TY - JOUR T1 - RAL GTPases: Biology and Potential as Therapeutic Targets in Cancer JF - Pharmacological Reviews JO - Pharmacol Rev SP - 1 LP - 11 DO - 10.1124/pr.117.014415 VL - 70 IS - 1 AU - Chao Yan AU - Dan Theodorescu A2 - Ye, Richard Dequan Y1 - 2018/01/01 UR - http://pharmrev.aspetjournals.org/content/70/1/1.abstract N2 - More than a hundred proteins comprise the RAS superfamily of small GTPases. This family can be divided into RAS, RHO, RAB, RAN, ARF, and RAD subfamilies, with each shown to play distinct roles in human cells in both health and disease. The RAS subfamily has a well-established role in human cancer with the three genes, HRAS, KRAS, and NRAS being the commonly mutated in tumors. These RAS mutations, most often functionally activating, are especially common in pancreatic, lung, and colorectal cancers. Efforts to inhibit RAS and related GTPases have produced inhibitors targeting the downstream effectors of RAS signaling, including inhibitors of the RAF-mitogen-activated protein kinase/extracellular signal-related kinase (ERK)-ERK kinase pathway and the phosphoinositide-3-kinase-AKT-mTOR kinase pathway. A third effector arm of RAS signaling, mediated by RAL (RAS like) has emerged in recent years as a critical driver of RAS oncogenic signaling and has not been targeted until recently. RAL belongs to the RAS branch of the RAS superfamily and shares a high structural similarity with RAS. In human cells, there are two genes, RALA and RALB, both of which have been shown to play roles in the proliferation, survival, and metastasis of a variety of human cancers, including lung, colon, pancreatic, prostate, skin, and bladder cancers. In this review, we summarize the latest knowledge of RAL in the context of human cancer and the recent advancements in the development of cancer therapeutics targeting RAL small GTPases. ER -