (Akiyama et al., 2000; Lai et al., 2017; Mosher and 

Wyss-Coray, 2014; Wyss-Coray and Rogers, 2012). Neuroinflammatory signaling is driven by 

cytokines and oxidative stress, both of which are implicated in the regulation of blood-brain 

barrier transporters through activating different signaling pathways. In the following sections, we 

discuss four key regulators of ABC transporters at the blood-brain barrier: 1) Nuclear Factor 

Kappa-light-chain-enhancer of activated B cells (NF-κB), 2) Tumor Necrosis Factor α (TNFα), 

3) prostaglandins, and 4) cytokines. 

1. Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) 

NF-κB is a rapidly acting, primary transcription factor that is constitutively expressed in the 

cytoplasm of all cells (Jacobs and Harrison, 1998). In its inactive state, NF-κB is bound to the 
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inhibitor of κB (IκB), which prevents translocation into the nucleus (Jacobs and Harrison, 1998). 

Upon activation by infectious and inflammatory stimuli or through cell surface receptors, IκB is 

ubiquitinated and degraded, which releases NF-κB allowing translocation into the nucleus. 

There, NF-κB binds to the promoters of its target genes and stimulates transcription (Deptala et 

al., 1998; Gilmore, 2006). Among NF-κB target genes are proinflammatory cytokines as well as 

markers of cell survival and proliferation (Basu et al., 1998; Chandel et al., 2000; Deptala et al., 

1998; Fitzgerald et al., 2007; Qin et al., 2005; Renard et al., 1997). 

In 2005, Dixit et al. showed that interferon γ stimulates ABCB1 expression and ABCB1 activity 

in human intestinal cells in vitro via nitric oxide synthase (NOS) and NF-κB (Dixit et al., 2005). 

Pan et al. discovered a similar pathway showing that lipopolysaccharide-induced inflammation 

increases Abcb1 mRNA expression levels at the blood-brain barrier of wildtype but not NF-κB 

KO mice, indicating an important role for NF-κB in Abcb1 regulation (Pan et al., 2010). Since 

then, several groups have shown that NF-κB activation by inflammatory stimuli or cellular stress 

increases the expression of Abcb1 and associated protein activity at the rodent blood-brain 

barrier in vivo and in vitro (Bauer et al., 2007; Pan et al., 2010; Ronaldson et al., 2010; Zhang et 

al., 2014). In contrast, stimuli that inhibit NF-κB signaling decrease Abcb1 and Abcg2 mRNA 

expression and associated protein activity levels at the blood-brain barrier. For example, in 

cultured rat microvessel endothelial cells in vitro, insulin inhibits NF-κB through the insulin 

receptor, which decreases both Abcb1 and Abcg2 mRNA expression and protein activity levels 

(Liu et al., 2009; Liu et al., 2011). Additionally, in vivo experiments in diabetic rats showed the 

opposite effect: increased ABC transporter expression and activity at the blood-brain barrier due 

to decreased insulin plasma levels (Maeng et al., 2007). Thus, NF-κB is a key transcription factor 

that regulates both Abcb1 and Abcg2 at the blood-brain barrier. 
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Multiple drug candidates for repurposing to regulate NF-κB include clemastine, topotecan, 

bortezomib, and dexamethasone (Roberti et al., 2022) and are known to affect ABC transporters 

(Hartz et al., 2016). Other drugs, like methamphetamine weaken the blood-brain barrier by 

inhibiting NF-κB (Coelho-Santos et al., 2015) and another drug of abuse, mephedrone, activates 

NF-κB and increases blood-brain barrier permeability (Buzhdygan et al., 2021). At this point, it 

is unclear if these compounds affect ABC transporters. 

2. Wnt/β-Catenin Signaling 

Wnt/β-catenin signaling is part of several inflammatory signaling cascades. During canonical 

Wnt signaling, β-catenin is degraded by a so-called “destruction complex” formed by GSK3β, 

APC, and axin. Upon activation, Wnt binds to the Frizzled receptor which recruits axin and 

inhibits GSK3Β. Consequently, the destruction complex cannot assemble, and β-catenin 

accumulates in the cytosol. After translocation into the nucleus, β-catenin acts as transcription 

factor and induces transcription of genes involved in cell proliferation and survival (Atlasi et al., 

2014). At the blood-brain barrier, β-catenin regulates the transcription of Abcb1 and Abcg2. β-

catenin leads to increased transporter expression and activity levels at the blood-brain barrier in 

vitro in hCMEC/D3 cells and in mice and rats in vivo (Harati et al., 2013; Laksitorini et al., 2019; 

Lim et al., 2008; Lim et al., 2009; Paolinelli et al., 2013; Strazielle and Ghersi-Egea, 2015). 

3. Tumor Necrosis Factor alpha (TNFα) 

TNFα is commonly involved in CNS inflammation (Fresegna et al., 2020; Probert et al., 1997; 

Raffaele et al., 2020). In 1992, Sharief and Thompson described increased TNFα levels in the 

cerebrospinal fluid from patients with multiple sclerosis that correlated with blood-brain barrier 

dysfunction (Sharief and Thompson, 1992). Maternal infections in guinea pigs led to TNFα 

release, which decreased Abcb1 function at the blood-brain barrier of the fetus, consequently 
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rendering the fetal brain vulnerable to potentially teratogenic compounds (Iqbal et al., 2016; 

Iqbal et al., 2012). At later stages of development, TNFα signaling decreases Abcg2 activity at 

the rat blood-brain barrier (Harati et al., 2012). In adulthood, TNFα has differential effects on 

Abcb1 and Abcg2 expression levels and associated protein and activity levels, depending on 

exposure time and concentration. For example, we showed that acute short-term exposure of 

isolated rat brain capillaries to nanomolar concentrations of TNFα activated the TNF receptor 1 

(TNFR1) which activated endothelin converting enzyme (ECE; Figure 7; Hartz et al., 2006). 

ECE activation, in turn, leads to the production of endothelin 1 (ET1) which signals through the 

endothelin receptor B (ETB) to activate the inducible nitric oxide synthase (iNOS). NO 

stimulates protein kinase Cβ1 (PKCβ1) and sphingosine release from the brain capillary 

membrane (Pilorget et al., 2007; Rigor et al., 2010). Sphingosine is phosphorylated by 

sphingosine kinase and binds to the sphingosine-1-phosphate receptor decreasing Abcb1 and 

Abcg2 mRNA levels and associated protein activity levels at the blood-brain barrier in vitro and 

in vivo (Cannon et al., 2012; Evseenko et al., 2007; Harati et al., 2013; Hartz et al., 2004; 2006; 

Hawkins et al., 2010; Heemskerk et al., 2010; Pilorget et al., 2007; von Wedel-Parlow et al., 

2009). In addition, the PKCβ1 activator 12-deoxyphorbol-13-phenylacetate-20-acetate 

significantly increases brain uptake of the ABCB1 substrate [3H]-verapamil in rats, indicating 

that downregulating Abcb1 expression and protein activity enhances brain drug delivery (Rigor 

et al., 2010). 

Long-term exposure (6 hours) of isolated rat brain capillaries to TNFα leads to ET1 release 

which in turn activates both ETA and ETB receptors stimulating NO release and activation of 

PKCβ2. This signaling pathways results in downstream activation of NF-κB which translocates 
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to the nucleus and induces transcription and translation of Abcb1 at the blood-brain barrier 

(Bauer et al., 2007; Mayati et al., 2017; Rigor et al., 2010). 

4. Prostaglandins 

In 1995, Tishler et al. analyzed resected brain tissue from patients with medically intractable 

(refractory or drug-resistant) epilepsy and found increased ABCB1 mRNA levels (Tishler et al, 

1995). This led to the transporter hypothesis of refractory epilepsy, which states that ABCB1 

overexpression at the blood-brain barrier in epilepsy restricts antiseizure brain drug uptake, thus, 

leading to antiseizure drug resistance (Tang et al. 2017). Much research has been done to 

understand the role of blood-brain barrier ABC transporters in epilepsy and lead to the partial 

unraveling of signaling pathways that control these transporters after seizures. 

Release of glutamate in the CNS of patients with epilepsy is linked to seizure activity and 

subsequent CNS damage (Ronne-Engstrom et al., 1992). Extracellular glutamate upregulates 

Abcb1 mRNA and associated protein levels in rat brain capillary endothelial cells in vitro and 

proposed that glutamate activates the NMDA receptor and triggers a signaling cascade that 

increases Abcb1 expression at the blood-brain barrier (Zhu and Liu, 2004). At the same time, 

efflux of anticonvulsive drugs by ABC transporters at the blood-brain barrier was considered as 

one of the main causes of refractory epilepsy (van Vliet et al., 2005). 

Since then, we and others have identified several signaling steps through which seizures 

upregulate ABC transporters at the blood-brain barrier. Specifically, seizure-induced glutamate 

release activates the NMDA receptor in brain capillaries (Hartz et al., 2019; Mohamed et al., 

2019a). NMDAR activation stimulates cytosolic phospholipase A2 (cPLA2) to cleave 

arachidonic acid from triglycerides in the cell membrane (Hartz et al., 2019). Arachidonic acid is 

converted by cyclooxygenase 2 (COX2) to prostaglandin H2, which is then converted to PGE2 
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by microsomal prostaglandin synthase 1 (mPGS1), a process first described in isolated rat brain 

capillaries (Baba et al., 1985; Bauer et al., 2008b; Schlichtiger et al., 2010; Soldner et al., 2019; 

van Vliet et al., 2010; Zibell et al., 2009). PGE2 activates the prostaglandin EP1 receptor in brain 

capillary endothelial cells and via NF-κB activation ultimately leads to increased ABC 

transporter expression and activity levels (Pekcec et al., 2009; Soldner et al., 2019). Targeting 

signaling steps in this pathway has the potential to prevent ABCB1 upregulation at the blood-

brain barrier, and thus, overcome drug resistance in patients with epilepsy (Bauer et al., 2008b; 

Hartz et al., 2019; Mohamed et al., 2019b; Pekcec et al., 2009; Schlichtiger et al., 2010; Soldner 

et al., 2019; van Vliet et al., 2010; Zibell et al., 2009). This pathway is active at the blood-brain 

barrier of patients with epilepsy and amyotrophic lateral sclerosis (Avemary et al., 2013; 

Mohamed et al., 2019b). In addition to epileptic seizures, morphine withdrawal also activates 

this pathway and upregulates Abcb1 expression and associated protein activity levels at the rat 

blood-brain barrier (Chaves et al., 2017; Yousif et al., 2012). Other cell membrane lipids like 

ceramide 1-phosphate (C1P) and other sphingolipids also stimulate this pathway and increase 

Abcb1 activity at the blood-brain barrier (Mesev et al., 2017). Taken together, prostaglandin 

signaling is a key pathway that regulates ABCB1 and ABCG2 and associated proteins at the 

blood-brain barrier. 

Multiple drugs operate through modifying prostaglandin levels or activity. These include 

bimatroprost (glaucoma treatment), carboprost (induce uterine contractions), dinoprost (cervical 

dilation during labor), misoprostol (abortifacient, gastric ulcer treatment), and latanoprost 

(glaucoma treatment). The antibiotic cefmetazole can inhibit prostaglandin transport out of the 

brain across the blood-brain barrier (Akanuma et al., 2011). However, focused research on 

modifying prostaglandin activity to regulate blood-brain barrier activity is currently lacking. 
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5. Other Cytokines 

Several other cytokines are involved in transporter regulation at the blood-brain barrier but have 

not been studied extensively. For example, interleukin 1β decreases expression and activity 

levels of both Abcb1 and Abcg2 and associated proteins (Ashraf et al., 2011; Evseenko et al., 

2007; Robey et al., 2009; Ronaldson et al., 2008). Another example includes members of the 

interleukin 6 family, including leukemia inhibitory factor (LIF) and ciliary neurotrophic factor 

(CNTF), that stimulate NF-κB signaling and increase Abcb1 activity at the blood-brain barrier 

(Ashraf et al., 2011; Evseenko et al., 2007; Monville et al., 2002). ABCG2 expression levels, on 

the other hand, are decreased by interleukin 6 (Poller et al., 2010). While the underlying 

mechanisms of how cytokines affect transporters are not well understood, some data indicate that 

cytokine signaling alters caveolae in the brain capillary endothelium which moves transporters 

from intracellular storage vesicles into the luminal membrane (Tome et al., 2016). 

B2. Oxidative Stress 

Oxidative stress occurs in many CNS disorders (Mendiola et al., 2020; Qosa et al., 2016a; Singh 

et al., 2019). Reactive oxygen species (ROS) generated during oxidative stress damage cells 

leading to cytokine release, which in turn affects cellular processes including transport 

(Mendiola et al., 2020). In 2002, Felix et al. first demonstrated that hypoxia-induced ROS 

increase Abcb1 mRNA and protein expression levels in rat brain capillary endothelial cells in 

vitro (Felix and Barrand, 2002; Neuhaus et al., 2014). Following this initial discovery, other 

groups also unraveled signaling pathways through which oxidative stress increases Abcb1 

expression and associated protein activity levels at the blood-brain barrier. For example, ROS 

stimulate the ERK signaling cascade that includes protein kinase C (PKC), c-Jun, and Akt 

(Bauer, 2005; Miller et al., 2008). The key relay in this pathway is NF-κB that, once activated, 
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increases Abcb1 protein levels (Bauer, 2005; Grewal et al., 2017; Miller et al., 2008; Qosa et al., 

2016a). In contrast, ROS-mediated ERK1 and ERK2 stimulation in mouse brain capillary 

endothelial cells in vitro induces Abcg2 downregulation (Grewal et al., 2017; Neuhaus et al., 

2014). ROS also oxidize Kelch-like ECH-associated protein 1 (Keap1) which releases nuclear 

factor E2-related factor 2 (Nrf2) allowing its translocation into the nucleus. There, Nrf2 binds to 

the antioxidant response element (ARE) in the promoter region of its target genes resulting in 

increased transcription. These target genes code for detoxification enzymes, antioxidant proteins, 

proteins involved in xenobiotic metabolism, and efflux transporters including Abcb1 (Aleksunes 

and Klaassen, 2012; Copple, 2012; Copple et al., 2010; Klaassen and Slitt, 2005; Maher et al., 

2005). Nrf2 also activates p53 and stimulates the p38 mitogen-activated protein kinase (MAPK) 

cascade that activates NF-κB, which increases Abcb1 expression and associated protein levels in 

isolated rat brain capillaries (Grewal et al., 2017; Wang et al., 2014). On the other hand, 

oxidative stress activates pathways that decrease ABCB1 expression and associated protein levels 

at the blood-brain barrier. For example, oxidative stress activates Abl and Src kinases that 

phosphorylate caveolin-1, which triggers internalization of both caveolin-1 and colocalized 

ABCB1 reducing ABCB1 expression and protein activity levels (Hoshi et al., 2019). 

If ROS affects transport, one might expect antioxidants like N-acetylcysteine to reverse this. 

Indeed, exposing cultured rat capillary endothelial cells or isolated rat brain capillaries to N-

acetylcysteine reversed the ROS effects on the expression and activity of Abcb1 and Abcg2 and 

associated proteins (Li et al., 2016; Zhou et al., 2019; Zhu and Liu, 2004), which might provide a 

future clinical avenue. 
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B3. Clinical Relevance of Inflammatory and Oxidative Stress Signaling 

Our research shows that in epilepsy, seizure-induced glutamate release activates a prostaglandin-

dependent signaling pathway leading to Abcb1 and Abcg2 upregulation at the blood-brain barrier 

(Bauer et al., 2008b; Hartz et al., 2017; Pekcec et al., 2009; Zibell et al., 2009). In addition, 

proinflammatory cytokines are increased in the blood and brain of patients with epilepsy 

indicating neuroinflammation. Cytokines that are upregulated in the brain of patients with 

epilepsy include IL1α, IL1β, IL6 and TNFα, all of which regulate blood-brain barrier ABCB1 

and ABCG2 (Arend et al., 2018; de Vries et al., 2016; Gao et al., 2016; Kothur et al., 2019; 

Mercado-Gomez et al., 2018). Moreover, our and other data indicate that inflammation 

contributes to elevated protein levels and functional activity of ABCB1/Abcb1 and 

ABCG2/Abcg2 and is also involved in epileptogenesis (Alyu and Dikmen, 2017; Bauer et al., 

2008a; Bauer et al., 2007; Hartz et al., 2004; Rana and Musto, 2018). Neuroinflammation 

exacerbates seizures and increased expression levels of drug efflux transporters in the brain 

endothelium could hinder antiseizure drugs from entering the brain (Cox et al., 2001; van Vliet et 

al., 2006). Uncontrolled seizures in patients cause more neuroinflammation driving a vicious 

cycle of disease progression and drug resistance. In addition to epilepsy, neuroinflammation is 

part of many other CNS disorders. In glioblastoma, for example, tumor cells stimulate microglia 

to release proinflammatory cytokines such as IL1β, IL6, TNFα, and prostaglandins (Couto et al., 

2019; Gao et al., 2019; Ham et al., 2019; Jiang et al., 2017; Maruno et al., 1997; Matsuo et al., 

2001; Samaras et al., 2007; Schwartzbaum et al., 2017; Schwartzbaum et al., 2007; Wang et al., 

2009). In this context, microglia help form a proinflammatory tumor microenvironment that is 

conducive to gliomagenesis, tumor growth and progression including tumor migration and 

invasion (Desmarais et al., 2015; Lepore et al., 2018; Maruno et al., 1997; Matsuo et al., 2001; 
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Samaras et al., 2007; Wang et al., 2009). In addition, cytokines transcriptionally upregulate 

ABCB1/ABCG2 and enhance translation of their associated proteins at the blood-brain barrier, 

which restricts anticancer drug delivery into the brain. Blocking cytokine signaling prevented 

tumor growth and invasion, which improved survival in glioblastoma animal models (Desmarais 

et al., 2015; Kast et al., 2017; Lamano et al., 2019). Thus, such treatment approaches could help 

prevent or reverse ABCB1/ABCG2 overexpression and potentially improve drug delivery and 

efficacy in patients. 

Brain levels of proinflammatory cytokines are also increased in neurodegenerative diseases, 

including Alzheimer’s disease (Akiyama et al., 2000; Cai et al., 2014). Amyloid β (Aβ), a 

neurotoxic peptide and one hallmark of Alzheimer’s disease, activates microglia which in turn 

generate and release IL1, IL6, TNFα, and prostaglandins into the brain parenchyma. These 

inflammatory mediators, in turn, activate NF-κB signaling, which leads to more inflammation 

and even higher Aβ levels in Alzheimer’s disease patients, ultimately leading to neuronal death 

(Bauer et al., 1991; Bhattacharya et al., 2020; Buxbaum et al., 1992; Cai et al., 2014; Combs et 

al., 2001; Haas et al., 2002; Heppner et al., 2015; Ho et al., 1999; Kitamura et al., 1999; 

Mackenzie et al., 1995; McGeer and McGeer, 2003; Meda et al., 1999; Mosher and Wyss-Coray, 

2014; Pasinetti and Aisen, 1998; Ringheim et al., 1998; Sochocka et al., 2013; Strauss et al., 

1992; Tarkowski et al., 1999; Yates et al., 2000). 

While levels of pro-inflammatory mediators are increased, ABCB1/Abcb1 and ABCG2/Abcg2 

expression and associated protein activity levels are decreased in animal models of Alzheimer’s 

disease as well as in patients with Alzheimer’s disease (Al-Majdoub et al., 2019; Bauer et al., 

2017; Carrano et al., 2014; Chiu et al., 2015; Hartz et al., 2012; Hartz et al., 2010c; Hartz et al., 

2018; Jeynes and Provias, 2011b; Kannan et al., 2017; Mehta et al., 2013; Shubbar and Penny, 
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2018; van Assema et al., 2012b; Vogelgesang et al., 2002; Vogelgesang et al., 2004; Wei et al., 

2016; Wijesuriya et al., 2010). At this point it is unclear if neuroinflammation contributes to the 

loss of ABCB1/ABCG2 proteins at the blood-brain barrier in Alzheimer’s disease. 

Research and development of anti-inflammatory strategies for neurological disorders that involve 

the blood-brain barrier are currently in progress. Currently, 14 clinical trials are reported by 

clinicaltrials.gov as recruiting, enrolling, completed, or in planning. However, none of these 

trials address blood-brain barrier transporters. 

C. Receptor Tyrosine Kinases and Growth Factor Signaling 

Growth factors, cytokines, and hormones activate receptor tyrosine kinases (RTK) that are 

critical in survival and apoptosis (Robinson et al., 2000). RTKs have a hydrophobic 

transmembrane domain that connects the extracellular N terminus with the ligand binding 

domain and the intracellular C terminus containing the catalytic kinase domain (Hubbard, 1999; 

Zwick et al., 2001). Ligands, like growth factors, cytokines, and hormones, bind to the ligand 

binding domain and induce receptor dimerization and rapid activation of the kinase domain. 

Autophosphorylation of the receptor allows signal transfer through the cell membrane. The 

phosphorylated receptor interacts with adaptor proteins that act as linkers to downstream kinases, 

such as Src or phospholipase C (PLC). These kinases further activate a network of redundant 

pathways with feedback loops, crosstalk, and compensatory mechanisms (Lemmon and 

Schlessinger, 2010; Zwick et al., 2001). Mutations in RTKs or downstream signaling partners are 

implicated in the development and progression of cancer (Zwick et al., 2001). RTK signaling 

cascades regulate proliferation and modify protein expression and activity (Lemmon and 

Schlessinger, 2010). Several growth factors and their respective RTKs regulate ABCB1 and 

ABCG2 at the blood-brain barrier, including epidermal growth factor (EGF), platelet derived 
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growth factor (PDGF); (Bleau et al., 2009b; Smits et al., 1989), transforming growth factor beta 

(TGFβ); (Baello et al., 2014; Dohgu et al., 2004), and vascular endothelial growth factor 

(VEGF). In general, activation of RTKs and downstream signaling cascades increases expression 

levels of blood-brain barrier ABCB1 and ABCG2, but also of other transporters such as Oatp1a1 

(Ronaldson et al., 2011). In contrast, inhibition of this signaling decreases transporter expression 

levels. 

The FDA has approved several RTK inhibitors for anticancer use, including axitinib, 

cabozantinib, lenvatinib, nintedeanib, and others (Hou et al., 2021). Effects of such drugs on the 

blood-brain barrier have not been characterized and RTK agonists are even less investigated. 

1. JAK-STAT3 Cascade 

The Janus kinase and signal transducer and activator of transcription 3 (JAK-STAT3) cascade is 

commonly activated by cytokines (Figure 8). Downregulation and inhibition of JAK1, STAT3, 

or phosphorylated STAT3 downregulates ABCB1 at the blood-brain barrier (Jagadeeshan et al., 

2017). Similar effects occur after p38 MAPK inhibition. Specifically, inhibiting p38 MAPK in 

epileptic rats decreased Abcb1 expression and associated protein activity levels which correlated 

with increased brain drug uptake (Shao et al., 2016). The signaling molecules JNK, ERK, and c-

Jun are also involved in this cascade and activation of the c-Jun NH2 terminal kinase (JNK) 

deactivates c-Jun and reduces Abcb1 mRNA expression levels (Ronaldson et al., 2008; Zhou et 

al., 2006). However, activating ERK and c-Jun with EGF via EGFR induces Abcb1 and Abcg2 

expression at the blood-brain barrier (Bauer, 2005; Evseenko et al., 2007; Munoz et al., 2014; 

Nakanishi and Ross, 2012). 

Currently approved JAK inhibitors include tofacitinib and ruxolitinib that are used for the 

treatment of rheumatoid arthritis and autoimmune diseases (Taylor, 2019). Other indications 
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include ulcerative colitis, myelofibrosis, and atopic dermatitis (Hu et al., 2021). However, 

targeting the JAK-STAT3 signaling cascade for blood-brain barrier manipulation is little 

explored. 

2. Vascular Endothelial Growth Factor (VEGF) 

VEGF activates its receptors VEGFR2 and Flk-1 that in turn activate the non-receptor tyrosine 

kinase Src (Figure 8; Agarwal et al., 2011). Src activation induces phosphorylation of caveolin-1 

followed by Abcb1 internalization and degradation (Hawkins et al., 2010; Miller and Cannon, 

2014; Qosa et al., 2015). Phosphorylated caveolin-1 colocalizes with Abcb1 in the plasma 

membrane and initiates Abcb1 endocytosis and vesicular trafficking to the endosome or 

lysosome. There, Abcb1 is either recycled and trafficked back to the plasma membrane or, as in 

most cases, undergoes lysosomal degradation (Tome et al., 2015). 

EGFR is highly expressed in some cancers and EGFR inhibitors are used to block cancer cell 

growth. In glioblastoma patients, currently available EGFR inhibitors do not provide a survival 

benefit but could be used to overcome blood-brain barrier ABCB1/ABCG2-mediated drug 

resistance via transporter internalization/degradation (de Gooijer et al., 2018b; Kim et al., 

2019b). In particular, EGFR inhibitors with improved brain partitioning, like buparlisib, might be 

useful to increase drug delivery into the brain, and thus, be beneficial in the treatment of 

glioblastoma patients (de Gooijer et al., 2018b). 

3. PI3K/Akt/mTOR Pathway 

In cancer, including gliomas, the PI3K/Akt/mTOR signaling pathway is dysregulated due to the 

loss of the tumor suppressor PTEN or constitutively active PI3K and Akt mutants. PTEN loss 

and PI3K/Akt mutations induce proliferation and prevent apoptosis of cancer cells, and are 

associated with migration, invasion, and resistance to both radiation and chemotherapy (Balsara 
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et al., 2004; Cancer Genome Atlas Research, 2008; Chen et al., 2005; Jiang et al., 2007; 

Mellinghoff et al., 2005; Song et al., 2012; Tang et al., 2006; Verhaak et al., 2010; Wang et al., 

2017; Zhang et al., 2015). PI3K/Akt/mTOR also regulate transporters and in several cancers 

PI3K/Akt/mTOR signaling leads to transporter-mediated drug resistance. For example, 

constitutive overactivity of the PI3K/Akt pathway induces ABCB1 and ABCG2 expression and 

their associated proteins’ translocation to the plasma membrane of brain microvasculature 

endothelial cells which increases drug resistance of brain tumors (Agarwal et al., 2011; Bleau et 

al., 2009b; Huang et al., 2013; Huang et al., 2014b; Takada et al., 2005). In this regard, we 

showed that estradiol activation of ERβ activates PTEN, leading to PI3K/Akt inactivation 

followed by GSK3 phosphorylation. Phosphorylated GSK3 then induces ABCG2 internalization 

and proteasomal degradation (Figure 8; Hartz et al., 2010a; Hartz et al., 2010b). Similarly, PI3K 

inhibition with LY294002 stimulates ABCG2 transporter internalization and degradation (Bleau 

et al., 2009a; Mogi et al., 2003; Takada et al., 2005). 

Until recently, the cause of transporter upregulation in cancer was unknown. Matsumoto et al. 

(1991) found ABCB1 overexpression in glioblastoma samples from patients after initial treatment 

and concluded that glioblastoma acquires ABCB1-mediated resistance during treatment 

(Matsumoto et al., 1991). However, transporter overexpression could also be due to pathway 

dysregulation. In support of this model, receptor tyrosine kinase (RTK) signaling components, 

including downstream kinases like PI3K, are mutated in 95% of glioblastoma patients (Brennan 

et al., 2013; Eskilsson et al., 2018; Schlessinger, 2000). Overactive PI3K signaling drives tumor 

progression and upregulates ABCB1 and ABCG2 expression and associated protein activity in 

tumors and at the blood-brain barrier, contributing to drug resistance (Brennan et al., 2013; 

Eskilsson et al., 2018; Schlessinger, 2000; Shinojima et al., 2003). Specifically, activation of the 
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PI3K/Akt signaling cascade through increased phosphorylation of PI3K and Akt, PI3K/Akt 

overexpression or loss of PTEN, significantly increases ABCB1 and ABCG2 expression and 

associated protein activity at the blood-brain barrier (Brennan et al., 2013; Huang et al., 2013; 

Huang et al., 2014a). Thus, inhibiting PI3K, mTOR, or upstream RTKs holds the potential to 

attenuate transporter upregulation (de Gooijer et al., 2018c; Huang et al., 2013). 

In tumor cells and at the blood-brain barrier, ABCB1 and ABCG2 restrict the uptake of 

anticancer drugs and transporter expression levels were thought to correlate with the extent of 

multidrug resistance (Agarwal et al., 2010; Agarwal et al., 2011; de Gooijer et al., 2018c; de 

Vries et al., 2012; Laramy et al., 2017; Marchetti et al., 2008). This transporter-centric view on 

multidrug resistance in cancer, however, is controversial. 

D. Other Pathways 

Several other pathways that regulate blood-brain barrier ABCB1/ABCG2 have been identified in 

recent years and are summarized in the following sections. 

1. Adenosine 

Adenosine receptor A2 and adenylate cyclase, both key components of the adenosine signaling 

pathway exist at the blood-brain barrier (Figure 9A; Kalaria and Harik, 1986). In 2016, Kim and 

Bynoe (2016) demonstrated that activation of the adenosine receptor A2A in hCMEC/D3 cells in 

vitro decreases ABCB1 and ABCG2 expression and associated protein activity through 

membrane metalloprotease 9 (MMP9)-mediated cleavage followed by ubiquitination and 

proteasomal degradation (Kim and Bynoe, 2016). A2A activation decreases the expression of 

tight junction proteins, which increases paracellular permeability (Kim and Bynoe, 2015). The 

adenosine receptor A2B has a low affinity for adenosine and to be activated requires high 
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adenosine concentrations that are usually associated with pathological conditions, such as brain 

tumors (Aherne et al., 2011; Fredholm et al., 2001; Hasko et al., 2009). Jackson et al. (2016; 

2018) demonstrated that A2B inhibition disrupts blood-brain barrier function and improves brain 

drug uptake in rats (Jackson et al., 2016; Jackson et al., 2018). Later studies showed that A2B 

signaling through protein kinase A and phospholipase C increases ABCB1 protein levels in 

endothelial cells, thereby contributing to drug resistance (Aherne et al., 2011; Hasko et al., 2009; 

Yan et al., 2019a). 

Adenosine levels are increased in various pathological conditions including brain cancer (Aherne 

et al., 2011; Hasko et al., 2009; Jackson et al., 2016; Yan et al., 2019a). Several preclinical 

studies suggest that increased adenosine levels could drive tumor invasion and drug resistance in 

glioblastoma models (Yan, 2019a, b; Zavala-Tecuapetla et al., 2020). Preclinical studies also 

suggest that adenosine inhibition improves drug brain uptake and efficacy in animal glioblastoma 

and epilepsy models. In a 2017 pilot study with patients with cardiovascular disease, A2A 

inhibition increased brain levels of the imaging reagent (99m)Tc-sestamibi (Jackson et al., 2017). 

However, A2A inhibition did not translate into increased temozolomide levels in a phase 1 

clinical trial in glioblastoma patients (Jackson et al., 2018). At this point the therapeutic value of 

adenosine receptor inhibition to regulate blood-brain barrier transporters with the goal of 

improving brain drug levels needs further evaluation. 

2. Circadian Rhythm 

The circadian rhythm regulates multiple physiological processes, including metabolism and 

transport, which affects drug delivery and elimination, and thus, efficacy (Figure 9B; Erol et al., 

2001; Filipski et al., 2014; Kervezee et al., 2014; Okyar et al., 2012; Savolainen et al., 2016). At 

the molecular level, the circadian rhythm is controlled by a complex system of transcription 
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factors including the main circadian regulator CLOCK, its heterodimer BMAL1, PAR domain 

basic leucine zipper (PAR bZIP) proteins, Period, and E4BP4, a transcriptional activator protein 

that follows an opposing oscillating cycle and acts as negative regulator during the sleep phase 

(Gekakis et al., 1998; Murakami et al., 2008). These proteins regulate a number of processes 

including the circadian oscillations of metabolizing enzymes and drug transporters. 

In this regard, Zhang et al. (2018) first reported that xenobiotic efflux at the blood-brain barrier 

in fruit flies (drosophila melanogaster) underlies circadian rhythm regulation. Specifically, they 

studied Mdr65 which is a pesticide resistance protein with homology to ABCB1, along with 

Mdr49. Mdr65 activity is regulated through opposing variation of intracellular Mg2+ and Ca2+ 

concentrations without changing transporter expression. Importantly, increased Mdr65-mediated 

efflux during the active period of the fruit fly decreased brain accumulation of xenobiotics 

(Zhang, 2018). The oscillating changes in efflux are repressed in Period knockout flies, further 

supporting circadian rhythm regulation of efflux transporter activity. Furthermore, Abcb1 

activity at the blood-brain barrier of mice and ABCB1 activity in hCMEMC/D3 cells in vitro 

also underly circadian rhythm regulation (Zhang et al., 2021). Of particular note is that circadian 

oscillation of ABCB1 intestinal expression in primates (Macaca fascicularis) altered the 

pharmacokinetics of its substrates, suggesting a similar principle operating in the brain of higher 

mammal (Iwasaki et al., 2015). 

In this regard, in the 1970s researchers discovered that mice with leukemia responded better to 

treatment when anticancer drug therapy was adjusted to the circadian rhythm (Haus et al., 1972). 

Thus, a dosing schedule following the circadian rhythm has the potential to improve brain uptake 

and efficacy of CNS therapeutics. Several studies show that brain uptake of the Abcb1 substrate 

quinidine is increased during the resting phase of mice compared to the active phase, when 
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Abcb1 activity is increased (Kervezee et al., 2014; Savolainen et al., 2016). Human patients had 

higher serum drug levels and better seizure control when phenytoin was dosed at night compared 

to the morning (Yegnanarayan et al., 2006). These findings suggest that decreased ABCB1 

activity during the resting phase – daytime in rodents, nighttime in patients – is sufficient to 

improve drug brain uptake and efficacy, while decreasing side effects (Filipski et al., 2014; 

Yegnanarayan et al., 2006). 

3. Epigenetic Markers 

Epigenetic markers include methylation and hydroxymethylation of target gene DNA and 

methylation, acetylation, phosphorylation, ubiquitylation, and sumoylation of associated histones 

that alter gene transcriptional activity without changing DNA sequence (Figure 9C; Liberman et 

al., 2019). Regarding ABCB1, promotor (de)methylation is an important regulator of transporter 

expression (Nakanishi and Ross, 2012; Sarkadi et al., 2006; Scotto, 2003). ABCB1 promotor 

methylation increases the association of chromatin with deacetylated histones and methyl-CpG-

binding protein 2 (MeCP2), which represses transcription, and in turn, reduces ABCB1 mRNA 

and protein expression levels (El-Osta et al., 2002). Promotor demethylation triggers the release 

of MeCP2 and causes chromatin relaxation, which enables ABCB1 gene transcription (El-Osta et 

al., 2002). While histone acetylation does not activate the ABCB1 promotor, it induces ABCB1 

transcription and causes transporter overexpression (El-Osta et al., 2002; Nakanishi and Ross, 

2012). Several groups have investigated histone acetyltransferase (HAT) and histone deacetylase 

(HDAC) and their effects on ABCB1 expression. HDAC inhibition specifically increases 

acetylation of histone H4, which regulates the expression of Rab GTPases that stimulate 

vesicular trafficking of ABCB1 protein to the membrane (Noack et al., 2016). HDAC inhibition 

and histone acetyltransferase (HAT) activation combined activates the ABCB1 promotor (Jin and 
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Scotto, 1998; Sarkadi et al., 2006; You et al., 2019). You et al. (2019) showed that HDAC 

inhibitors increase ABCB1 mRNA and protein levels in cultured hCMEC/D3 cells, accompanied 

by increased AhR binding to the ABCB1 promotor, indicating a co-regulatory mechanism. 

Another epigenetic pathway involves melatonin, a hormone that controls the sleep-wake cycle 

and methylates the ABCG2 promotor, which ultimately leads to decreased ABCG2 protein levels 

in brain tumor stem cells. Since melatonin is a DNA methyltransferase substrate, 

methyltransferase inhibitors prevent ABCG2 downregulation (Martin et al., 2013). Recently, 

Jumnongprakhon et al. (2017) identified an alternative melatonin signaling pathway that 

regulates Abcb1 in primary rat brain microvascular endothelial cells. They showed that 

melatonin reverses methamphetamine-induced reduction in Abcb1 mRNA expression and 

associated protein levels at the blood-brain barrier, by preventing internalization, ubiquitination, 

and proteasomal degradation (Jumnongprakhon et al., 2017). Since melatonin is not an Abcb1 

substrate, competitive inhibition is unlikely to contribute to these effects (Tran et al., 2009). 

Gene amplification, alternative promotors, and multiple transcription start sites are important 

ABCB1 regulators in the context of bacterial antibiotic resistance and cancer multidrug 

resistance; their role at the blood-brain barrier is unknown (Nakanishi and Ross, 2012). 

Epigenetic changes are common in cancer cells, where they drive tumor progression and drug 

resistance (Dong and Cui, 2019; Hegi et al., 2005). In this regard, anticancer drugs, specifically 

DNA alkylating agents, increase DNA methylation, which causes double strand breaks and leads 

to apoptosis. While this is the main mechanism of action of DNA alkylating agents, drugs from 

this category also change expression levels of other genes, including ABCB1 and ABCG2 

(Munoz et al., 2015). This might explain why temozolomide and carmustine, two clinically used 

alkylating agents for the treatment of glioblastoma, decrease their own brain distribution and 
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efficacy in glioblastoma patients (Stupp et al., 2005; Valtonen et al., 1997). However, opposing 

effects of alkylating agents have been described in glioblastoma cells (Riganti et al., 2013). 

4. p53 

p53 (gene: TP53) is one of the best studied tumor suppressor proteins. Mutations and loss of p53 

in different cancer types upregulate transcription and translation of ABCB1 (Figure 9D; Bush 

and Li, 2002; Marroni et al., 2003; Sarkadi et al., 2006). Wildtype p53 decreases Ras/Raf 

signaling and phospholipase C activity which increases ABCB1 expression levels (Bush and Li, 

2002; Chin et al., 1992; Scotto, 2003). At the blood-brain barrier, DNA damage induces ataxia-

telangiectasia-mutated kinase (ATM), which, in turn, activates p53, p38, and NF-κB, leading to 

ABCB1 overexpression (Bleau et al., 2009b; Bush and Li, 2002; Miller, 2015). Interestingly, the 

TP53 promoter is activated by intracellular Aβ, an ABCB1 substrate (Ohyagi et al., 2005). 

TP53, which encodes p53, is the most mutated gene in cancer, including 30% of all brain tumors 

(Brennan et al., 2013; Cancer Genome Atlas Research, 2008; Duffy et al., 2017). TP53 mutations 

result in p53 loss-of-function which dysregulates cell cycle progression, proliferation, and tumor 

growth.  
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IV. OVERALL CLINICAL IMPLICATIONS 

Approximately 1 billion people worldwide and 100 million people in the US suffer from CNS 

diseases, accounting for 6.3% of total global disease burden (Gooch et al., 2017; World Health 

Organization, 2006). Many CNS diseases are difficult to treat, and the economic and social 

impact of treatment failure is significant (Gooch et al., 2017; World Health Organization, 2006)). 

Consequently, new therapeutic strategies are urgently needed. Two main obstacles exist to 

successful treatment of CNS disorders. First, the efflux transporters ABCB1 and ABCG2 at the 

blood-brain barrier prevent access of drugs to the brain, and thus, significantly interfere with the 

treatment of CNS diseases (de Vries et al., 2007; Kim et al., 1998b; Schinkel et al., 1994). 

Second, changes in the blood-brain barrier contribute to disease pathology that further restrict 

drug uptake into the brain, adding another layer of intricacy to the successful treatment of CNS 

diseases. Below we discuss some of the distinct changes that occur at the blood-brain barrier in 

patients with CNS disease or in animal disease models and highlight how those changes affect 

the progression and treatment of the respective disease (Figure 10). 

A. Epilepsy 

The WHO estimates that about 46 million people worldwide suffer from epilepsy, a disease 

characterized by recurring, unprovoked seizures that also impairs cognition and sleep (Beghi, 

2020). Approximately one third of epilepsy patients does not respond to pharmacological 

treatment with antiseizure drugs, and thus, suffers from refractory, drug-resistant epilepsy and 

uncontrolled seizures (Kwan and Brodie, 2000). One major contributor to this drug resistance is 

ABCB1 and potentially other drug efflux transporters including ABCG2 at the blood-brain 

barrier, that prevent the delivery of antiseizure drugs into the brain (Cox et al., 2001; Tang et al., 

2017; van Vliet et al., 2006). The significance ABCB1 plays in refractory epilepsy is further 
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amplified by the fact that ABCB1 is upregulated at the blood-brain barrier of patients with 

refractory epilepsy (Dombrowski et al., 2001; Tishler et al., 1995). Abcb1 is overexpressed 

specifically in epileptogenic brain regions of chronic epileptic rats (van Vliet et al., 2006). In a 

case report, Iannetti et al. demonstrated that the ABCB1 inhibitor verapamil increased the 

efficacy of antiseizure drugs in a boy with epilepsy (Iannetti et al., 2005). However, the use of 

ABCB1 inhibitors is currently not a viable clinical strategy due to severe adverse effects. 

B. Brain Tumors 

Brain tumors account for 2% of all cancer cases worldwide, but disproportionately contribute to 

cancer morbidity and mortality (Kleihues et al., 2014). In the US, approximately 77,000 patients 

are newly diagnosed with a brain tumor every year, which makes brain tumors the most common 

and deadliest cancer in children and the sixth most common cancer in adults (Ostrom et al., 

2019). Treatment options are limited and mostly involve surgical resection and radiotherapy 

(Stupp et al., 2005). Chemotherapy of primary and secondary brain tumors is often unsuccessful, 

in part, because ABCB1 and ABCG2 at the blood-brain barrier restrict access of a wide range of 

anticancer drugs to the brain and impair their efficacy (de Gooijer et al., 2018d; de Vries et al., 

2012; Sorf et al., 2018; Taskar et al., 2012). The situation is especially dire for patients with 

glioblastoma multiforme, the most common malignant primary brain tumor (Ostrom et al., 

2018). Median survival after diagnosis is 15-23 months and only less than 7% of glioblastoma 

patients survive 5 years or longer (Ostrom et al., 2019; Ostrom et al., 2018). While many 

anticancer drugs are promising in vitro, their efficacy in vivo and in clinical trials has been 

marginal at best, due to ABCB1- and ABCG2-mediated efflux at the blood-brain barrier. 

Recently, Kim et al. demonstrated and visualized this “ABC challenge” in an elegant study (Kim 

et al., 2019a; Kim et al., 2018). In brief, Kim and coworkers showed that the MDM2 inhibitor 
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SAR405838 significantly decreased the viability of patient-derived glioblastoma cell lines (Kim 

et al., 2018). In addition, SAR405838 prevented growth of glioblastoma cells injected into the 

flanks of immunocompromised mice (Kim et al., 2018). In contrast, when the tumor cells were 

injected into the brain, the drug did not reach the brain and, therefore, had no beneficial 

therapeutic effect on survival in the orthotopic xenograft model (Kim et al., 2018). The data 

further showed that SAR405838 is both a ABCB1 and ABCG2 substrate (Kim et al., 2019a). 

Even though SAR405838 was effective in vitro and in flank models, ABCB1 and ABCG2-

mediated efflux at the blood-brain barrier prevented drug entry into the brain rendering the 

compound ineffective (Kim et al., 2019a). 

Diffuse intrinsic pontine glioma (DIPG) is another example of a CNS tumor. DIPG is the most 

common brain tumor in children (Ostrom et al., 2019). DIPGs reside in the brain stem and, 

therefore, cannot be surgically removed or biopsied (Ostrom et al., 2019). Consequently, to date, 

little information is available on the molecular composition of DIPGs, hindering the 

development of targeted therapies. Data from recent studies with animal DIPG models indicate 

that blood-brain barrier ABC transporters contribute to the low efficacy of chemotherapy 

(Becher and Wechsler-Reya, 2014; Chaves et al., 2020; Chung et al., 2014; Duchatel et al., 2019; 

Veringa et al., 2013). Similar data has also been obtained for secondary, metastatic brain tumors 

of lung and breast cancer as well as melanoma. Several research groups have also shown 

increased uptake of fluorescent dextrans into brain metastases exists, suggesting a disrupted 

blood-brain/tumor barrier (Lockman et al., 2010; Mittapalli et al., 2016; Mohammad et al., 2018; 

Osswald et al., 2016; Palmieri et al., 2009; Taskar et al., 2012; Terrell-Hall et al., 2017). 

However, de Gooijer et al. (2021) and other groups have demonstrated that “ATP-binding 

cassette transporters restrict drug delivery and efficacy against brain tumors even when blood-
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brain barrier integrity is lost”, suggesting that ABCB1 and ABCG2 overcome barrier leakage 

(Adkins et al., 2013; Ballard et al., 2016; Dudek et al., 2013; Gampa et al., 2018; Gampa et al., 

2019; Ippen et al., 2019; Li et al., 2013; Thomas et al., 2009; Vaidhyanathan et al., 2016; Yang et 

al., 2016).  

In addition to the blood-brain barrier, ABCB1 is also upregulated in tumor tissue samples from 

brain tumor patients. One underlying mechanism for ABCB1 upregulation in cancer cells is the 

amplification of the ABCB1-containing 7q21 chromosomal region which confers multidrug 

resistance (Genovese et al, 2017). Thus, ABCB1 copy number plays an important role in cancer-

associated drug resistance. In glioblastoma, ABCB1 protein expression levels, measured with 

Western blotting and immunohistochemistry, were increased in patient samples from the second 

resection compared to those from the first resection (Matsumoto et al., 1991). ABCB1 expression 

increased in astrocyte-derived glioma cells compared to healthy human astrocytes (Marroni et 

al., 2003; Spiegl-Kreinecker et al., 2002). The increase in ABCB1 expression in glioblastoma 

patient samples may be mainly due to increased expression at the blood-tumor barrier and 

transporter expression levels in tumor cells seem to play a minor role in drug resistance (Tanaka 

et al., 1994; Tews et al., 2000; Veringa et al., 2013). 

C. Alzheimer’s Disease 

Alzheimer’s disease is the leading cause of dementia worldwide. In the USA, an estimated 6.5 

million people over the age of 65 suffer from the disease (Alzheimer's Association, 2022). One 

hallmark of Alzheimer’s disease is the accumulation and aggregation of Aβ in the brain (Murphy 

and LeVine, 2010; Serrano-Pozo et al., 2011). The mechanism underlying brain Aβ 

accumulation is not fully understood, but data from recent studies suggest that loss of ABC 
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transporters at the blood-brain barrier impairs Aβ clearance from the brain, contributing to an 

imbalance between Aβ production and clearance. 

In 2001, Lam et al. (2001) were the first to show that ABCB1 transports Aβ in vitro (Callaghan 

et al., 2020; Hartz et al., 2010c; Kuhnke et al., 2007; Lam et al., 2001). Abcb1 cooperates with 

low-density lipoprotein receptor-related protein-1 (LRP1) located in the abluminal membrane of 

the brain capillary endothelium where it shuttles Aβ from the brain into brain capillary 

endothelial cells (Deane et al., 2004; Shibata et al., 2000; Storck et al., 2018). Additional data 

indicate that ABCB1 then clears Aβ from the endothelial cell into the blood (Cirrito et al., 2005; 

Hartz et al., 2010c; Hartz et al., 2018; Krohn et al., 2018; Mawuenyega et al., 2010). 

In 2002, Vogelgesang and colleagues (2002) were showed in brain tissue samples from non-

demented elderly patients (n=243; 50-91 years) that blood-brain barrier ABCB1 expression and 

associated protein levels are decreased in areas with high Aβ load (Vogelgesang et al., 2002). 

Such a reduction in transporter levels also occurs in animal models of Alzheimer’s disease and in 

Alzheimer’s disease patients (Al-Majdoub et al., 2019; Bauer et al., 2017; Carrano et al., 2014; 

Chiu et al., 2015; Jeynes and Provias, 2011a; Kannan et al., 2017; Mehta et al., 2013; Shubbar 

and Penny, 2018; van Assema et al., 2012a; Vogelgesang et al., 2004; Wei et al., 2016; 

Wijesuriya et al., 2010). ABCB1 loss is particularly pronounced in areas directly surrounding Aβ 

plaques (Chiu et al., 2015; Jeynes and Provias, 2011a). Our group has shown that exposing 

isolated capillaries from mice and rats to nanomolar concentrations of human Aβ 40 decreases 

Abcb1 protein expression and activity levels (Hartz et al., 2010c; Hartz et al., 2016). This effect 

is abolished by inhibiting ubiquitination, transporter internalization, and proteasomal degradation 

(Akkaya et al., 2015; Ding et al., 2021; Hartz et al., 2016; Hartz et al., 2018). In addition to 

posttranslational modifications, other pathways including RAGE and NF-κB also regulate Abcb1 
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expression and associated protein levels at the blood-brain barrier in response to Aβ exposure 

(Park et al., 2014). While the role ABCB1 plays in Aβ clearance from the brain is well 

established, potential involvement of ABCG2 is less clear. In brain slices from Alzheimer’s 

disease patients capillaries surrounding Aβ plaques have decreased ABCG2 protein levels 

compared to cognitive normal controls (Carrano et al., 2014). However, other groups reported 

increased ABCG2 protein levels at the blood-brain barrier of Alzheimer’s disease patients 

(Xiong et al., 2009) or found no changes at all (Wijesuriya et al., 2010). Thus, currently it is 

unclear if ABCG2 is involved in Aβ clearance from the brain (Hartz et al., 2010c; Krohn et al., 

2011; Pahnke et al., 2008). The involvement of other ABC transporters such as ABCA1 or 

ABCC1 in Alzheimer’s disease has been reviewed in detail by Wolf et al. (2012). 

D. Chronic Pain 

Chronic pain is one of the leading causes of disability and significantly impairs patients’ ability 

to participate in daily activities (Gooch et al., 2017; Vlaeyen et al., 2018). Opioids (natural and 

synthetic) are commonly used to treat chronic pain and are also, coincidentally, ABCB1 

substrates (Bauer et al., 2006; Chaves et al., 2016; Dagenais et al., 2004; Hassan et al., 2007; 

Letrent et al., 1999; Schaefer et al., 2018; Sharma and Ali, 2006; Yousif et al., 2012; Yousif et 

al., 2008). For example, oxycodone, morphine, and methadone are weak ABCB1 substrates and, 

therefore, cross the blood-brain barrier and exert activity on the CNS (Gibbs et al., 2018). Some 

centrally-active opioids such as oxycodone, morphine, or fentanyl, induce Abcb1 expression, 

diminishing their own brain uptake and efficacy (Chaves et al., 2016; Dagenais et al., 2004; 

Hassan et al., 2007; Letrent et al., 1999; Schaefer et al., 2018; Sharma and Ali, 2006; Yousif et 

al., 2012; Yousif et al., 2008). Other opioids such as loperamide and naldemedine are more 

active Abcb1 substrates, and thus, only have low brain uptake, which minimizes their central 
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action and side effects (Watari et al., 2019). Loperamide has a four-times higher Abcb1-mediated 

transport rate than methadone, which significantly restricts its brain uptake and makes 

loperamide a safe and effective drug for diarrhea treatment without CNS side effects (Gibbs et 

al., 2018). Of potential note is that λ-carrageenan-induced inflammatory pain increased brain 

uptake and antinociception of codeine (Hau et al., 2004). This suggests that inflammatory pain 

may be an important consideration in therapeutic drug dosing, potential adverse effects, and 

neurotoxicity. 

E. Human Immunodeficiency Virus (HIV) 

Major breakthroughs in HIV treatment have transformed this originally deadly disease into a 

manageable chronic condition. The development of several classes of antiretroviral drugs with 

good safety and efficacy profiles significantly improved and prolonged the lives of HIV patients 

(Kwon et al., 2020). However, one obstacle remains: ABCB1 at the blood-brain barrier restricts 

HIV protease inhibitor uptake into the brain, thereby creating a sanctuary where the virus can 

persist and replicate (Edwards et al., 2002; Kim et al., 1998a; Kim et al., 1998b; Lee et al., 

1998). Virus replication in the brain causes decline in motor and cognitive function and can lead 

to dementia (Edwards et al., 2002). Further, antiretroviral drugs are a double-edged sword: They 

are effective against HIV in the periphery but increase ABCB1 expression at the blood-brain 

barrier through activation of nuclear receptors such as PXR or CAR, thereby hindering drugs to 

reach the brain (Chan et al., 2013). In a recent study, McRae et al. provided evidence that the 

HIV protein Tat1 increased Abcb1 expression and Abcb1 activity levels at the blood-brain 

barrier in mouse models, further restricting brain uptake of antiretroviral drugs (McRae et al., 

2019). 
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F. Stroke 

Stroke is one of the deadliest neurological diseases causing annually over 3 million deaths 

worldwide (Katan and Luft, 2018). Only 20% of patients that survive a stroke regain complete 

independence, making stroke the CNS disease responsible for the highest rate of long-term 

disability (World Health Organization, 2006). In patients who survive, stroke is known to induce 

neuroinflammation and blood-brain barrier damage, mainly by disrupting tight junctions (Yang 

et al., 2019). Further, Dazert et al. showed in a rat ischemic stroke model that middle cerebral 

artery occlusion increases the expression of several ABC transporters, including Abcb1 and 

Abcg2, in the infarct region potentially limiting brain uptake of neuroprotective drugs (Dazert et 

al., 2006). A follow-up study by DeMars (2017) confirmed that Abcb1 protein levels are 

significantly increased after ischemic stroke in the brain capillary endothelium in vivo (DeMars 

et al., 2017). The presence of blood-brain barrier ABC transporters decreased drug 

concentrations in the ischemic brain by up to an order of magnitude, thus reducing 

neuroprotective drug efficacy (ElAli and Hermann, 2010; Kilic et al., 2008; Spudich et al., 

2006). Inhibiting Abcb1 or silencing Abcb1 with siRNA reduced levels of inflammatory 

cytokines, matrix metalloproteinases (MMP-2 and MMP-9), and adhesion molecules (ICAM-1 

and VCAM-1), which resulted in reduced infarct volume (Huang 2022). These findings suggest 

that Abcb1 impairs brain drug entry of therapeutic drugs and may also contribute to barrier 

dysfunction in ischemic stroke and could potentially be a therapeutic target. More research is 

needed in this area to clarify the role of ABC transporters during stroke. 

G. Amyotrophic Lateral Sclerosis (ALS) 

ALS is a neurodegenerative disease leading to neuronal damage and loss of voluntary muscle 

movement. To this day, there is no cure and only limited treatment options are available. 
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Riluzole is one of two FDA-approved drugs for ALS therapy and is also an ABCB1 substrate, 

restricting riluzole brain uptake and efficacy (Jablonski et al., 2014). A preclinical study in a 

mouse ALS model showed that the Abcb1 inhibitor elacridar increases riluzole brain uptake and 

improves drug efficacy (Jablonski et al., 2014). Drug brain uptake is further restricted due to 

Abcb1 upregulation in brain capillary endothelial cells and in astrocytes of mice with a SOD1 

mutation, a commonly used animal ALS model (Chan et al., 2017; Jablonski et al., 2012; Qosa et 

al., 2016b). ABCB1 expression increases in human pluripotent stem cell-derived brain 

endothelial cells that were co-cultured with astrocytes isolated from ALS patient samples 

(Mohamed et al., 2019b). 

  

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 27 March 2023 as DOI 10.1124/pharmrev.120.000025 This article

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


Pharmacological Reviews Page 66 of 163 
 

V. CONCLUDING REMARKS 

CNS disorders make up for approximately 50% of the total health burden in the US, significantly 

contributing to mortality and disability (Gooch et al., 2017). Moreover, CNS disorders are often 

difficult to treat (Gooch et al., 2017), which is in part because many CNS active drugs are 

substrates of ABCB1 and ABCG2 at the blood-brain barrier. We now know that ABCB1 and 

ABCG2, and possibly other ABC transporters, work together in restricting brain drug uptake, 

rendering CNS pharmacotherapy extremely difficult. Over the past decades, numerous 

therapeutic approaches have been tested to overcome blood-brain barrier efflux transporters and 

to improve treatment outcomes in patients with CNS disorders. In this regard, we have worked to 

unravel signaling pathways that regulate transporters (Hartz and Bauer, 2010a). Part of this 

research involves identifying target molecules that can be manipulated to control ABC 

transporter expression and/or activity. For example, this approach could be used to increase 

transporter expression and/or activity to protect the brain while treating peripheral diseases when 

CNS effects are not desired (Bauer et al., 2004; Bauer et al., 2007). Consider the chemotherapy 

of peripheral cancers, where one prominent side effect is the development of “chemo brain”, a 

form of drug-induced dementia (Joshi et al., 2010; Ren et al., 2019; Stefancin et al., 2020). In 

this case, shielding the brain from anticancer drugs by upregulating ABC transporters could be 

beneficial to prevent chemo brain, which would improve patients’ overall health and quality of 

life. 

On the other hand, targeting transporter regulation has the potential to open the barrier for a short 

“window-in-time” and allow drug uptake when needed while protecting the brain in between 

treatments (Hartz and Bauer, 2010a). Selectively turning off ABC transporters to increase brain 

uptake of CNS therapeutics could be an important tool to improve the treatment of various CNS 
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disorders (Hartz and Bauer, 2010a). Since reducing ABC transporter activity could exacerbate 

conditions such as Alzheimer’s disease, including prodromal stages, where ABCB1 activity is 

critical for clearance of Aβ from the brain, chronic downregulation of ABC transporters could 

bear risks. This further supports the idea of time-limited ABCB1/ABCG2 reduction to maximize 

drug delivery and therapeutic outcomes, while minimizing risk that could stem from chronic 

transporter suppression. Several of the pathways described above could be targeted with existing 

FDA-approved drugs with the potential of regulating ABCB1/ABCG2 expression and associated 

proteins’ activity at the blood-brain barrier (Table 1). For example, ER-mediated decrease of 

ABCB1/ABCG2 expression and associated proteins activity levels at the blood-brain barrier 

could potentially be accomplished with ethinyl estradiol or could be blocked with fulvestrant 

(Hartz et al., 2010a; Hartz et al., 2010b; Imai et al., 2005; Imai et al., 2002; Zuloaga et al., 2012). 

Inflammation-mediated changes in ABCB1/ABCG2 could be blocked with the anti-TNFα 

antibodies adalimumab or infliximab or with the COX-2 inhibitor celecoxib to prevent ABCB1 

and ABCG2 upregulation (Bauer et al., 2007; Hartz et al., 2004; 2006; Zibell et al., 2009). 

Another option is the use of tyrosine kinase inhibitors such as lapatinib (EGFR), erlotinib 

(EGFR), sunitinib (VEGFR), or bevacizumab (VEGFR), to decrease ABCB1/ABCG2 

expression/activity levels at the blood-brain barrier (Evseenko et al., 2007; Hawkins et al., 2010; 

Tome et al., 2015). While this approach seems promising, more research is needed to evaluate 

the effect of increased or decreased ABC transporter expression and activity at the blood-brain 

barrier on drug brain levels, efficacy, and overall disease progression. 
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X. TABLES 
Table 1: Examples of FDA-approved drugs that could downregulate ABCB1/ABCG2 and 
provide a window-in-time for brain drug delivery. 
 
Target Drug Name Drug Action Predicted Outcome 
COX-2 Fenoprofen Inhibitor ABCB1  
COX-2 Acetic Salicylic Acid Inhibitor ABCB1  
COX-2 Diclofenac Inhibitor ABCB1  
COX-2 Celecoxib Inhibitor ABCB1  
COX-2 Bromfenac Inhibitor ABCB1  
COX-2 Etoricoxib Inhibitor ABCB1  
COX-2 Firocoxib Inhibitor ABCB1  
COX-2 Flurbiprofen Inhibitor ABCB1  
COX-2 Ibuprofen Inhibitor ABCB1  
COX-2 Indomethacin Inhibitor ABCB1  
COX-2 Ketorolac Inhibitor ABCB1  
COX-2 Meloxicam Inhibitor ABCB1  
COX-2 Nabumetone Inhibitor ABCB1  
COX-2 Naproxen Inhibitor ABCB1  
COX-2 Oxaprozin Inhibitor ABCB1  
COX-2 Parecoxib Inhibitor ABCB1  
COX-2 Piroxicam Inhibitor ABCB1  
COX-2 Tenoxicam Inhibitor ABCB1  
EGFR Cetuximab EGFR Neutralizing Antibody ABCB1 ; ABCG2  
EGFR Erlotinib Inhibitor ABCB1 ; ABCG2  
EGFR Lapatinib Inhibitor ABCB1 ; ABCG2  
EGFR Mobocertinib Inhibitor ABCB1 ; ABCG2  
EGFR Necitumumab EGFR Neutralizing Antibody ABCB1 ; ABCG2  
EGFR Osimertinib Inhibitor ABCB1 ; ABCG2  
EGFR Panitumumab EGFR Neutralizing Antibody ABCB1 ; ABCG2  
EGFR Gefitinib Inhibitor ABCB1 ; ABCG2  
ER Estradiol Agonist ABCB1 ; ABCG2  
ER Estramustine Agonist ABCB1 ; ABCG2  
ER Ethinyl Estradiol Agonist ABCB1 ; ABCG2  
ER Norethisterone Agonist ABCB1 ; ABCG2  
ER Norethynodrel Agonist ABCB1 ; ABCG2  
GR Mifepristone Antagonist ABCB1 ; ABCG2  
GR Ulipristal Antagonist ABCB1 ; ABCG2  
MR Fineronone Antagonist ABCB1 ; ABCG2  
NMDAR Esketamine Antagonist ABCB1  
NMDAR Memantine Antagonist ABCB1  
mTOR Everolimus Inhibitor ABCB1 ; ABCG2  
mTOR Sirolimus Inhibitor ABCB1 ; ABCG2  
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mTOR Temsirolimus Inhibitor ABCB1 ; ABCG2  
PI3K Alpelisib Inhibitor ABCB1 ; ABCG2  
PI3K Copanlisib Inhibitor ABCB1 ; ABCG2  
PI3K Duvelisib Inhibitor ABCB1 ; ABCG2  
TNFα Adalimumab TNFα Neutralizing Antibody ABCB1  
TNFα Certolizumab TNFα Neutralizing Antibody ABCB1  
TNFα Etanercept TNFα Inhibitor ABCB1  
TNFα Golimumab TNFα Neutralizing Antibody ABCB1  
TNFα Infliximab TNFα Neutralizing Antibody ABCB1  
 

Materials and FDA-approval status were determined based on the FDALabel database in 

September 2021 (FDA, 2022), specifically Section 12.1, “Mechanism of Action”. 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 27 March 2023 as DOI 10.1124/pharmrev.120.000025 This article

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


Pharmacological Reviews Page 160 of 163 
 

XI. FIGURE LEGENDS 

 

Figure 1. A) The Neurovascular Unit. The neurovascular unit consists of endothelial cells 

surrounded by a basement membrane, astrocytes, pericytes and neurons. This four-cell structure 

also known as the “Neurovascular Unit” is responsible for the regulation of blood-brain barrier 

function. B) History of the Blood-Brain Barrier. Timeline of fundamental discoveries made in 

the blood-brain barrier field. Created with BioRender.com. 

 

 

Figure 2. A) History of ABCB1. From the discovery of the “Permeability Glycoprotein” by 

Juliano and Ling in 1976 to structural insights into substrate and inhibitor discrimination by 

human ABCB1 revealed by Alam and Locher in 2019. B) ABCB1 Structure. ABCB1 consists 

of two transmembrane domains TMD1 and TMD2, each of which has six transmembrane 

spanning -helices and a nucleotide binding domain (NBD1 and NBD2). ABCB1 is N-

glycosylated at the first extracellular loop. Created with BioRender.com. 

 

Figure 3: A) History of ABCG2. From the discovery of the “Breast Cancer Resistance Protein” 

ABCG2 in 1998 to its cryo-EM structure and function. B) ABCG2 Structure. ABCG2 consists 

of one transmembrane domain that has 6 transmembrane spanning -helices and one nucleotide 

binding domain (NBD1). ABCG2 is a half transporter that needs to homodimerize to fully 

function. C) ABCB1 and ABCG2 at the Blood-Brain Barrier. ABCB1 and ABCG2 are both 

located at the luminal membrane of endothelial cells comprising the blood-brain barrier. They act 
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as a “first line of defense” by limiting xenobiotics including a large number of therapeutic drugs 

from entering into the brain. Created with BioRender.com. 

 

Figure 4: Transporter-Dependent Strategies to Overcome ABCB1 and ABCG2 Drug 

Efflux. Transporter-dependent strategies focus on inhibiting and overcoming ABCB1- and 

ABCG2-mediated drug efflux by using 1) siRNA, 2) antibodies, 3) non-transporter substrates or 

4) transporter inhibitors. Created with BioRender.com. 

 

Figure 5: Regulation of ABCB1 and ABCG2 via Corticoid Receptors, RAR/RXR, PXR, 

and CAR. A) Upon ligand binding, the corticoid receptor dimer binds to the direct repeat and 

inverted repeat region of the target gene to increase ABCB1 and ABCG2 mRNA expression 

levels. B) Upon ligand binding, RAR and RXR form a heterodimer that binds and activates the 

RAR response element (RARE) which increases ABCB1 expression. C) A PXR ligand binds to 

inactivated PXR in the cytoplasm. Ligand-binding then triggers conformational change of PXR 

during which the co-repressor (Co-R) dissociates. Activated PXR translocates into the nucleus 

and heterodimerizes with RXR (retinoic X receptor ). The complex PXR-RXR together with 

its coactivators (CoA) binds to the xenobiotic response element (XRE) in the promotor region on 

ABCB1. This results in increased transcription of the gene and protein expression. D) CAR 

forms a heterodimer with RXR that binds to RARE which leads to an increase in ABCB1 and 

ABCG2 levels. Created with BioRender.com. 

 

Figure 6: Regulation of ABCB1 and ABCG2 via the Nuclear Receptors PPAR, ER, AhR, 

and Thyroid Hormone Receptor. A) PPAR forms a heterodimer with RXR that binds to and 
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activates the PPAR response element which leads to increased ABCB1 and ABCG2 levels. B) 

Genomic regulation of ABCG2 is driven by the estrogen receptor that binds to the estrogen 

response element in the ABCG2 promotor region. In addition, ABCG2 is also regulated via 

rapid, non-genomic ER signaling involving PTEN/PI3K/Akt/GSK3. C) AhR translocates into the 

nucleus and dimerizes with the aryl hydrocarbon receptor nuclear translocator (Arnt) resulting in 

the regulation of its target genes, including ABCB1 and ABCG2. D) The thyroid receptor forms 

a complex with RXR and coactivators. This complex binds to the thyroid hormone response 

element (TRE) and activates transcription of ABCB1. Created with BioRender.com. 

 

Figure 7: Inflammatory and Oxidative Stress Signaling. A) NFkB, a primary transcription 

factor, is activated by infectious and inflammatory stimuli. NF-κB binds to the promoters of its 

target genes and stimulates transcription. Both ABCB1 and ABCG2 are regulated via NFkB 

signaling at the blood-brain barrier. B) Upon activation, Wnt binds to the Frizzled receptor which 

recruits axin and inhibits GSK3Β. Consequently, the destruction complex cannot assemble, and 

β-catenin accumulates in the cytosol. After translocation into the nucleus, β-catenin acts as 

transcription factor and induces transcription of both ABCB1 and ABCG2. C) In isolated brain 

capillaries, TNFα signals through TNF receptor 1 (TNFR1) activating the endothelin converting 

enzyme (ECE) which, in turn, leads to the production of endothelin 1 (ET1) which signals 

through the endothelin receptor B (ETB) to activate the inducible nitric oxide synthase (iNOS). 

NO stimulates protein kinase C which leads to the activation of NF-B which upregulates 

ABCB1 protein expression and transport activity. D) Seizure-induced glutamate release activates 

NMDAR-cPLA2-COX-2 signaling that leads to the generation of PGE2 by the microsomal 

prostaglandin synthase 1 (mPGS1). PGE2 activates the prostaglandin EP1 receptor which via 
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NF-κB activation ultimately leads to increased ABC transporter expression and activity levels at 

the blood-brain barrier. Created with BioRender.com. 

 

Figure 8: A) Regulation of ABCB1 by JAK-STAT3. Cytokines activate the Janus kinase and 

signal transducer and activator of transcription 3 (JAK-STAT3) cascade which leads to 

phosphorylation of STAT3 which leads to activation of the c-Jun NH2 terminal kinase (JNK) 

that in turn deactivates c-Jun and reduces Abcb1 mRNA expression levels. B) Regulation by 

VEGF. VEGF signals through VEGFR2 to activate the non-receptor tyrosine kinase Src. 

Activation of Src then induces phosphorylation of caveolin-1 which is followed by Abcb1 

internalization and lysosomal degradation of the transporter. C) Regulation by the PI3K/Akt 

Pathway. E2 signaling through ERβ inhibits the PTEN/PI3K/Akt/GSK3 pathway which in turn 

leads to proteasomal degradation of Abcg2. Created with BioRender.com. 

 

Figure 9: Other Signaling Pathways. Diagram showing several other signaling pathways 

identified to regulate ABCB1 and/or ABCG2 at the blood-brain barrier: A) Adenosine, B) 

Circadian Rhythm, C) Epigenic Changes and D) P53. Created with BioRender.com. 

 

Figure 10: Clinical Implications. Overview of diseases where ABCB1 and/or ABCG2 are 

changed and affect the progression and treatment of the respective disease. Created with 

BioRender.com. 
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