Receptor Nomenclature | NR1B1 |
Receptor code | 4.10.1:RA:1:B1 |
Molecular information | Hs: 462aa, P10276, chr. 17q21.11,2 |
Rn: 459aa, chr. 101,3 | |
Mm: 462aa, P11416, 11 D1,4–6 | |
DNA binding | |
Structure | Heterodimer, RXR partner |
HRE core sequence | PuG(G/T)TCA (DR1, DR2, DR5) |
Partners | Cyclin H/cdk7/TFIIH (physical functional): TFIIH phosphorylates RARα1 in its A/B region (Ser77) by cdk7 subunit7–9; AP-1 (physical, functional): RAR inhibits AP-1-driven transactivation, and AP-1 represses RAR-mediated transcription10–14; CRABPII (physical, functional): can enhance the transactivation by RARα-RXR on DR5 element15; PARP-1 (physical, functional): indispensable to RARα-mediated transcription from the RAR α216 |
Agonists | 9-cis-Retinoic acid (0.3 nM),* all-trans-retinoic acid (0.4 nM),* AGN195183 (3 nM) [Kd]17–22; Am580 (36 nM), TTNPB (36–72 nM), Am80 (124 nM) [IC50]19–23; BMS75324 |
Antagonists | BMS614 (2 nM), BMS493 (4.2 nM), AGN193109 (2–16 nM), Ro-41-5253 (60 nM) [IC50]19,22,24–28 |
Coactivators | NCOA1, NCOA2, NCOA3, PPARBP, CREBBP, p30012,29–39 |
Corepressors | NCOR1, NCOR240–44 |
Biologically important isoforms | RARα1 {Hm, Mm}: transcribed from the promoter P1 and differs from RARα2 in the A domain—RARα1 is phosphorylated by cdk7/TFIIH (Ser77)5,45,46; RARα2 {Hs, Mm}: in contrast with the RARα1 isoform, RARα2 is transcribed from downstream promoter P2, which contains a DR5 and is inducible by retinoid5,47 |
Tissue distribution | Majority of tissues {Hs, Mm, Rn} [Northern blot, in situ hybridization, Western blot]6,48–54 |
Functional assays | Inhibition of cellular proliferation of the MCF-7 breast cancer cell line expressing the estrogen receptor {Hs}55; induction of maturation of acute myeloid leukemia cell lines (NB4, PBL985, U937, HL60) using the histological nitro blue tetrazolium reaction and analysis of CD11c integrin expression by direct immunofluorescence {Hs}21,32,56 ,57; parietal endodermal differentiation in the presence of cAMP of F9 murine embryonal carcinoma cell line {Mm}58 |
Main target genes | Activated: CYP26 {Hs, Mm, Rn},59 RARβ2 {Hs, Mm, Rn}26,57,60,61, Hoxa-1 {Mm}51,60,62 , CRBP1 {Mm}60,63, CRABPII {Mm}60,64 |
Mutant phenotype | Abnormalities observed: growth retardation, male sterility, impaired alveolar formation; congenital defects observed: webbed digits, homeotic transformations and malformations of cervical vertebrae, pterygoquadrate cartilage, malformations of the squamosal bone; note that both the specific RARα1-null and RARα2-null mutants are apparently normal {Mm} [knockout]34,65–67 |
Human disease | APL, a subtype of acute myelogenous leukemia: caused by several translocations that implicate the human RARα gene; the reciprocal chromosomal translocation between RARα and PML human genes produces a fusion protein PML-RARα; the use of supraphysiological doses of ATRA lead to remission in patients with APL; in contrast, the fusion protein resulting from the translocation between RARα and the PLZF is insensitive to ATRA treatment68–70 |
aa, amino acids; chr., chromosome; HRE, hormone response element; PARP-1, poly(ADP-ribose) polymerase 1; TTNPB, 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-pr openyl]benzoic acid; PPARBP, peroxisome proliferator-activated receptor binding protein; CREBBP, cAMP response element-binding protein-binding protein
↵* Radioligand
↵1. Mattei MG, Riviere M, Krust A, Ingvarsson S, Vennstrom B, Islam MQ, Levan G, Kautner P, Zelent A, Chambon P, et al. (1991) Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse, and rat genomes. Genomics 10: 1061-1069
↵2. Petkovich M, Brand NJ, Krust A, and Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444-450
↵3. Akmal KM, Dufour JM, and Kim KH (1996) Region-specific localization of retinoic acid receptor-α expression in the rat epididymis. Biol Reprod 54: 1111-1119
↵4. Leid M, Kastner P, and Chambon P (1992) Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 17: 427-433
↵5. Leroy P, Krust A, Zelent A, Mendelsohn C, Garnier JM, Kastner P, Dierich A, and Chambon P (1991) Multiple isoforms of the mouse retinoic acid receptor α are generated by alternative splicing and differential induction by retinoic acid. EMBO (Eur Mol Biol Organ) J 10: 59-69
↵6. Zelent A, Krust A, Petkovich M, Kastner P, and Chambon P (1989) Cloning of murine α and β retinoic acid receptors and a novel receptor γ predominantly expressed in skin. Nature 339: 714-717
↵7. Bour G, Gaillard E, Bruck N, Lalevee S, Plassat JL, Busso D, Samama JP, and Rochette-Egly C (2005) Cyclin H binding to the RARα activation function (AF)-2 domain directs phosphorylation of the AF-1 domain by cyclin-dependent kinase 7. Proc Natl Acad Sci USA 102: 16608-16613
↵8. Rochette-Egly, C. (2003) Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal 15: 355-366
↵9. Rochette-Egly C, Adam S, Rossignol M, Egly JM, and Chambon P (1997) Stimulation of RAR α activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 90: 97-107
↵10. Chen JY, Penco S, Ostrowski J, Balaguer P, Pons M, Starrett JE, Reczek P, Chambon P, and Gronemeyer H (1995) RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO (Eur Mol Biol Org) J 14: 1187-1197
↵11. Lafyatis R, Kim SJ, Angel P, Roberts AB, Sporn MB, Karin M, and Wilder RL (1990) Interleukin-1 stimulates and all-trans-retinoic acid inhibits collagenase gene expression through its 5′ activator protein-1-binding site. Mol Endocrinol 4: 973-980
↵12. Nicholson RC, Mader S, Nagpal S, Leid M, Rochette-Egly C, and Chambon P (1990) Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP1 binding site. EMBO (Eur Mol Biol Organ) J 9: 4443-4454
↵13. Schule R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, and Evans RM (1990) Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell 61: 497-504
↵14. Zhou XF, Shen XQ, and Shemshedini L (1999) Ligand-activated retinoic acid receptor inhibits AP-1 transactivation by disrupting c-Jun/c-Fos dimerization. Mol Endocrinol 13: 276-285
↵15. Delva L, Bastie JN, Rochette-Egly C, Kraiba R, Balitrand N, Despouy G, Chambon P, and Chomienne C (1999) Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol 19: 7158-7167
↵16. Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P, and Reinberg D (2005) PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18: 83-96
↵17. Allenby G, Bocquel MT, Saunders M, Kazmer S, Speck J, Rosenberger M, Lovey A, Kastner P, Grippo JF, Chambon P, et al. (1993) Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci USA 90: 30-34
↵18. Beard RL, Duong TT, Teng M, Klein ES, Standevan AM, and Chandraratna RA (2002) Synthesis and biological activity of retinoic acid receptor-α specific amides. Bioorg Med Chem Lett 12: 3145-3148
↵19. Keidel S, LeMotte P, and Apfel C (1994) Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol 14: 287-298
↵20. Klaholz, B.P., Mitschler, A. and Moras, D. (2000) Structural basis for isotype selectivity of the human retinoic acid nuclear receptor. J Mol Biol 302: 55-170
↵21. Nagy L Thomazy VA, Shipley GL, Fesus L, Lamph W, Heyman RA, Chandraratna RA, and Davies PJ (1995) Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol Cell Biol 15: 540-3551
↵22. Thacher SM, Vasudevan J, and Chandraratna RA (2000) Therapeutic applications for ligands of retinoid receptors. Curr Pharm Des 6: 5-58
↵23. Kagechika H, Kawachi E, Hashimoto Y, Himi T, and Shudo K (1988) Retinobenzoic acids. 1. Structure-activity relationships of aromatic amides with retinoidal activity. J Med Chem 31: 182-2192
↵24. Gehin M, Vivat V, Wurtz JM, Losson R, Chambon P, Moras D, and Gronemeyer H (1999) Structural basis for engineering of retinoic acid receptor isotype–selective agonists and antagonists. Chem Biol 6: 519-529
↵25. Bourguet W, Vivat V, Wurtz JM, Chambon P, Gronemeyer H, and Moras D (2000) Crystal structure of a heterodimeric complex of RAR and RXR ligand-binding domains. Mol Cell 5: 289-298
↵26. Germain P, Iyer J, Zechel C, and Gronemeyer H (2002) Coregulator recruitment and the mechanism of retinoic acid receptor synergy. Nature 415: 187-192
↵27. Klein ES, Pino ME, Johnson AT, Davies PJ, Nagpal S, Thacher SM, Krasinski G, and Chandraratna RA (1996) Identification and functional separation of retinoic acid receptor neutral antagonists and inverse agonists. J Biol Chem 271: 22692-22696
↵28. Klein ES, Wang JW, Khalifa B, Gavigan SA, and Chandraratna RA (2000) Recruitment of nuclear receptor corepressor and coactivator to the retinoic acid receptor by retinoid ligands: influence of DNA-heterodimer interactions. J Biol Chem 275: 19401-19408
↵29. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, and Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569-580
↵30. Farboud B, Hauksdottir H, Wu Y, and Privalsky ML (2003) Isotype-restricted corepressor recruitment: a constitutively closed helix 12 conformation in retinoic acid receptors β and γ interferes with corepressor recruitment and prevents transcriptional repression. Mol Cell Biol 23: 2844-2858
↵31. Goodman RH and Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14: 1553-1577
↵32. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, and Berger R (1991) NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77: 1080-1086
↵33. Li E, Sucov HM, Lee KF, Evans RM, and Jaenisch R (1993) Normal development and growth of mice carrying a targeted disruption of the α 1 retinoic acid receptor gene. Proc Natl Acad Sci USA 90: 1590-1594
↵34. Mark M, Ghyselinck NB, and Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signalling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46: 451-480
↵35. Onate SA, Tsai SY, Tsai MJ, and O'Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354-1357
↵36. Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P, and Gronemeyer H (1998) The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO (Eur Mol Biol Organ) J 17: 507-519
↵37. Voegel JJ, Heine MJ, Zechel C, Chambon P, and Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO (Eur Mol Biol Organ) J 15: 3667-3675
↵38. Walfish PG, Yoganathan T, Yang YF, Hong H, Butt TR, and Stallcup MR (1997) Yeast hormone response element assays detect and characterize GRIP1 coactivator-dependent activation of transcription by thyroid and retinoid nuclear receptors. Proc Natl Acad Sci USA 94: 3697-3702
↵39. Westin S, Rosenfeld MG, and Glass CK (2000) Nuclear receptor coactivators. Adv Pharmacol 47: 89-112
↵40. Chen JD, and Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377: 454-457
↵41. Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK, et al. (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377: 397-404
↵42 McKenna NJ, Lanz RB, and O'Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 20: 321-344
↵43. Sande S, and Privalsky ML (1996) Identification of TRACs (T3 receptor-associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol Endocrinol 10: 813-825
↵44. Wong CW and Privalsky ML (1998) Transcriptional silencing is defined by isoform- and heterodimer-specific interactions between nuclear hormone receptors and corepressors. Mol Cell Biol 18: 5724-5733
↵45. Brand NJ, Petkovich M, and Chambon P (1990) Characterization of a functional promoter for the human retinoic acid receptor-α (hRAR-α). Nucleic Acids Res 18: 6799-6806
↵46. van der Leede BJ, Folkers GE, Kruyt FA, and van der Saag PT (1992) Genomic organization of the human retinoic acid receptor β 2. Biochem Biophys Res Commun 188: 695-702
↵47. Leroy P, Nakshatri H, and Chambon P (1991) Mouse retinoic acid receptor α 2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc Natl Acad Sci USA 88: 10138-10142
↵48. Dolle P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas LJ, and Chambon P (1989) Differential expression of genes encoding α, β and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342: 702-705
↵49. Dolle P, Ruberte E, Leroy P, Morriss-Kay G, and Chambon P (1990) Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110: 1133-1151
↵50. Giguere V, Ong ES, Segui P, and Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330: 624-629
↵51. Laudet V, and Gronemeyer H (2002) The Nuclear Receptor Facts Book, Academic Press, San Diego
↵52. Ruberte E, Dolle P, Chambon P, and Morriss-Kay G (1991) Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111: 45-60
↵53. Ruberte E, Dolle P, Krust A, Zelent A, Morriss-Kay G, and Chambon P (1990) Specific spatial and temporal distribution of retinoic acid receptor γ transcripts during mouse embryogenesis. Development 108: 213-222
↵54. Ruberte E, Friederich V, Chambon P, and Morriss-Kay G (1993) Retinoic acid receptors and cellular retinoid binding proteins. III. Their differential transcript distribution during mouse nervous system development. Development 118: 267-282
↵55. Dawson MI, Chao WR, Pine P, Jong L, Hobbs PD, Rudd CK, Quick TC, Niles RM, Zhang XK, Lombardo A, et al. (1995) Correlation of retinoid binding affinity to retinoic acid receptor α with retinoid inhibition of growth of estrogen receptor-positive MCF-7 mammary carcinoma cells. Cancer Res 55: 4446-4451
↵56. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, and Gronemeyer H (2001) Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 7: 680-686
↵57. Chen JY, Clifford J, Zusi C, Starrett J, Tortolani D, Ostrowski J, Reczek PR, Chambon P, and Gronemeyer H (1996) Two distinct actions of retinoid-receptor ligands. Nature 382: 819-822
↵58. Taneja R, Rochette-Egly C, Plassat JL, Penna L, Gaub MP, and Chambon P (1997) Phosphorylation of activation functions AF-1 and AF-2 of RARα and RARγ is indispensable for differentiation of F9 cells upon retinoic acid and cAMP treatment. EMBO (Eur Mol Biol Organ) J 16: 6452-6465
↵59. Loudig O, Babichuk C, White J, Abu-Abed S, Mueller C, and Petkovich M (2000) Cytochrome P450RAI(CYP26) promoter: a distinct composite retinoic acid response element underlies the complex regulation of retinoic acid metabolism. Mol Endocrinol 14: 1483-1497
↵60. Chiba H, Clifford J, Metzger D, and Chambon P (1997) Distinct retinoid X receptor-retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells. Mol Cell Biol 17: 3013-3020
↵61. de The H, Chomienne C, Lanotte M, Degos L, and Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature 347: 558-561
↵62. Dupe V, Davenne M, Brocard J, Dolle P, Mark M, Dierich A, Chambon P, and Rijli FM (1997) In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′RARE). Development 124: 399-410
↵63. Smith WC, Nakshatri H, Leroy P, Rees J, and Chambon P (1991) A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO (Eur Mol Biol Organ) J 10: 2223-2230
↵64. Durand B, Saunders M, Leroy P, Leid M, and Chambon P (1992) All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71: 73-85
↵65. Li H, Gomes PJ, and Chen JD (1997) RAC3, a steroid/nuclear receptor-associated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci USA 94: 8479-8484
↵66. Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, LeMeur M, and Chambon P (1993) High postnatal lethality and testis degeneration in retinoic acid receptor α mutant mice. Proc Natl Acad Sci USA 90: 7225-7229
↵67. Mark M, and Chambon P (2003) Functions of RARs and RXRs in vivo: genetic dissection of the retinoid signaling pathway. Pure Appl Chem 75: 1709-1732
↵68. de The H, Vivanco-Ruiz MM, Tiollais P, Stunnenberg H, and Dejean A (1990) Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343: 177-180
↵69. Degos L, and Wang ZY (2001) All trans retinoic acid in acute promyelocytic leukemia. Oncogene 20: 7140-7145
↵70. Lin RJ, Egan DA, and Evans RM (1999) Molecular genetics of acute promyelocytic leukemia. Trends Genet 15: 179-184