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Abstract 

 

Animals and animal models have been invaluable for our current understanding of 

human and animal biology, including physiology, pharmacology, biochemistry, and disease 

pathology. However, there are increasing concerns with continued use of animals in basic 

biomedical, pharmacological, and regulatory research to provide safety assessment for drugs 

and chemicals. There are concerns that  animals do not provide sufficient information on toxicity 

and/or efficacy to protect the target population, so scientists are utilizing the principles of the 

3Rs (replacement, reduction, and refinement) and increasing development and application of 

new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay 

used to understand effects and mechanisms of drugs or chemicals with specific focus on 

applying the 3Rs. Although progress has been made in several areas with NAMs, complete 

replacement of animal models with NAMs is not yet attainable. The road to NAMs requires 

additional development, increased use, and for regulatory decision-making, usually formal 

validation. Moreover, it is likely that replacement of animal models with NAMs will require 

multiple assays to ensure sufficient biological coverage. The purpose of this manuscript is to 

provide a balanced view of the current state of use of animal models and NAMs as approaches 

to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not 

provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of 

human and animal biology and contribute to the goal of protecting human and animal health.  

 

Significance Statement: Data from traditional animal studies have predominantly been used to 

inform human health safety and efficacy. While it is unlikely that all animal studies will be able to 

be replaced, with the continued advancement in NAMs, it is possible that sometime in the 

future, NAMs will likely be an important component by which discovery, efficacy, and toxicity 

testing of drugs and chemicals is conducted and regulatory decisions are made. 
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I. History of animal use, NAMs, and the 3Rs 
 

The use of animals for scientific purposes dates back to the 6th century BC and their use 

throughout the intervening millennia continued to provide invaluable medical knowledge in 

human and animal anatomy, physiology, pathology, pharmacology, and medical devices 

(Choudhary and Ibdah, 2013; Ericsson et al., 2013; Miziara et al., 2012). Of course, early 

important scientific discoveries were made in animals since alternatives were not yet available 

(Dagnino, 2009). Importantly, many of these important discoveries have been translated to 

humans; some examples are provided in Table 1.  

Although animals have provided significant contributions to modern medical 

understanding and advancement, there has been concern with their use for decades due to the 

lack of complete translation of findings to human application and efficacy and toxicity 

predictions, as well as ethical concerns about animal welfare issues, primarily pain and distress, 

numbers of animals used (Andersen and Winter, 2019; Joffe et al., 2016; Prabhakar, 2012; 

Robinson et al., 2019), and the concept of animal rights (Andersen and Winter, 2019). 

Specifically, there is concern with the number of animals that would be required to meet the 

challenge of testing product/chemical safety of the huge number of drugs and chemicals in 

commerce; it is estimated that there are 40,000-100,000 chemicals (EPA, 2016b; Wang et al., 

2020). In addition to public concerns and those of funding agencies, animal use has come under 

even more scrutiny with the relatively recent adoption of Registration, Evaluation, Authorisation 

and Restriction of Chemicals (REACH) in the European Union (EU) and Frank R. Lautenberg 

Chemical Safety for the 21st Century Act in the US (Congress, 2016; EU, 2023).  

The Center for Drug Evaluation and Research (CDER) at the US Food and Drug 

Administration (FDA) always welcomed non-animal tests, although it was clarified in the recent 

Food and Drug Omnibus Reform Act of 2022 (FDORA) (Congress, 2022). FDORA defined 

nonclinical tests as “a test conducted in vitro, in silico, or in chemico, or a non-human in vivo 
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test” that occurs before or during the clinical trial phase of the investigation of the safety and 

effectiveness of a drug. It specified that these include assessments such as cell-based assays, 

organ chips, or animal tests. FDA does not “require” animal studies for assessing toxicologic 

risk, rather the state of the science dictates whether an animal study is “warranted” as being the 

most relevant to assessing risk. In summary, FDORA did not change the science supporting the 

regulatory use of NAMs nor remove a “requirement” for animal safety studies as there was no 

such requirement to remove. It did provide greater clarity to stakeholders and may result in 

increased investment in developing and validating NAMs. 

The adoption of these various laws and regulations is based in part on the 3Rs, a 

concept to replace, reduce and refine animal use. This concept, expressed by W.M.S. Russell 

and R.L. Burch, started in a project initiated in 1954 by the Universities Federation for Animal 

Welfare, which led to the publication in 1959 of The Principles of Humane Experimental 

Technique (Russel and Burch, 1959). Reduction is the use of fewer animals with no loss of 

useful information, refinement refers to efforts to reduce pain and suffering, and replacement 

refers to using non-animal methods. Replacement can be absolute, in which the animal is not 

used in any stage of the experiment; or relative, in which the animal is used as source of organ 

or tissue to prepare a primary culture. Thus, many alternatives are not animal free as products 

from the animals are necessary for the methods (e.g., fetal bovine serum, antibodies as 

detecting agents). Replacement can also involve the replacement of sentient animals (usually 

vertebrates) with less sentient animals (usually invertebrates such as worms) or bacteria. 

Reduction in animal use can be achieved by different strategies, including improved study 

design, method development and project coordination. In silico (aka computational modeling), in 

vitro, and in vivo methods all hold the potential for applying the reduction “R” and should be 

coordinated at a strategic level (Tornqvist et al., 2014). Good animal welfare is consistent with 

the 3Rs refinement goal, and the best animal welfare is essential for reliable results (Neville et 

al., 2022). Exploiting the latest in vivo technologies and animal welfare science will help to 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 5 January 2024 as DOI 10.1124/pharmrev.123.000967 This article

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


 8 

reduce pain, suffering, distress, or lasting harm that animals experience across their lifetime. 

Interest is growing in the development of NAMs to conduct various studies, such as those to 

evaluate toxicity, investigate drug and chemical mechanisms, and determine drug efficacy. It 

should be noted that NAMs can be defined in a number of ways; however, for the purpose of 

this paper, NAMs will be defined as any technology, methodology, approach, or assay used to 

understand effects and mechanisms of drugs or chemicals with specific focus on applying the 

3Rs. 

Emblematic in this context, ‘Toxicology in the 21st Century (Tox21)’, is a US federal 

research collaboration aimed at developing alternative high throughput screening methods to 

quickly and efficiently test thousands of chemicals for potential biological targets (National 

Research Council, 2007). Tox21 aims to identify in vitro methods and computational 

approaches for testing chemicals, including drugs and food additives, and medical products to 

better understand and predict hazards to humans and the environment (van der Zalm et al., 

2022). The 3Rs seek to ensure the rational and responsible use of laboratory animals and 

maintain an adequate protection in bioethical terms (Gorzalczany and Rodriguez Basso, 2021). 

Thus, the value of NAMs is three-fold: 1.) provide value for 3Rs approaches; 2.) scientifically 

make decisions in the human context for efficacy and safety; and 3.) obtain mechanistic 

information.  

Animals and NAMs are used in both basic biomedical and regulatory research (States 

United for Biomedical Research, 2023). We continue to use mammalian and non-mammalian 

animal models in biomedical research with the incorporation of molecular and biochemical 

events to detail the steps that occur in any physiological process. However, NAMs are often 

used in biomedical research to address mechanisms by which drugs or chemicals act. 

Regulatory research, a form of applied research, is the development of tools to standardize 

product development methodologies to increase transparency and efficiency of the entire 

product life cycle from upstream innovation through the regulatory processes. It also allows for 
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early benchmarking and reduction of risk. Applied research can be conducted with animals 

(usually mammals but includes roundworms and zebrafish), nonanimal alternatives such as 

computer models or tissue cultures, or in some cases with humans (States United for 

Biomedical Research, 2023). The complexity of our biological systems and the need to be able 

to use a drug safely or know the safe level of exposure to a chemical or environmental agent 

requires an understanding of the toxicity of a drug versus its therapeutic use or knowing the 

level of exposure that might cause harm. Risk assessment incorporates both hazard and 

exposure and this can differ between drugs in which therapeutic value is important as compared 

to environmental chemicals. Thus, both animal research and NAMs are important for the 

development of safe and effective new drugs to treat human and animal diseases, and to 

assess the safety and toxicity risks posed by environmental hazards. It should be emphasized, 

though, that translational concerns persist with both safety and efficacy assessments regardless 

of whether animal models or NAMs are used and that challenges encountered in toxicological 

assessments are often the same as those for safety assessments (Allen et al., 2021; Hughes et 

al., 2013). 

Progress towards reducing animal use and increasing NAMs use has been summarized 

in Figure 1 - there has been much success on the road to reducing animal use and using more 

NAMs, but at this time, the science does not support total replacement of all animal models with 

NAMs (FDA, 2023). Thus, the goals of this article will be to provide an understanding of animal 

use in basic biomedical research and regulation, a summary of the need to use well-designed 

animal models where still utilized, and a view of the road from animal models to NAMs, 

including how the 3Rs have been, or can be, applied to specific examples of animal models. 

The paper will also address advantages and limitations of both animal models and NAMs, 

thereby providing a balanced view of all approaches to drug development, efficacy, and toxicity 

testing. Finally, the paper will identify data gaps, needs, and future directions.  
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II. Animal models 

An animal model is “a non-human species used in biomedical research because it can 

mimic aspects of a biological process or disease found in humans” (NIH, 2023). As outlined 

above, both mammalian and non-mammalian animals have been used to study basic 

physiology and develop models of human and animal disease. Choice of the appropriate animal 

model is tantamount for avoiding incorrect findings, and the unnecessary use of time, resources, 

and animal lives (Mukherjee et al., 2022; Varga et al., 2010). Although an animal model is 

developed as a surrogate for a human disease process, it might not always fully replicate 

human diseases or conditions with respect to etiology, pathobiology, biomarkers, or toxicity 

predictions (Prabhakar, 2012). In some instances, a single animal model might not mimic a 

human disease; in that case, the combination of several models can potentially recapitulate the 

disease to inform the testing strategy or illuminate the underlying biological pathways 

(Mukherjee et al., 2022).   

Several types of animal models are available; their selection is largely dependent upon 

the scientific question, research goals and the ethical implications (Davidson et al., 1987). 

Approximately 95% of all animal research is conducted on mice, rats, and fish ((Speaking of 

Research, 2021); Table 2), although research over the last three decades has seen a steady 

increase in the number of species used for biomedical research (Bolker, 2017). While the focus 

of many involved in NAMs is to reduce the number of animals used in the regulatory process, 

more are used in basic and applied research (EU, 2020). Rodents have been especially useful 

to model human disease. Rats are physiologically and genetically closer to humans than mice 

(Szpirer, 2020); however, genetically modified mammals were initially produced in mice 

(Vandamme, 2014). For instance, the p53-deficient mouse was critical in identifying the role of 

p53 as a tumor suppressor gene in cancer; its deletion in mice rendered them susceptible to 

developing spontaneous tumors (Donehower, 1996). Since that time, several rodent models of 

human disease have been developed, including genetically modified rats. Publicly available 
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databases are available listing rodent models that mimic human disease (Jackson Laboratory, 

2023; Taconic, 2023)). 

Translational research is the process of transforming discoveries in pathobiology of 

human disease and drug development into human application (Prabhakar, 2012). Several 

characteristics have been suggested when developing an animal model (or NAM) in order to 

maximize the validity and translational value of the model. They include the following: 1. 

Pathogenesis similar to human disease; 2. Similarity in histological and phenotypical 

characteristics; 3. Similar biomarkers of disease, 4. Reliable toxicity predictions; and 5. Similar 

response to proven therapies in human model. In this manner, non-human primates are 

sometimes used in animal research due to their close phylogenetic relationship to humans, with 

similarities in terms of genetics, behavioral and biochemical activities (Estes et al., 2018).  

As a prime example of translational research, animal use has provided a long history of 

safely enabling Phase I clinical studies. Some severe safety issues in humans are not seen until 

late-stage premarket clinical studies or post-marketing, the latter meaning after human clinical 

trials have not shown safety concerns, illustrating that human individuals do not always predict 

population responses that occur at low frequency. Similarly, animal studies do not always 

predict all adverse effects, particularly effects that occur at very low frequency, which may then 

be seen when a large number of people are exposed to a new drug or chemical.  

 

II.A.  Selecting the appropriate animal model: successes and challenges  

II.A.1. Thalidomide 

In the 1950s, thalidomide was released and marketed outside the US as a non-addictive 

sedative considered very safe in humans and became one of the world’s largest selling drugs 

(Vargesson, 2009; 2015). While the record of premarket testing for thalidomide is not clear, 

many (non-pregnant) people took thalidomide without side effects and thus it was considered 

very safe in humans. It was discovered to be an effective anti-nausea drug and was prescribed, 
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and in some cases given as samples, for nausea in pregnant people (Lenz, 1988). Thus, in the 

late 1950s and early 1960s, thalidomide was used in pregnant people to treat morning sickness 

in Europe, Australia, and other countries (Diggle, 2001). In the US, thalidomide had not been 

approved for use in pregnant people due a concern about the safety of the drug as it produced 

peripheral neuropathy in humans (FDA, 2018). In 1961, two clinicians (Burley and Lenz, 1962; 

McBride, 1961) independently confirmed that thalidomide was the cause of limb malformations 

during development (for review, see (Vargesson, 2015)). Thalidomide was withdrawn from the 

worldwide market and the epidemic of malformations subsided (Diggle, 2001; Lenz, 1962; 

McBride, 1961). Afterwards, testing in mice did not show the same syndrome, but further testing 

of thalidomide in pregnant rabbits showed limb defects as seen in humans. This became the 

impetus for recommendations to test new drugs for reproductive effects in one species and for 

teratology effects in two species (Kelsey, 1988). Interestingly, thalidomide has since been FDA-

approved (US) for the treatment of leprosy and myeloma (Gao et al., 2020). The thalidomide 

episode demonstrated the value of premarket testing in animal models and in selecting the 

appropriate animal models in product safety testing.  

II.A.2 COVID-19  

Because the COVID-19 pandemic spread so rapidly, there was an immediate need to 

identify an appropriate animal model for learning about the disease process, developing 

treatments and therapies, and developing and testing vaccines. A number of animal models 

were used to compare which were most likely to recapitulate human disease (Fan et al., 2022; 

Munoz-Fontela et al., 2020; Pandey et al., 2021; Zhao et al., 2022). Mice were one of the first 

animal models examined for COVID-19 research but unlike humans, mice are not 

spontaneously susceptible to COVID-19. To overcome this, mice were genetically modified to 

express human angiotensin converting enzyme 2 (hACE-2), the protein to which the SARS-

CoV-2 virus attaches to the cell for infection. Mice expressing hACE-2 are susceptible to SARS-
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CoV-2 infection showing COVID-19 symptoms and disease similar to humans (Jia et al., 2020; 

Zhao et al., 2022).  

Other species examined as COVID-19 models include Syrian and Roborovski dwarf 

hamsters and ferrets. Both species of hamster have disease that closely resembles COVID-19 

in humans (Gruber et al., 2022), although the Roborovski dwarf hamster is more susceptible to 

COVID-19 at lower doses, exhibits more severe disease, and more closely mimics human 

COVID-19 in individuals with predisposing conditions (Gruber et al., 2022). Ferrets are naturally 

susceptible to COVID-19 and have been used as animal models of aerosol infectious agents 

(for review, see (Fan et al., 2022)). Detection of Sars-CoV-2 in the upper respiratory tract and 

nasal cavities of ferrets (Kim et al., 2020), showed that ferrets may be a good model for 

development and testing of mucosal vaccines. Non-human primates are often used in non-

clinical trials for new drug candidates and vaccines. Advantages of non-human primates include 

that they are outbred and have an immune response similar to humans (Lu et al., 2020). 

Additionally, clinically relevant vaccine doses can be used in non-human primates, which is not 

the case for smaller animals (Li et al., 2022). Non-human primates demonstrated how COVID-

19 could be transmitted and the effects of aging on severity (Yu et al., 2020) as well as 

understanding re-infection and efficacy of drugs, vaccines and antibodies (Corbett et al., 2020; 

Furuyama et al., 2022).  Animal models played important roles in protecting human health from 

the worst pandemic in 100 years. 

II.A.3  Osteosarcoma 

One difficulty in finding appropriate models and treatments for cancer is the numerous 

different kinds of cancer. Cancers found in dogs and humans share similar characteristics 

including age of onset, presentation of symptoms, response to treatment and outcomes 

(Ostrander et al., 2019). Indeed, the National Cancer Institute (NCI) is using companion dogs for  

osteosarcoma research (NCI, 2019; Oh and Cho, 2023; Ostrander et al., 2019). Osteosarcoma 

is a cancer generally in the long bones of extremities in both humans and dogs and is 
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particularly invasive in both (for review, see (Makielski et al., 2019)). The ability to enroll large 

numbers of patients in clinical trials and compare genetic changes between humans and dogs, 

the similar environments in which the companion dogs and humans live, as well as the 

physiology, size and ability to tolerate drugs are just a few of the advantages of using 

companion animals such as dogs (LeBlanc and Mazcko, 2020; Leonardi et al., 2021; Ostrander 

et al., 2019; Simpson et al., 2022). The large number of spontaneous osteosarcoma cases in 

companion dogs each year has resulted in a well-characterized disease in dogs with 

pathological, biological and clinical similarities to human osteosarcoma (Tarone et al., 2022) 

(Leonardi et al., 2021). Studies in companion dogs have led to a better understanding of 

mutations, copy alterations, and pathway dysregulations (Gardner et al., 2019; LeBlanc and 

Mazcko, 2020; Megquier et al., 2022). Many of these alterations are also found in human 

osteosarcoma and result in similar symptoms, tumor progression, immune evasion and often 

recurrences and metastases (Moukengue et al., 2022). 

Therapies are currently being developed and tested in dogs and some early trials have 

begun in humans.  Such therapies have the promise of helping both species (NCI, 2019). This 

use of companion dogs in research that is needed for both human and canine disease is an 

example of translational research, comparative oncology, and application of the 3Rs - 

refinement and reduction. It also illustrates the need to conduct research in models that most 

closely resemble human disease, and in this example to the benefit of both humans and 

companion animals.  

 

III.  The road to NAMs: Refinement and Reduction 

Several avenues to reduce animal testing are being explored including using legacy 

animal data, if available, to develop control groups for traditional animal studies. Additionally, 

shorter, more targeted animal testing is encouraged rather than long term testing, and 

researchers are encouraged to do both the animal study in partnership with the NAM(s) to 
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compare the results for certain chemical domains. Two recent papers from CDER/FDA provide 

insight into the opportunities and challenges of using NAMs and key areas where current 

approaches are less than optimal that might benefit from alternative methods (Avila et al., 2020; 

Avila et al., 2023). 

III.A  Refinement of animal models of Alzheimer’s Disease 

Alzheimer's Disease (AD) is a complex progressive neurological condition with 

behavioral and neurochemical manifestations that has proven to be resistant to current 

therapies. To address the multifaceted nature of AD, many animal models have been developed 

to understand the pathology and progression of the disease. These include both transgenic 

animals as well as natural, non-transgenic models of AD. Species used have included mice and 

rats, rabbits and the marmoset and cynomolgus monkey. However, these models do not 

spontaneously induce tangles, plaques or biochemical or cellular changes seen in AD (McKean 

et al., 2021), so most animal models currently used in AD research are transgenic mice that 

demonstrate the hallmarks of this disease including memory issues. Because spontaneous 

cognitive decline is common in older animals several species including the rat are used as 

models of age-related mild cognitive impairment or prodromal AD. Several higher order species 

such as aging canines more closely recapitulate the neuropathology seen in humans with AD. 

The dog for example shows spontaneous age-related cognitive decline and, progressive 

accumulation of Aβ plaques and tauopathy (Abey et al., 2021; Head, 2013).  

NAMs have been developed to study AD and a recent review article describes progress 

in this field to model the pathogenesis of AD (Blanchard et al., 2022). Human-derived induced 

pluripotent stem cells are used to create brain organoid models of AD (Lagomarsino et al., 

2021). Recent advances in this area combine blood vessel models with brain organoid models 

to overcome one of the major limitations of this model (Chen et al., 2021; Sun et al., 2022). 

However, brain organoid models have yet to fully recapitulate the parcellation into distinct 

cortices (i.e., prefrontal, visual, or somatosensory) seen in the human brain which continues to 
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limit their translational value (Andrews and Kriegstein, 2022). Despite the limitations, these 

models do provide complimentary data which can be used to further reduce and refine the use 

of animal models in AD research. 

III.B Reduction of animal use with the carcinogenicity bioassay 

  A recent revision to the International Council for Harmonisation of Technical 

Requirements for Pharmaceuticals for Human Use (ICH) Guideline S1B - Testing for 

Carcinogenicity of Pharmaceuticals (published August 2022) is on its way to implementation, 

which would lead to a reduction in animal usage in the assessment of carcinogenicity for 

pharmaceuticals (ICH, 2022). The new S1B(R1) Addendum introduces an additional approach 

for assessing the human carcinogenic risk of pharmaceuticals that evaluates specific weight of 

evidence (WoE) criteria to inform whether a 2-year rat study is likely to add value to a human 

carcinogenicity risk assessment. Two-year rodent studies are intended to investigate the cancer 

risk of lifetime exposure to chemicals. In cases where the rat study is not determined to be of 

value, the carcinogenicity WoE assessment can be accepted in lieu of the 2-year rat study. 

  The key WoE criteria identified in the S1B(R1) Addendum were selected following a 

prospective study, which includes data that inform the carcinogenic potential based on drug 

target biology and primary pharmacologic mechanism; results from secondary pharmacology 

screens that inform selectivity and off-target potential; histopathology data from repeated-dose 

toxicology studies with an emphasis on the 6-month rat study; evidence for hormonal 

perturbation and immune modulation; and genetic toxicology study data. While all criteria 

contribute to the integrated analysis, the relative importance of each factor may vary depending 

on the pharmaceutical under consideration. Evaluation of these factors may be sufficient to 

conclude whether a 2-year rat study would add value to the assessment of human carcinogenic 

risk of a pharmaceutical. However, if any factors are deemed inconclusive, or if a concern is 

identified, a sponsor can conduct additional investigative studies or evaluate clinical data to 

further inform human mechanistic relevance of the concerning findings. These additional studies 
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could include NAMs that provide information to clarify the mechanism of action and clinical 

relevance of a concerning finding. The Addendum encourages the reduced use of animals by 

recommending that a short-term mouse study in a transgenic model, using approximately one-

half the animals compared to a 2-year study, is prioritized over a traditional 2-year study in mice 

unless there is a scientific rationale for conducting the 2-year study. 

III.C Reduction of animal use through repeated measures 

One method to reduce animal use is the re-use of the same animals throughout an 

assessment without the need for multiple groups sacrificed at varying time points. Identification 

and prevention of human toxicological effects throughout the lifespan of an individual has 

proven a challenging and complex task, and clearly multiple and new approaches are needed to 

make continued progress in this area. Repeated assessments of blood, cerebral spinal fluid 

(CSF), and urine for endpoints/biomarkers coupled with targeted biological imaging can 

generate a useful profile of toxicity and are most useful if linked to concurrent traditional 

histopathological analyses collected in the same animals at the end of the experimental period. 

As an example, repeated assessments of blood, CSF, and urine for candidate biochemical 

markers coupled with targeted MRI and magnetic resonance spectroscopy can generate a 

useful, time-course profile of fluid and imaging biomarkers indicative of the neurotoxicity induced 

by the prototype compound, trimethyl tin (Imam et al., 2018). In other studies, the repeated use 

of imaging in a longitudinal study design has provided critical data on the assessment of several 

neurotoxicants using MRI (Anklam et al., 2022) and the therapeutic, methylphenidate, using 

PET/CT (Zhang et al., 2023). Using neurotoxicity as an example, Table 3 provides some 

examples of longitudinal and minimally invasive approaches that can be used in the same 

animal (Roberts et al., 2015). It is important to note that use of multiple endpoints in the same 

animal is a concept that can be broadly applied to reduce the number of animals necessary for 

an assay and may add value to the standard approach of using different groups of animals. 

III.D  Examples of In vitro methods used for COVID-19 vaccine development 
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The rapid development of vaccines for COVID-19 was done in part with in vitro methods, 

which allowed for a reduction in animal use. Three approaches to developing a COVID-19 

vaccine were based on creating antibodies to a harmless version of spike protein found on the 

surface of COVID-19 (Li et al., 2022). When injected in human muscle, the spike protein was 

incorporated into cells and antibodies produced. The differences in the vaccines were in how 

they produced or delivered the spike protein: a) mRNA vaccine, used a genetically engineered 

messenger RNA based on the spike protein that when injected would incorporate into cells 

stimulating the production of antibodies to the COVID-19 spike protein; b) viral vector vaccine, 

the spike protein was inserted into a viral vector which when injected into a human would 

produce antibodies; and c) protein subunit vaccine, the spike protein was inserted into bacteria, 

yeast or animal cells to produce more spike proteins and then combined with substances such 

as adjuvants which would boost antibody production when injected into humans (Li et al., 2022). 

A review in 2022 describes the use of primary cell cultures, organoids, and MPS to study all 

aspects of infection, drug discovery, and drug repurposing (Pandamooz et al., 2022). 

 

IV.  The road to NAMs: Replacement  

IV.A NAMs: In vitro replacements  

In vitro methods have and will continue to play an important role in basic biomedical and 

regulatory research by allowing the investigation of a single or limited series of effects of a 

substance or an action in isolation and offer high sensitivity without interference from other 

biological phenomena, such as hormones or immune responses. Understanding single effects 

has been shown to be useful in identifying the various events that can be used to form an 

Adverse Outcome Pathway (AOP) with the first step in any pathway being a Molecular Initiating 

Event (MIE) and then a series of key events leading to an outcome (Jeong and Choi, 2017). 

AOPs provide a potential description of how an agent moves from a MIE to an outcome that you 

might not be able to achieve in an animal study. However, there are many different pathways 
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from a MIE to adverse outcome and there is no potency information in the AOP.  Until 

quantitative aspects are added, they might not be as useful in a regulatory context. The 

classical in vitro (e.g., two dimensional cultures), microphysiological systems (MPS), organoids, 

tissue or organ evaluations provide valuable information improving our understanding of a toxic 

response while generating data faster and many times, at a far lower cost than methods using 

live animals. These in vitro tests can help identify single pathways that may be impacted before 

using whole animal studies. However, the complexity of the processes that occur even in a 

single cell and the numerous pathway interactions that can either enhance or reduce effects, 

whole animal studies are, at this time, necessary to identify potential effects in humans (Juberg 

et al., 2017; Knudsen et al., 2021; Knudsen et al., 2015; Rowlands et al., 2014).  

  It should be stressed that using in vitro assays to address the 3Rs has been a long-term 

investment in academia, companies, and regulatory agencies and great progress has been 

made (Clippinger et al., 2021). Progress and strategies have been addressed over the past two 

decades to increase the applicability, implementation, and acceptance of modern animal-free 

methods for efficiently and credibly evaluating chemical toxicity, drug efficacy, and safety 

assessment (Luechtefeld et al., 2018; Mahony et al., 2020; Methods, 2018). Publicly available 

high throughput screening data sets are now available for broad in vitro profiling of bioactivities 

across large inventories of chemicals (Thomas et al., 2019). Coupling this vast amount of 

mechanistic data with a deeper understanding of biology lays the groundwork for using NAMs. 

Leveraging advancements in such approaches and the accompanying efficiencies to detecting 

potential health hazards are unifying concepts toward implementing NAMs for decision-making 

in an animal-free zone. For example, the Frank R. Lautenberg Chemical Safety for the 21st 

Century Act that amended the Toxic Substances Control Act (TSCA) requires the US 

Environmental Protection Agency (EPA) to encourage and facilitate “… the use of scientifically 

valid test methods and strategies that reduce or replace the use of vertebrate animals while 

providing information of equivalent or better scientific quality and relevance that will support 
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regulatory decisions …” and also consider the impacts of chemicals and chemical mixtures to 

subpopulations who “…may be at greater risk than the general population of adverse health 

effects from exposure to a chemical substance or mixture, such as infants, children, pregnant 

women, workers, or the elderly” (EPA, 2016a). The US EPA convened a conference in 2019 to 

discuss NAMs for achieving reduced animal testing in chemical safety research and issued a 

guidance in February 2020 for meeting its animal testing reduction goals (EPA, 2023a). 

Complex NAMs that accurately predict the potential for human toxicity are needed to succeed or 

supersede conventional testing of chemicals in mammalian animal studies. 

The use of NAMs in industrial chemical safety assessments varies. For example, 

cosmetic ingredients sold in the EU can no longer be tested in animals to evaluate product 

safety (EU, 2009). In these cases, companies use in silico/read across, in vitro and 

physiologically based kinetic models to conduct a Next Generation Risk Assessments using, for 

example, a ‘margin of safety’ approach (i.e., the margin between the lowest concentration 

causing bioactivity in in vitro assays and the estimated in vivo concentration of the ingredient 

under normal conditions of use) (Baltazar et al., 2020; EU, 2021). The idea is not to identify 

adverse effects, but rather support the premise that cosmetic ingredient exposures that are too 

low to cause bioactivity in in vitro assays will not cause toxicity to consumers. Challenges for 

these assessments include the incorporation of more integrated endpoints (e.g., systemic or 

developmental toxicity), ensuring that sufficient biological space has been examined to identify 

the lowest bioactive concentration, and adequately evaluating metabolites that may not form in 

all in vitro test systems. In other chemical regulatory programs (e.g., REACH for industrial 

chemicals), some NAMs can be used but animal data are still required. Animal testing, which 

identifies doses causing adverse effects for use in risk assessments, lessens concerns about 

examining complex biological processes and assessing metabolite toxicity; however, recently 

there has been unease about the variability of animal data and the extrapolation of these data to 

human toxicity/safety (National Academy of Sciences, 2022). Given issues related to number of 
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chemical assessments needed, duration/cost of animal testing, and ethical issues, some 

stakeholders are questioning whether NAMs should play a more prominent role in industrial 

chemical safety assessments, in which compounds often are not designed to be biologically 

active, and exposures are generally unintended and at lower levels. 

IV.B  NAMs: examples of assays they replaced 

Studies performed in vitro offer certain benefits over in vivo approaches such as 

controlling the exact exposure conditions and identifying specific cell type responses. One goal 

of in vitro studies is to address the 3Rs and examples adopted by US and/or EU regulatory 

agencies can be found at (NTP, 2023; EU, 2006). A table entitled “Alternative Methods 

Accepted by US Agencies” published by the National Toxicology Program reveals 50 

replacement assays, 43 that reduce animal use, and 17 for refinement (NTP, 2023). Some of 

the assays embrace both replacement and reduction (e.g., acute inhalation toxicity) so may 

occur in several of the lists in the above referenced table.  

Central to the application of the 3Rs and NAMs is that the methods must provide data 

that lead to equivalent (or better) quality of the decision, which in toxicology means proper 

toxicity assessment, hazard identification, and characterization. Likewise, it will be difficult to 

rely on NAMs for pharmacology and efficacy assessment if they are less reliable than the 

currently-used methods. What differentiates drug versus chemical is that benefits for human can 

be part of the equation for the medical products but not for other chemicals. Regulators might 

accept alternatives to animal tests in toxicology if they allow them to classify and label 

chemicals, drugs, or food additives in the same way as the current tests. The principle always 

remains ‘safety first’, which is the final goal of toxicological assessments, and it is often 

forgotten that there were good reasons for introducing animal experiments in these 

assessments. One of the best examples is the Draize test, which was introduced to avoid ocular 

and skin corrosion and severe irritation in humans, following the numerous cases of blindness 

and disfigurement resulting from the presence of a synthetic aniline, used as a dye in Lash-
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Lure, applied by operators in beauty salons to darken eyebrows and eyelashes (Greenbaum, 

1933). The Draize test is rarely used today for assessing eye irritation and has been replaced by 

an Organization for Economic Cooperation and Development (OECD) test guideline in the 

Ocular Corrosivity and Irritation area (Test No. 494: Vitrigel-Eye Irritancy Test Method for 

Identifying Chemicals Not Requiring Classification and Labelling for Eye Irritation or Serious Eye 

Damage (OECD, 2021)) in which human cornea epithelium are used. In fact there are a number 

of NAMs that assess eye irritation and there also exists a defined approach that describes how 

the different methods can be used and interpreted (OECD, 2022). In some cases, there is the 

possibility of having tests waived; for instance, EPA has a guidance that describes how one 

might request a waiver of acute dermal toxicity tests for pesticides (EPA, 2023a). Although not 

truly a NAM, it is certainly aligned with the 3Rs. 

 

IV.C  NAMs: Computational Modeling 

Computational (computer-based, aka in silico) models use structural information to 

predict chemical properties (e.g., health or environmental hazards) based on the premise that a 

specific interaction between a chemical and a protein target requires certain structural features. 

Quantitative structure activity relationships (QSAR) computational models can limit animal use 

in safety assessments by filling data gaps and contributing to more effective chemical 

screening, weight-of-evidence assessments, mode-of-action determinations, or integrated 

approaches to testing and assessment (IATAs). For example, “read across” is based on 

structure-activity relationships allowing data from a source compound to be used to fill data 

gaps for a related target chemical, thereby alleviating the need to conduct additional animal 

studies. Similarly, computational screening can be used to identify candidate chemicals with 

better safety profiles during new product development (e.g., select away from reactive 

chemicals that may have genotoxic/sensitization hazards) and thereby, avoid animal testing for 

chemicals that subsequently will not be commercialized. Computational models are especially 
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powerful when combined with other data streams. Mechanistic models can identify specific sub-

/cellular targets, allowing specific follow-up screening/testing to confirm a potential mode of 

action. Lastly, computational models also can be used to predict toxicokinetic parameters (e.g., 

metabolite predictions, distribution, absorption), including in vitro-to-in vivo extrapolation (IVIVE), 

which provides dosimetry context to in vitro bioactivity data and thus, avoids animal testing for 

bioactivity that is not relevant based on exposure levels. Several recent publications describe 

protocols to illustrate how computational models can be used with other data streams to 

evaluate chemical hazards (Crofton et al., 2022; Hasselgren et al., 2019; Myatt et al., 2018) for 

more efficient and effective animal use. The summary from the FutureTox-IV workshop covered 

the diverse and specific types of computational models for developmental and reproductive 

toxicity from a broad perspective, including engineered microsystems, small model organisms, 

and computer simulation (Knudsen et al., 2021). 

IV.C.1 Examples of computational models 

The Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) model 

(Mansouri et al., 2016) may predict interaction with the estrogen receptor (ER). This information 

can be used to prioritize in vitro estrogen receptor screening assessments and if warranted, an 

in vivo study designed to examine estrogen-related adverse effects (e.g., (EPA, 2022)). Both the 

CERAPP model and the corresponding androgen receptor model (CoMPARA; (Mansouri et al., 

2016)) can be used to prioritize/deprioritize endocrine assessments and contribute to WoE 

evaluations (EPA, 2022), resulting in fewer animal studies.  

In silico approaches are being developed and used to identify chemical-induced 

biological effects in human cells. Typically, these are high-throughput or high-content screening 

tools applied to thousands of chemicals used in commerce or found in the environment that 

provide information on how chemicals affect living systems (Knudsen et al., 2020). Information 

that can be obtained on these chemicals include bioactivity profiling, in silico dosimetry, and 

predictive toxicology (Knudsen et al., 2020). As one specific example, the CompTox Chemical 
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Dashboard maintained by the US EPA provides access to over a million concentration-response 

curves (EPA, 2023b). 

Many scientists are also working on in silico approaches to address the 3Rs and 

improve the prediction of adverse events and efficacy of FDA regulated products. One such 

program (AL4Tox; Artificial Intelligence | FDA) is being conducted at the National Center for 

Toxicological Research (NCTR). Two of the four initiatives: 1) AnimalGAN and 2) SafetAI may 

impact the use of animals. ToxGAN (one of the models developed under AnimalGAN initiative) 

strives to generate animal study results of new compounds through the use of AI methods that 

are based on existing animal toxicogenomics data without testing the new compound in animals 

(Chen et al., 2022). They have built a liver model that can potentially predict a novel 

compound’s gene expression changes in the rat liver and its effect(s) on biological pathways to 

assess the potential to cause liver damage. Many such read-across applications rely solely on 

the concept that compounds with similar chemical structures cause comparable toxic effects, 

which is not always true. Instead, this system infers gene expression changes that would be 

seen with a novel compound to predict liver toxicity. This might be useful to identify hepatotoxic 

compounds prior to animal testing. To put this in context, to replace animal testing such models 

would be needed to assess the more than 40 organs and tissues examined in a classical 

nonclinical toxicity assay. Unfortunately, toxicogenomic data do not exist for this extended list of 

target cells at this time.  

Another approach (SafetAI) being used by NCTR is to identify safety issues related to 

drugs. This is a collaborative effort being led by CDER investigators with the help of NCTR. The 

latter is working on developing in silico models of five safety endpoints including carcinogenicity 

(DeepCarc) (Li et al., 2021). Previous computational models tend to be restricted to certain 

chemical classes. This model uses a deep learning approach based on data found in NCTR’s 

liver cancer database containing results from mice and rats tested with 863 compounds and is 
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publicly available (Li, 2023). They propose this model be used in early developmental screening 

for drugs to remove potential carcinogens from animal testing. 

 

V. Advantages and limitations of animal use and NAMs 

With any assay comes areas of usefulness and limitations. As noted above, animals do 

not provide all needed information, nor do NAMs. A well-known example of a failure in 

nonclinical assessment of safety occurred with fialuridine, a treatment for chronic hepatitis B, in 

1995. This drug caused severe hepatotoxicity in some patients during the clinical trial resulting 

in its immediate discontinuation (McKenzie et al., 1995). Woodchucks are a commonly used 

model for hepatitis research. A study performed in 1998 with fialuridine found hepatotoxicity in 

the woodchuck but reported that others studying this drug in monkeys, rats, or dogs did not see 

such evidence (Tennant et al., 1998).   

There are advantages and limitations for animal models and NAMs for both toxicity and 

efficacy (Table 4). It should be noted that even when using humans (i.e., phase I clinical trials) 

or human cells, assays are often conducted in healthy humans, cells derived from healthy 

humans or cell lines, and therefore might not reflect a compromised human. Likewise, often 

ages or life stages have not been studied sufficiently in animals and might not be mimicked 

using NAMs. Finally, there is no way currently to model effects of chemicals, drugs, or other 

substances on language or emotion, which can have an impact on human disease states. The 

complexity associated with understanding the toxicity of complex substances/mixtures is still 

being investigated with both animal models and NAMs.   For example, a recent paper noted 

that, at this time, brain development cannot be assessed only with current in vitro or NAMs 

approaches (Juberg et al., 2023), especially when evaluating neurobehavioral endpoints.   

 

VI. Identification of data gaps, needs, and future directions 
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The road to NAMs might lead, in the distant future, to a balanced approach for both 

basic biomedical and regulatory research, in which the use of NAMs outweighs the use of 

animals and animal models (Figure 1). There are several areas in which animal use might 

continue. First, in various diseases that occur in both animals and humans (i.e., osteosarcoma) 

any information obtained in either humans or animals (in this case, dogs) will inform 

mechanisms and/or treatments for both species. Second, animals will continue to be used to 

study animal diseases in veterinary medicine. Third, it might be valuable to continue to test 

chemicals in animal models if disease outcomes or if adverse pregnancy outcomes are not 

faithfully recapitulated using NAMs. Fourth, at least currently, as sophisticated as computer 

simulations and in vitro methods are today, they cannot generate sufficiently reliable data about 

how a substance affects a real living being - a complex, interactive system made up of dozens 

of organs, hundreds of biological messengers, thousands of enzymes, and hundreds of 

thousands, if not millions, of different proteins, many of them not even identified. This includes 

the need to genetically match cell type for some assessments (i.e., T cell haplotype match). 

Fifth, some animal products are necessary even in in vitro assays or NAMs (i.e., antibodies, 

primary cells from animals, fetal bovine serum, bovine serum albumin). Sixth, validation and 

acceptance strategies have not been implemented for all regulatory use. The current criteria are 

that NAMs should be good or better than the currently accepted assay. 

There is no doubt that NAMs should and will continue to be developed and refined to 

use in both basic biomedical and regulatory research. It is unlikely that a single NAM will be 

sufficient; instead, a series of different approaches will be needed. Novel testing platforms and 

computational models have emerged that cover multiple levels of biological organization, to be 

combined with toxicokinetic parameters essential in supporting IVIVE. For example, research in 

the field of human-relevant organotypic culture models and engineered microsystems has 

exploded in recent years due to advances in directed differentiation of human induced 

pluripotent stem cells (iPSCs), bioprinting, microfluidics, microengineering, and materials 
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science. This has enabled complex tissue constructs that recapitulate some of the 

microarchitecture and function of human tissues and organs for in vitro testing and mechanistic 

understanding of drug efficacy and chemical toxicity (Rusyn et al., 2022). 

Although use of NAMs for higher level regulatory decision making is still on the horizon, 

the regulatory coexistence with animal models requires sufficient complexity to establish 

performance metrics for predictivity and biological plausibility (Middleton et al., 2022). These 

studies show the pressing need for computational models that offer quantitative value in 

establishing a point of departure for hazard evaluation and classification of chemicals by critical 

effects. Assessing confidence in the models is key for regulatory acceptance, especially for 

reference compounds where traditional animal testing has failed to predict human hazard. While 

Frank R. Lautenberg Chemical Safety for the 21st Century Act sets the bar for use of best 

available science, NAMs have to be as good or better than traditional test methods especially 

where data gaps cannot be filled using animal models, because human relevance is unclear. 

In thinking about future development of NAMs, assays that employ human cells and the 

application of computational (AI) methods will be valuable. It is conceivable that AI will be able 

to integrate information from different NAMs or even integrate legacy animal data with NAMs. It 

is also possible that AI will be able to compare effects in healthy individuals to those that are 

immunocompromised or have various diseases. Health digital twins are being developed to 

represent real individuals and can be used to simulate diseases, comorbidities, drug safety and 

efficacy (Venkatesh et al., 2023), and potentially other biological targets for safety and toxicity 

testing. The increased reliability on AI, however, is not without concerns, including how the 

model is generated (i.e., how is it trained, how it is tested, will there be ethical issues) and its 

stability. These future computational tools also need to be stable, allowing faithful, reliable and 

regularly applied software updates that allow model refinement as new information is revealed. 

 

VII.  Conclusions 
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Data from traditional animal studies have predominantly been used to inform human 

health safety and efficacy. While it is unlikely that all animal studies will be able to be replaced, 

with the continued advancement in NAMs, it is possible that sometime in the future, NAMs will 

likely be an important component of drug development, and from which efficacy determinations 

and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made. 

NAMs-based in vitro assays and in silico models are aimed at the 3Rs as a whole, and 

replacement, which might be desired, is constrained by the state of the science, and the need 

for validation for those assays used to make regulatory decisions. Moreover, NAMs developers 

and regulators have considered whether a new framework for establishing confidence in NAMs 

data is needed, although that framework is still being defined (van der Zalm et al., 2022). Part of 

the challenge lies in identifying the acceptable variability in NAMs. The participation of multi-

disciplinary groups including biologists, computational experts, toxicologists, and veterinarians 

looking at alternatives from a multifactorial perspective (i.e., the combination of approaches) will 

propel the field forward likely using both animal models in some instances, and NAMs. As 

always, moving into a new area takes funding and a collaborative effort among all stakeholders, 

which will also be the case to accelerate progress in protecting human and animal health.  

  

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 5 January 2024 as DOI 10.1124/pharmrev.123.000967 This article

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


 29 

 

Acknowledgments: The authors thank Drs. Linda Roberts, Justin Conley, Qiang Shi, and 

Timothy McGovern for constructive and/or technical reviews of the manuscript. This manuscript 

was developed as part of the activities of the Scientific Liaison Coalition (SLC; 

https://www.toxicology.org/slc/index.asp). The SLC is a coalition of scientific societies with the 

goal of improving public health through a collaborative interdisciplinary approach. The authors 

acknowledge and thank the SLC member representatives and SLC leadership for their support 

of this project. The authors had complete control over the design, conduct, writing, and 

interpretations included in this manuscript. The contents and perspectives of this manuscript are 

solely the responsibility of the authors and do not necessarily reflect the views or policies of their 

employers or SLC member societies. 

 

Disclaimer: This article reflects the views of the authors and does not necessarily reflect those 

of the US Food and Drug Administration or of the US Environmental Protection Agency. Any 

mention of commercial products is for clarification only and is not intended as approval, 

endorsement, or recommendation. 

 

Funding: This work received no external funding. 

 

Data availability statement: This article contains no datasets generated or analyzed during the 

current study. 

 

Conflicts of interest: Dr. Corsini is a member of the EURL ECVAM Scientific Advisory 

Committee (ESAC), which is a formal Expert Group of the European Commission that advises 

the Joint Research Centre (JRC)'s European Union Reference Laboratory for Alternatives to 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 5 January 2024 as DOI 10.1124/pharmrev.123.000967 This article

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

https://secure-web.cisco.com/1BRvfPhkx_4Ebo2wppawA14USk8rF6mMjjlDCvTICKqSomWI25ryCDamBQIB3YCqzj2d0wiTzLnxdiXUvA62JO2kHDSNIlnT_1e16GMD1m_K6wbnUoy8M7quqqhpkqyk1dUxS4ycmx5eej7m00Wz3sUoI3EDpuugraIRKmGKHM9WW_nbSdo5ywLp9065Ew4Vb/https%3A%2F%2Fwww.toxicology.org%2Fslc%2Findex.asp
http://pharmrev.aspetjournals.org


 30 

Animal Testing (EURL ECVAM) on scientific issues. All other authors declare there are no 

conflicts of interest. 

 

Author contributions: All authors were involved in writing and reviewing the manuscript. 

  

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 5 January 2024 as DOI 10.1124/pharmrev.123.000967 This article

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


 31 

Figure Caption 

 

Figure 1. The Road to NAMs. Early animal use included a wide variety of animals to investigate 

physiology, pharmacology, putative therapies and medical devices. The 3Rs concept increased 

awareness of animal use and encouraged replacement, reduction, and refinement of animals. 

As more advanced technologies were developed (i.e., genetic modification of rodents) and 

adoption of 3Rs became widespread, some animal use decreased (as indicated by blue 

arrowhead). There was also increased use of lower phylogenetic species (i.e., worms, flies) and 

development of in silico models at this time. NAMs were introduced and continue to be 

developed, used, and validated. In the future, it is likely that NAMs use will continue to increase 

while decreasing, although not eliminating, animal use. 
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Table 1. Examples of biomedical advances made with animals and animal models  
  

Year  Discovery  
*indicates Nobel Prize awarded  

Species Used  Researcher(s) to 
whom Nobel Prize 
was awarded  

        

1881  Germ theory of disease  sheep    

1905  Studies of pathogenesis of 
tuberculosis*  

cow, sheep  R. Koch  

1915  Blood transfusion  dog    

1923  Discovery of insulin and mechanism 
of diabetes*  

dog, rabbit, fish  F. G. Banting  
J.J.R. Macleod  

1936  Chemical transmission of nerve 
impulses*  

cat, frog, bird, reptile  O. Loewi  
H. H. Dale  

1937  Heparin used as an anti-coagulant  dog, guinea pig, mouse, 
rabbit  

  

1945  Discovery of penicillin and its curing 
various diseases*  

mouse  A. Fleming  
E.B. Chain  
H.W. Forey  

1955  Polio vaccine  mouse, primates    

1977  Smallpox eradicated in humans  cow    

1990  Organ transplant techniques*  dog  J.E. Murray  
E. D. Thomas  

1996  Cloning of Dolly the sheep  sheep    

2008  Discovery of Human 
Immunodeficiency virus*  
 
Discovery of Human papilloma 
viruses causing cervical cancer*  

monkey, chimpanzee, mice  
  
 
hamster, mouse, cow  

F. Barre-Sinoussi  
L. Montagnier  
  
H. zur Hausen  

2011  Antiretroviral drug therapy for HIV  non-human primate    

2013  CRISPR-Cas9 gene editing  mouse    

2015  Novel therapy for malaria*  
Novel therapy for infections from 
roundworm parasites*  

mouse, monkey  
mouse, dog, sheep, cattle, 
chicken, monkey  

Y. Tu  
 
W.C. Campbell  
S. Omura  

2017  Approval of CAR-T-cell therapy for 
cancer  

mouse, non-human primate    

2018  Gene therapy for humans and 
animals  

dogs    

2018  Treatment of cancer by inhibition of 
negative regulation of immunity*  

mouse and murine cell lines  J.P. Allison  
T. Honjo  

2019  Gene therapy for sickle cell anemia  non-human primate    

2019  Ebola vaccine  mouse, non-human primate    

2020  Discovery of hepatitis C virus*  chimpanzee  H.J. Alter  
M. Houghton  
C.M. Rice  

2020  COVID-19 vaccine  hamster, ferret, llama, non-
human primate  
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(FASEB, 2023; Nobel Prize, 2023) 
Table 2. Animal Models  
  

Species Used in Biomedical Research  

  

Rodents  Rat  
Mouse  
Guinea pig  
Hamster  

Non-rodents  Bird (quail, finch, pigeon)  
Rabbit  
Cat  
Dog (e.g., beagle)  
Ferret  
Sheep  
Cow  
Non-human primate  

Non-mammalian  Zebrafish  
Drosophila melanogaster (fruit fly)  
Caenorhabditis elegans (nematode)  
Frog  

  

Types of Animal Models Used in Biomedical Research  

  

Type  Description  Example  

      

Normal  Organisms without any 
observable deficits (can be 
used as controls)  

Any  

Negative/Non-reactive  Organisms in which a certain 
disease does not develop  

Opossum - resistant to rabies  
Rhesus monkeys - resistant to 
hepatitis B,  
Gerbils - resistant to radiation  
Rabbits – resistant to 
transmissible spongiform 
encephalopathy  

Spontaneous  Animals with naturally 
occurring pathological 
conditions, which mimic human 
disease  

Rats - Spontaneously 
hypertensive  
Doberman Pincher – von 
Willebrand’s disease  
Dogs - spontaneous model for 
prostate cancer, osteosarcoma, 
breast cancer, aging 

Disease-induced/Experimental  Animal models in which the 
experimentally reproduced 
condition mimics a human 
disease  

Rodent - induce diabetes with 
streptozotocin  
Rodent and non-human primate 
– induce Parkinson-like disease 
with neurotoxicant, MPTP  
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Genetic  Result of selective sibling 
breeding for a specific trait  

Wistar Kyoto (WKY) rat for 
hypertension  
Athymic nude mouse  - result of 
a natural mutation that lacks T 
cells  

Genetically-engineered  Organisms in which genes 
have been modified to delete or 
enhance gene expression  

See below  

  

Genetically-engineered Animals (mouse, rat, primate)  

  

Transgenic  Organism in which the genome 
is modified by the artificial 
insertion of foreign DNA (trans-
gene) into every cell  

2D2 mice express T cell 
receptors that recognize 
proteins involved in a multiple 
sclerosis model  

Knock-out  Organism in which foreign 
genetic information is 
expressed in the nucleus of 
embryonic cells, thereby 
inhibiting expression of certain 
gene(s)  

AKT2 gene deletion to examine 
glucose uptake in diabetes  

Knock-in  Organism in which generated 
specific mutations or 
exogenous genes are 
introduced into specific sites of 
a target gene through 
homologous recombination, so 
that the expression of the gene 
knock-in may be tracked 
through the expression of a 
reporter gene  

Erbb2 (HER-2) overexpressed 
in mice to examine its role in 
cancer  

Humanized  Organism (typically a mouse) 
that carries functioning human 
genes, cells, tissues, 
and/or organs  

Express human ACE-2 protein 
in mice to study SARS-CoV2 
infection  
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Table 3. Examples of Potential Neurotoxicity Biomarkers used in Longitudinal Studies  
  

Fluid Based - Direct analysis of plasma, serum, urine, or CSF – longitudinal and 
minimally invasive  
  

Biomarker  Endpoint  Comments  

F2-IsoPs (F2-iso 
prostanes)  

Indirect measurement of oxidative injury  
Used clinically as biomarker 
of exposure  

    Not specific for neurotoxicity  

GFAP (glial fibrillary 
acidic protein)  

Biomarker of all types of neural (neuronal 
and glial) damage  

ELISA already developed  

    

GFAP is a sensitive and 
specific marker of 
astrogliosis (indicative of all 
types of CNS damage)  

MAP-2 (microtubule-
associated protein)  

Biomarker of dendritic injury  ELISA already developed  

MBP (myelin basic 
protein)  

Biomarker of myelin disruption  
Immunoassay developed, 
but not widely used  

Microtubule-associated 
protein tau (total tau, 
phosphorylated tau, and 
cleaved tau)  

Biomarker of neurodegeneration/axonal 
injury  

ELISAs developed  

Neurofilament (light 
chain and 
phosphorylated heavy 
chain)  

Biomarkers of axonal injury  ELISA exists  

Spectrin breakdown 
product (SBDP-145)  

Found in the CSF as a biomarker for 
neurodegeneration (apoptosis and 
necrosis)  

Recently reported  

TSPO (translocator 
protein)  

Biomarker of activated glia  

Has been validated in a 
variety of preclinical models 
of neurotoxicity including 
preclinical and clinical 
imaging  

UCH-L1 (ubiquitin C-
terminal hydrolase)  

Biomarker of cell body injury  Immunoassay developed  

Imaging - less invasive, longitudinal analysis in living animals, high-resolution in 
postmortem fixed animals  

MRI T2 relaxation  
  
  
  

Detects edema, hemorrhage, water 
redistribution, cellular disruption, cellular 
density, infiltration, blood flow changes, 
and temperature changes  

Data obtained using T2 
relaxation is quantitative  
  
Correlation to pathology can 
be achieved via digital 
analysis  
  

Electroencephalography  
and in vivo 
electrophysiology  

Permits repeated measurements of 
neural activity and dose response effects 
within subject  

Invasive  
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Electrical, electrode, muscle, 
and movement artifact  

Magnetic resonance 
spectroscopy (MRS)  

Non-invasive  
Permits within subject repeated 
measurements of brain metabolites 
associated with toxicity  
  
  

  

Positron Emission 
Tomography (PET)  

Minimally invasive in vivo imaging  
  

  

MicroPET  
Molecular level view of biochemical, 
physiological, pathological, and 
pharmacological processes in vivo  

Tags for specific 
neurotransmitter receptor 
systems can be used  
  
Resolution less than MRI 
needs specific short-lived 
radiolabeled ligand to probe 
the function of interest  

Abbreviations: CFS, cerebrospinal fluid; CNS, central nervous system; ELISA, enzyme-linked 
immunosorbent assay; MRI, magnetic resonance imaging; PET, positron emission tomography.  
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Table 4. Advantages and Limitations of Animal Models and NAMs  
  

  Advantages  Limitations  

Animal 
Models  

effect on entire body assessed 
(i.e., histology, clinical 
chemistry)  

translation issue; does not identify all adverse 
events seen in humans nor drugs that prove to 
be non-efficacious in humans 

  good safety record for Phase I 
clinical trials  

optimal test species and strain not always 
clear  

  many disease models exist for 
efficacy assessment  

some models do not replicate human diseases 
accurately and this can lead to clinical failures  

  identify mechanistic issues  cost and throughput an issue for classical 
toxicology studies, to model efficacy in disease 
models and when a fast assessment is needed 
(e.g., prepared food on the market potentially 
showing unexpected adverse events) 

  can study developmental 
stages although may not mirror 
human totally  

limited genetic variability in inbred strains and 
genetic drift in animal colonies 

  enables studies of medical 
devices  

irreproducibility is sometimes an issue  

      

NAMs  may address the 3Rs  animals may need to be euthanized to provide 
cells for in vitro systems or other NAMs 

      

in vitro 
assays  

use of human cells may 
provide better prediction of 
human responses  

translation issue; does not identify all types of 
injury within a tissue, adaptive responses, or 
interactions among body systems 

  may enable precision medicine 
by studying donors with unique 
characteristics  

may reflect the response of an individual donor 
versus population; must investigate how many 
donors required; in vivo human studies do not 
predict all other humans  

  can control the test 
environment (e.g., dose of 
drug, duration of exposure)  

may be difficult to keep cells 
differentiated particularly if trying to mimic an in 
vivo chronic study 

  can be easier to study 
mechanistic questions of 
toxicity and efficacy  

fresh human cells may be difficult to obtain 
particularly for complex platforms with multiple 
cell types (e.g., liver)  

  faster and can be less 
expensive than in vivo studies  

cost and throughput may depend on question 
being asked; complex NAMS are expensive, 
usually just address one organ/tissue type and 
are often low throughput 

  may enable toxicity and 
efficacy testing in disease 
models  

may be difficult to replicate disease models in 
vitro 

  a relatively small amount of 
test materials is needed 

difficult to replicate responses that involve 
multiple cell types (e.g., immune cells and liver 
cells)  

    at this time, cannot study all organs/tissues in 
the body  
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    irreproducibility is an issue  

    do not replicate complexity of human system  

    difficult to replicate pregnancy and 
developmental stages  

    domain of applicability might be limited  

    physical/chemical properties of substances 
might not be compatible with assay  

  not able to replicate complex human/animal 
traits like behavior 

  can identify a bioactivity point 
of departure  

unclear how many cell types are needed to 
provide sensitivity/confidence that toxicity has 
been adequately evaluated  

     limited assessment over time versus in vivo 
studies (e.g., disease progression) 

   

in silico 
assays  

might avoid the need for any 
new biological testing  

critical that models are trained and tested 
accurately  

  fast and expensive once 
models are built  

may be difficult to obtain sufficient data  

  flexible in terms of what 
models can be built (e.g., 
disease, normal)  

may be limited to chemical structure space  

    cannot always predict metabolic breakdown of 
compounds  

    at this time, models do not exist for all organs 
and tissues  

    do not replicate complexity of human systems  
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The Road to NAMs

Before and early 
20th Century:
• Many different 

animals
• Mostly in vivo

Late 20th Century:
• Increased use of
• (genetically-

modified) rodents
• Increased use of 

in vitro with in vivo
• Increased use of 

lower phylogenetic 
species

• In silico methods
Mid 20th Century:
3Rs

Future:

Late 20th Century and 
Early 21st Century:
NAMs

Decreased
Use of animals

Increased 
use of NAMs

Fig. 1
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