Receptor nomenclature | NR1C3 |
Receptor code | 4.10.1:FA:1:C3 |
Molecular information | Hs: 478aa, P37231, chr. 3p251–3 |
Rn: 505aa, O88275, chr. 4q424 | |
Mm: 475aa, P37238, chr. 6 E3-F15 | |
DNA binding | |
Structure | Heterodimer, RXR partner |
HRE core sequence | AACTAGGNCA A AGGTCA (DR-1) |
Partners | RXR (physical, functional) DNA binding6 |
Agonists | SB-219994 (8.68), LY-510929 (8), AD-5061 (7.7), TZD18 (7.24), L-764406 (7.15), ragaglitazar (7.03), GW0072 (6.96), nTzDpa (6.5), troglitazone (6.27), LY-465608 (6.26), pioglitazone (6.23), fatty acids (6), SB-219993 (5.5), 5-ASA (1.82) [pIC50]7–26. GW1929 (8.84), L-796449 (8.7), GW7845 (8.43), CDDO (8), L-783483 (7.85), L-165461 (7.8), AD5075 (7.66), [3H]AD5075* (7.66), FMOC-l-leucine (∼6), CS-045 (5.8) [pKi]27–32. [3H]AD-5061* (8), farglitazar (7.47), indomethacin (7.38), rosiglitazone* (7.37), [125I]SB-236636* (7.1), [3H]GW2331* (6.52), GW2331 (6.52), KRP-297/MK-0767 (6.49), PAT5A (6.35), MCC555 (∼6.3), Iinoleic acid (5.3), BADGE (4) [pKd]13,15, 34,21,22 ,26,33–43. GW409544 (9.55), GW9578 (6) BVT0.13 (7.52), TAK-559 (7.5), reglitazar (7.08), GW9578 (6), ciglitazone (4.64), KRP-297/MK-0767 (7) [pEC50]13,22,44–49; DRF2519, LG10074, ibuprofen, diclofenac, COOH50–56 |
Antagonists | GW9662 (8.48), PD068235 (6.1), BADGE (5), SR-202 (3.85) [pIC50]57–59, 42; CDDO-Me (8), LG100641 (6.36) [pKi]32,60; diclofenac55 |
Coactivators | PGC-2, ARA-70, PGC-1α, PPARGC1B, CREBBP, p300, CITED2, ERAP140, PPARBP, PRMT-2, PIMT, NCOA1, NCOA2, NCOA3, NCOA6, SWI/SNF, PDIP61–76,80–88,137 |
Corepressors | NRIP1, SAF-B, TAZ, NCOR1, NCOR268,89–94 |
Biologically important isoforms | PPARγ1 {Hs, Mm}: encoded by eight exons (two of them PPARγ1-specific)2,95,96; PPARγ2 {Hs, Mm, Rn}: N terminus carries 30 additional amino acids encoded by exon B PPARγ2-specific, encoded by seven exons2,95; PPARγ3 {Hs}: gives rise to a protein indistinguishable from PPARγ1 from a distinct promoter—expression restricted to the colon and adipose tissue97; γORF4 {Hs}: read-through in intron 4, encoded protein lacks the LBD, dominant-negative vs. PPARγ, expressed in tumor cell lines and tissues3 |
Tissue distribution | Adipose tissues, lymphoid tissues, colon, liver, and heart {Hs, Mm, Rn} [Northern blot, Western blot, immunohistology]90 |
Functional assays | BADGE adipogenesis assay using 3T3-L1 and 3T3-F442A cells {Mm}42; induction of apoptotic cell death by measuring lipogenesis in C6 glioma cells {Rn}98; measurement of lipogenesis in C3H10T1/2 cells to determine adipocyte differentiation {Hs}29,35 |
Main target genes | Activated: FATP {Mm}99, acyl CoA-synthetase {Mm}100,101, aP2 adipocyte lipid-binding protein {Mm}102, Lpl {Mm}103, UCP-1 {Mm}104,105, PEPCK {Mm}106, Apoa2 {Mm}107 |
Mutant phenotype | Forced expression in hepatocytes induced the classic pattern of PPARγ-mediated gene activation and resulted in steatosis {Mm} [retroviral infection]108; disrupted expression in macrophages {Mm} [transgenesis]109; knockout not viable due to defects in placenta formation {Mm} [knockout]110; conditional knockout in adipocytes causes white and brown adipocytes to be replaced with newly formed PPARγ-positive adipocytes {Mm} [conditional knockout]111; conditional knockout in adipocytes results in lipodystrophy (hypocellularity and hypertrophy), elevated plasma FFAs and TGs, decreased plasma leptin and adiponectin, and insuline resistance in fat and liver {Mm} [conditional knockout]112; conditional knockout in white adipocytes results in retarded growth, severe lipodystrophy (hypocellularity and hypertrophy) and hyperlipidemia {Mm} [conditional knockout]113; conditional knockout in muscle causes progressive insulin resistance combined with increased adipose tissue mass {Mm} [conditional knockout]114,115; conditional knockout in pancreatic β-cells results in significant islet hyperplasia on chow diet, blunted expansion of β-cell mass {Mm} [conditional knockout]116; L466A dominant-negative knockin mutant {Mm} [knockin]117; heterozygous mice have reduced body size and weight, reduced insulin resistance, smaller adipocytes and fat depots {Mm} [knockout]54,118,119 |
Human disease | Obesity and insulin resistance: associated with a mutation in the ligand-independent activation domain of PPARγ2—increased PPARγ2 mRNA found in obese subjects120–124; insulin resistance, type II diabetes mellitus and hypertension: associated with a mutation of the LBD—improved insulin sensitivity associated with polymorphism (Pro12Ala) in PPARγ246,121,123,125,126; syndrome X or metabolic syndrome: associated with dominant-negative PPARγ mutations125–127; atherosclerosis: increased receptor expression in atherosclerotic lesions, macrophages, and monocytic cell lines123,128; colon cancer: associated with loss-of-function mutations in PPARγ LBD—potential antitumor efficacy of combining RXR and PPARγ agonist129–132; prostate cancer: PPARγ expressed in human prostate adenocarcinomas and cell lines derived from human prostate tumors133; thyroid tumors: the PAX8-PPARγ fusion protein promotes differentiated follicular thyroid neoplasia134–136 |
aa, amino acids; chr., chromosome; HRE, hormone response element; CDDO, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid; BADGE, bisphenol A diglycidyl ether; ASA, aminosalicylic acid; FMOC, fluorenylmethoxycarbonyl; CREBB, cAMP response element binding protein binding protein; PIMT, peroxisome proliferator-activated receptor-interacting protein with methyltransferase domain; SWI/SNF, mating-type switching/sucrose nonfermenting; PDIP, PPARγ-DNA-binding domain-interacting protein; SAF-B, scaffold attachment factor B; TAZ, transcriptional coactivator with postsynaptic density 95/disc-large/zona occludens-binding motif; FATP, fatty acid transport protein; PEPCK, phosphoenolpyruvate carboxykinase; FFA, free fatty acid; TG, triglyceride
↵* Radioligand
↵1. Beamer BA, Negri C, Yen CJ, Gavrilova O, Rumberger JM, Durcan MJ, Yarnall DP, Hawkins AL, Griffin CA, Burns DK, et al. (1997) Chromosomal localization and partial genomic structure of the human peroxisome proliferator activated receptor-gamma (hPPAR gamma) gene. Biochem Biophys Res Commun 233: 756-759
↵2. Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, Hsieh L, Greene G, and Nimer SD (1995) Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 4: 281-299
↵3. Sabatino L, Casamassimi A, Peluso G, Barone MV, Capaccio D, Migliore C, Bonelli P, Pedicini A, Febbraro A, Ciccodicola A, et al. (2005) A novel peroxisome proliferator-activated receptor gamma isoform with dominant negative activity generated by alternative splicing. J Biol Chem 280: 26517-26525
↵4. Guardiola-Diaz HM, Rehnmark S, Usuda N, Albrektsen T, Feltkamp D, Gustafsson JA, and Alexson SE (1999) Rat peroxisome proliferator-activated receptors and brown adipose tissue function during cold acclimatization. J Biol Chem 274: 23368-23377
↵5. Zhu Y, Alvares K, Huang Q, Rao MS, and Reddy JK (1993) Cloning of a new member of the peroxisome proliferator-activated receptor gene family from mouse liver. J Biol Chem 268: 26817-26820
↵6. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, and Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature (Lond) 358: 771-774
↵7. Berger JP, Petro AE, Macnaul KL, Kelly LJ, Zhang BB, Richards K, Elbrecht A, Johnson BA, Zhou G, Doebber TW, et al. (2003) Distinct properties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol 17: 662-676
↵8. Brooks DA, Etgen GJ, Rito CJ, Shuker AJ, Dominianni SJ, Warshawsky AM, Ardecky R, Paterniti JR, Tyhonas J, Karanewsky DS, et al. (2001) Design and synthesis of 2-methyl-2-[4-(2-[5-methyl-2-aryloxazol-4-yl]ethoxy)phenoxy]propionic acids: a new class of dual PPARalpha/gamma agonists. J Med Chem 44: 2061-2064
↵9. Chakrabarti R, Vikramadithyan RK, Misra P, Hiriyan J, Raichur S, Damarla RK, Gershome C, Suresh J, and Rajagopalan R (2003) Ragaglitazar: a novel PPAR alpha PPAR gamma agonist with potent lipid-lowering and insulin-sensitizing efficacy in animal models. Br J Pharmacol 140: 527-537
↵10. Ebdrup S, Pettersson I, Rasmussen HB, Deussen HJ, Frost Jensen A, Mortensen SB, Fleckner J, Pridal L, Nygaard L, and Sauerberg P (2003) Synthesis and biological and structural characterization of the dual-acting peroxisome proliferator-activated receptor alpha/gamma agonist ragaglitazar. J Med Chem 46: 1306-1317
↵11. Elbrecht A, Chen Y, Adams A, Berger J, Griffin P, Klatt T, Zhang B, Menke J, Zhou G, Smith RG, et al. (1999) L-764406 is a partial agonist of human peroxisome proliferator-activated receptor gamma. The role of Cys313 in ligand binding. J Biol Chem 274: 7913-7922
↵12. Guo Q, Sahoo SP, Wang PR, Milot DP, Ippolito MC, Wu MS, Baffic J, Biswas C, Hernandez M, Lam MH, et al. (2004) A novel peroxisome proliferator-activated receptor alpha/gamma dual agonist demonstrates favorable effects on lipid homeostasis. Endocrinology 145: 1640-1648
↵13. Henke BR, Blanchard SG, Brackeen MF, Brown KK, Cobb JE, Collins JL, Harrington WW Jr, Hashim MA, Hull-Ryde EA, Kaldor I, et al. (1998) N-(2-benzoylphenyl)-L-tyrosine PPARgamma agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem 41: 5020-5036
↵14. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, and Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83: 813-819
↵15. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, et al. (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci USA 94: 4318-4323
↵16. Nichols JS, Parks DJ, Consler TG, and Blanchard SG (1998) Development of a scintillation proximity assay for peroxisome proliferator-activated receptor gamma ligand binding domain. Anal Biochem 257: 112-119
↵17. Nosjean O and Boutin JA (2002) Natural ligands of PPARgamma: are prostaglandin J(2) derivatives really playing the part? Cell Signal 14: 573-583
↵18. Oberfield JL, Collins JL, Holmes CP, Goreham DM, Cooper JP, Cobb JE, Lenhard JM, Hull-Ryde EA, Mohr CP, Blanchard SG, et al. (1999) A peroxisome proliferator-activated receptor gamma ligand inhibits adipocyte differentiation. Proc Natl Acad Sci USA 96: 6102-6106
↵19. Pickavance LC, Brand CL, Wassermann K, and Wilding JP (2005) The dual PPARalpha/gamma agonist, ragaglitazar, improves insulin sensitivity and metabolic profile equally with pioglitazone in diabetic and dietary obese ZDF rats. Br J Pharmacol 144: 308-316
↵20. Rousseaux C, Lefebvre B, Dubuquoy L, Lefebvre P, Romano O, Auwerx J, Metzger D, Wahli W, Desvergne B, Naccari GC, et al. (2005) Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. J Exp Med 201: 1205-1215
↵21. Sakamoto J, Kimura, H, Moriyama S, Odaka H, Momose Y, Sugiyama Y, and Sawada H (2000) Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem Biophys Res Commun 278: 704-711
↵22. Sakamoto J, Kimura H, Moriyama S, Imoto H, Momose Y, Odaka H, and Sawada H (2004) A novel oxyiminoalkanoic acid derivative, TAK-559, activates human peroxisome proliferator-activated receptor subtypes. Eur J Pharmacol 495: 17-26
↵23. Soares AF, Nosjean O, Cozzone D, D'Orazio D, Becchi M, Guichardant M, Ferry G, Boutin JA, Lagarde M, and Geloen A (2005) Covalent binding of 15-deoxydelta(12,14)-prostaglandin J(2) to PPARgamma. Biochem Biophys Res Commun 337: 521-525
↵24. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, et al. (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3: 397-403
↵25. Xu Y, Rito CJ, Etgen GJ, Ardecky RJ, Bean JS, Bensch WR, Bosley JR, Broderick CL, Brooks DA, Dominianni SJ, et al. (2004) Design and synthesis of alpha-aryloxy-alpha-methylhydrocinnamic acids: a novel class of dual peroxisome proliferator-activated receptor alpha/gamma agonists. J Med Chem 47: 2422-2425
↵26. Young PW, Buckle DR, Cantello BC, Chapman H, Clapham JC, Coyle PJ, Haigh D, Hindley RM, Holder JC, Kallender H, et al. (1998) Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J Pharmacol Exp Ther 284: 751-759
↵27. Berger J, Bailey P, Biswas C, Cullinan CA, Doebber TW, Hayes NS, Saperstein R, Smith RG, and Leibowitz MD (1996) Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 137: 4189-4195
↵28. Berger J, Leibowitz MD, Doebber TW, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan CA, Hayes NS, Li Y, et al. (1999) Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 274: 6718-6725
↵29. Brown KK, Henke BR, Blanchard SG, Cobb JE, Mook R, Kaldor I, Kliewer SA, Lehmann JM, Lenhard JM, Harrington WW, et al. (1999) A novel N-aryl tyrosine activator of peroxisome proliferator-activated receptor-gamma reverses the diabetic phenotype of the Zucker diabetic fatty rat. Diabetes 48: 1415-1424
↵30. Cobb JE, Blanchard SG, Boswell EG, Brown KK, Charifson PS, Cooper JP, Collins JL, Dezube M, Henke BR, Hull-Ryde EA, et al. (1998) N-(2-benzoylphenyl)-L-tyrosine PPARgamma agonists. 3. Structure-activity relationship and optimization of the N-aryl substituent. J Med Chem 41: 5055-5069
↵31. Rocchi S, Picard F, Vamecq J, Gelman L, Potier N, Zeyer D, Dubuquoy L, Bac P, Champy MF, Plunket KD, et al. (2001) A unique PPARgamma ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol Cell 8: 737-747
↵32. Wang Y, Porter WW, Suh N, Honda T, Gribble GW, Leesnitzer LM, Plunket KD, Mangelsdorf DJ, Blanchard SG, Willson TM, et al. (2000) A synthetic triterpenoid, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), is a ligand for the peroxisome proliferator-activated receptor gamma. Mol Endocrinol 14: 1550-1556
↵33. Bishop-Bailey D, Hla T and Warner TD (2000) Bisphenol A diglycidyl ether (BADGE) is a PPARgamma agonist in an ECV304 cell line. Br J Pharmacol 131: 651-654
↵34. Ferry G, Bruneau V, Beauverger P, Goussard M, Rodriguez M, Lamamy V, Dromaint S, Canet E, Galizzi JP, and Boutin JA (2001) Binding of prostaglandins to human PPARgamma: tool assessment and new natural ligands. Eur J Pharmacol 417: 77-89
↵35. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, and Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma) J Biol Chem 270: 12953-12956
↵36. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, and Kliewer SA (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272: 3406-3410
↵37. Misra P, Chakrabarti R, Vikramadithyan RK, Bolusu G, Juluri S, Hiriyan J, Gershome C, Rajjak A, Kashireddy P, Yu S, et al. (2003) PAT5A: a partial agonist of peroxisome proliferator-activated receptor gamma is a potent antidiabetic thiazolidinedione yet weakly adipogenic. J Pharmacol Exp Ther 306: 763-771
↵38. Murakami K, Tobe K, Ide T, Mochizuki T, Ohashi M, Akanuma Y, Yazaki Y, and Kadowaki T (1998) A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: effect of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty rats. Diabetes 47: 1841-1847
↵39. Murakami K, Ide T, Suzuki M, Mochizuki T, and Kadowaki T (1999) Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. Biochem Biophys Res Commun 260: 609-613
↵40. Reginato MJ, Bailey ST, Krakow SL, Minami C, Ishii S, Tanaka H, and Lazar MA (1998) A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor gamma-activating properties. J Biol Chem 273: 32679-32684
↵41. Vikramadithyan RK, Chakrabarti R, Misra P, Premkumar M, Kumar SK, Rao CS, Ghosh A, Reddy KN, Uma C, and Rajagopalan R (2000) Euglycemic and hypolipidemic activity of PAT5A: a unique thiazolidinedione with weak peroxisome proliferator activated receptor gamma activity. Metabolism 49: 1417-1423
↵42. Wright HM, Clish CB, Mikami T, Hauser S, Yanagi K, Hiramatsu R, Serhan CN, and Spiegelman BM (2000) A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation. J Biol Chem 275: 1873-1877
↵43. Yu C, Chen L, Luo H, Chen J, Cheng F, Gui C, Zhang R, Shen J, Chen K, Jiang H, et al. (2004) Binding analyses between Human PPARgamma-LBD and ligands. Eur J Biochem 271: 386-397
↵44. Brown PJ, Stuart LW, Hurley KP, Lewis MC, Winegar DA, Wilson JG, Wilkison WO, Ittoop OR, and Willson TM (2001) Identification of a subtype selective human PPARalpha agonist through parallel-array synthesis. Bioorg Med Chem Lett 11: 1225-1227
↵45. Doebber TW, Kelly LJ, Zhou G, Meurer R, Biswas C, Li Y, Wu MS, Ippolito MC, Chao YS, Wang PR, et al. (2004) MK-0767, a novel dual PPARalpha/gamma agonist, displays robust antihyperglycemic and hypolipidemic activities. Biochem Biophys Res Commun 318: 323-328
↵46. Henke BR (2004) Peroxisome proliferator-activated receptor alpha/gamma dual agonists for the treatment of type 2 diabetes. J Med Chem 47: 4118-4127
↵47. Ostberg T, Svensson S, Selen G, Uppenberg J, Thor M, Sundbom M, Sydow-Backman M, Gustavsson AL, and Jendeberg L (2004) A new class of peroxisome proliferator-activated receptor agonists with a novel binding epitope shows antidiabetic effects. J Biol Chem 279: 41124-41130
↵48. Shibata T, Matsui K, Nagao K, Shinkai H, Yonemori F, and Wakitani K (1999) Pharmacological profiles of a novel oral antidiabetic agent, JTT-501, an isoxazolidinedione derivative. Eur J Pharmacol 364: 211-219
↵49. Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT Jr, McKee DD, et al. (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci USA 98: 13919-13924
↵50. Carley AN, Semeniuk LM, Shimoni Y, Aasum E, Larsen TS, Berger JP, and Severson DL (2004) Treatment of type 2 diabetic db/db mice with a novel PPARgamma agonist improves cardiac metabolism but not contractile function. Am J Physiol Endocrinol Metab 286: E449-E455
↵51. Cesario RM, Klausing K, Razzaghi H, Crombie D, Rungta D, Heyman RA, and Lala DS (2001) The rexinoid LG100754 is a novel RXR:PPARgamma agonist and decreases glucose levels in vivo. Mol Endocrinol 15: 1360-1369
↵52. Chakrabarti R, Misra P, Vikramadithyan RK, Premkumar M, Hiriyan J, Datla SR, Damarla RK, Suresh J, and Rajagopalan R (2004) Antidiabetic and hypolipidemic potential of DRF 2519–a dual activator of PPAR-alpha and PPAR-gamma. Eur J Pharmacol 491: 195-206
↵53. Forman BM (2002) The antidiabetic agent LG100754 sensitizes cells to low concentrations of peroxisome proliferator-activated receptor gamma ligands. J Biol Chem 277: 12503-12506
↵54. Jaradat MS, Wongsud B, Phornchirasilp S, Rangwala SM, Shams G, Sutton M, Romstedt KJ, Noonan DJ, and Feller DR (2001) Activation of peroxisome proliferator-activated receptor isoforms and inhibition of prostaglandin H(2) synthases by ibuprofen, naproxen, and indomethacin. Biochem Pharmacol 62: 1587-1595
↵55. Kojo H, Fukagawa M, Tajima K, Suzuki A, Fujimura T, Aramori I, Hayashi K, and Nishimura S (2003) Evaluation of human peroxisome proliferator-activated receptor (PPAR) subtype selectivity of a variety of anti-inflammatory drugs based on a novel assay for PPAR delta(beta) J Pharmacol Sci 93: 347-355
↵56. Laplante M, Sell H, MacNaul KL, Richard D, Berger JP, and Deshaies Y (2003) PPAR-gamma activation mediates adipose depot-specific effects on gene expression and lipoprotein lipase activity: mechanisms for modulation of postprandial lipemia and differential adipose accretion. Diabetes 52: 291-299
↵57. Camp HS, Chaudhry A, and LeffT (2001) A novel potent antagonist of peroxisome proliferator-activated receptor gamma blocks adipocyte differentiation but does not revert the phenotype of terminally differentiated adipocytes. Endocrinology 142: 3207-3213
↵58. Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L, et al. (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41: 6640-6650
↵59. Rieusset J, Touri F, Michalik L, Escher P, Desvergne B, Niesor E, and Wahli W (2002) A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol Endocrinol 16: 2628-2644
↵60. Mukherjee R, Hoener PA, Jow L, Bilakovics J, Klausing K, Mais DE, Faulkner A, Croston GE, and Paterniti JR Jr (2000) A selective peroxisome proliferator-activated receptor-gamma (PPARgamma) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. Mol Endocrinol 14: 1425-1433
↵61. Castillo G, Brun RP, Rosenfield JK, Hauser S, Park CW, Troy AE, Wright ME, and Spiegelman BM (1999) An adipogenic cofactor bound by the differentiation domain of PPARgamma. EMBO (Eur Mol Biol Organ) J 18: 3676-3687
↵62. Debril MB, Dubuquoy L, Feige JN, Wahli W, Desvergne B, Auwerx J, and Gelman L (2005) Scaffold attachment factor B1 directly interacts with nuclear receptors in living cells and represses transcriptional activity. J Mol Endocrinol 35: 503-517
↵63. Gelman L, Zhou G, Fajas L, Raspe E, Fruchart JC, and Auwerx J (1999) p300 interacts with the N- and C-terminal part of PPARgamma2 in a ligand-independent and -dependent manner, respectively. J Biol Chem 274: 7681-7688
↵64. Guan HP, Ishizuka T, Chui PC, Lehrke M, and Lazar MA (2005) Corepressors selectively control the transcriptional activity of PPARgamma in adipocytes. Genes Dev 19: 453-461
↵65. Heinlein CA, Ting HJ, Yeh S, and Chang C (1999) Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor gamma. J Biol Chem 274: 16147-16152
↵66. Huss JM, Kopp RP, and Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 277: 40265-40274
↵67. Huss JM, Torra IP, Staels B, Giguere V, and Kelly DP (2004) Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 24: 9079-9091
↵68. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, and Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11: 693-705
↵69. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, and Kakizuka A (2003) PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA 100: 12378-12383
↵70. Knutti D and Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12: 360-365
↵71. Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, and Kato S (2000) Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional coactivators. J Biol Chem 275: 33201-33204
↵72. Leers J, Treuter E, and Gustafsson JA (1998) Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2. Mol Cell Biol 18: 6001-6013
↵73. Lemon B, Inouye C, King DS, and Tjian R (2001) Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature (Lond) 414: 924-928
↵74. Mizukami J and Taniguchi T (1997) The antidiabetic agent thiazolidinedione stimulates the interaction between PPAR gamma and CBP. Biochem Biophys Res Commun 240: 61-64
↵75. Molnar F, Matilainen M, and Carlberg C (2005) Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem 280: 26543-26556
↵76. Oberkofler H, Esterbauer H, Linnemayr V, Strosberg AD, Krempler F, and Patsch W (2002) Peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 277: 16750-16757
↵77. Puigserver P, Wu Z, Park CW, Graves R, Wright M, and Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839
↵78. Qi C, Zhu Y, and Reddy JK (2000) Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 32: 187-204
↵79. Qi C, Chang J, Zhu Y, Yeldandi AV, Rao SM, and Zhu YJ (2002) Identification of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem 277: 28624-28630
↵80. Qi C, Surapureddi S, Zhu YJ, Yu S, Kashireddy P, Rao MS, and Reddy JK (2003) Transcriptional coactivator PRIP, the peroxisome proliferator-activated receptor gamma (PPARgamma)-interacting protein, is required for PPARgamma-mediated adipogenesis. J Biol Chem 278: 25281-25284
↵81. Shao W, Halachmi S, and Brown M (2002) ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol Cell Biol 22: 3358-3372
↵82. Tien ES, Davis JW, and Vanden Heuvel JP (2004) Identification of the CREB-binding protein/p300-interacting protein CITED2 as a peroxisome proliferator-activated receptor alpha coregulator. J Biol Chem 279: 24053-24063
↵83. Yang W, Rachez C, and Freedman LP (2000) Discrete roles for peroxisome proliferator-activated receptor gamma and retinoid X receptor in recruiting nuclear receptor coactivators. Mol Cell Biol 20: 8008-8017
↵84. Zhou G, Cummings R, Li Y, Mitra S, Wilkinson HA, Elbrecht A, Hermes JD, Schaeffer JM, Smith RG, and Moller DE (1998) Nuclear receptors have distinct affinities for coactivators: characterization by fluorescence resonance energy transfer. Mol Endocrinol 12: 1594-1604
↵85. Zhu Y, Qi C, Calandra C, Rao MS, and Reddy JK (1996) Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor gamma. Gene Expr 6: 185-195
↵86. Zhu Y, Qi C, Jain S, Rao MS, and Reddy JK (1997) Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J Biol Chem 272: 25500-25506
↵87. Zhu Y, Kan L, Qi C, Kanwar YS, Yeldandi AV, Rao MS, and Reddy JK (2000) Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR. J Biol Chem 275: 13510-13516
↵88. Zhu Y, Qi C, Cao WQ, Yeldandi AV, Rao MS, and Reddy JK (2001) Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function. Proc Natl Acad Sci USA 98: 10380-10385
↵89. Debril MB, Gelman L, Fayard E, Annicotte JS, Rocchi S, and Auwerx J (2004) Transcription factors and nuclear receptors interact with the SWI/SNF complex through the BAF60c subunit. J Biol Chem 279: 16677-16686
↵90. Desvergne B and Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20: 649-688
↵91. Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, et al. (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074-1078
↵92. Treuter E, Albrektsen T, Johansson L, Leers J, and Gustafsson JA (1998) A regulatory role for RIP140 in nuclear receptor activation. Mol Endocrinol 12: 864-881
↵93. Yu C, Markan K, Temple KA, Deplewski D, Brady MJ, and Cohen RN (2005) The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis. J Biol Chem 280: 13600-13605
↵94. Zamir I, Harding HP, Atkins GB, Horlein A, Glass CK, Rosenfeld MG, and Lazar MA (1996) A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains. Mol Cell Biol 16: 5458-5465
↵95. Fajas L, Fruchart JC, and Auwerx, J (1998) PPARgamma3 mRNA: a distinct PPARgamma mRNA subtype transcribed from an independent promoter. FEBS Lett 438: 55-60
↵96. Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, and Reddy JK (1995) Structural organization of mouse peroxisome proliferator-activated receptor gamma mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA 92: 7921-7925
↵97. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, et al. (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272: 18779-18789
↵98. Grommes C, Landreth GE, Schlegel U, and Heneka MT (2005) The nonthiazolidinedione tyrosine-based peroxisome proliferator-activated receptor gamma ligand GW7845 induces apoptosis and limits migration and invasion of rat and human glioma cells. J Pharmacol Exp Ther 313: 806-813
↵99. Frohnert BI, Hui TY, and Bernlohr DA (1999) Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem 274: 3970-3977
↵100. Martin G, Schoonjans K, Lefebvre AM, Staels B, and Auwerx J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 272: 28210-28217
↵101. Schoonjans K, Watanabe M, Suzuki H, Mahfoudi A, Krey G, Wahli W, Grimaldi P, Staels B, Yamamoto T, and Auwerx J (1995) Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem 270: 19269-19276
↵102. Tontonoz P, Hu E, Graves RA, Budavari AI, and Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8: 1224-1234
↵103. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, and Auwerx J (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO (Eur Mol Biol Organ) J 15: 5336-5348
↵104. Sears IB, MacGinnitie MA, Kovacs LG, and Graves RA (1996) Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol 16: 3410-3419
↵105. Xue B, Coulter A, Rim JS, Koza RA, and Kozak LP (2005) Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Mol Cell Biol 25: 8311-8322
↵106. Tontonoz P, Hu E, and Spiegelman BM (1995) Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr Opin Genet Dev 5: 571-576
↵107. Vu-Dac N, Schoonjans K, Kosykh V, Dallongeville J, Fruchart JC, Staels B, and Auwerx J (1995) Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Investig 96: 741-750
↵108. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, Yeldandi AV, Rao MS, Gonzalez FJ, and Reddy JK (2003) Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 278: 498-505
↵109. Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, and Glass CK (2003) PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci USA 100: 6712-6717
↵110. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, and Evans RM (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4: 585-595
↵111. Imai T, Takakuwa R, Marchand S, Dentz E, Bornert JM, Messaddeq N, Wendling O, Mark M, Desvergne B, Wahli W, et al. (2004) Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci USA 101: 4543-4547
↵112. He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, and Evans RM (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 100: 15712-15717
↵113. Koutnikova H, Cock TA, Watanabe M, Houten SM, Champy MF, Dierich A, and Auwerx J (2003) Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. Proc Natl Acad Sci USA 100: 14457-14462
↵114. Hevener AL, He W, Barak Y, Le J, Bandyopadhyay G, Olson P, Wilkes J, Evans RM, and Olefsky J (2003) Muscle-specific Pparg deletion causes insulin resistance. Nat Med 9: 1491-1497
↵115. Norris AW, Chen L, Fisher SJ, Szanto I, Ristow M, Jozsi AC, Hirshman MF, Rosen ED, Goodyear LJ, Gonzalez FJ, et al. (2003) Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Investig 112: 608-618
↵116. Rosen ED, Kulkarni RN, Sarraf P, Ozcan U, Okada T, Hsu CH, Eisenman D, Magnuson MA, Gonzalez FJ, Kahn CR, et al. (2003) Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis. Mol Cell Biol 23: 7222-7229
↵117. Freedman BD, Lee EJ, Park Y, and Jameson JL (2005) A dominant negative peroxisome proliferator-activated receptor-gamma knock-in mouse exhibits features of the metabolic syndrome. J Biol Chem 280: 17118-17125
↵118. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, et al. (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4: 597-609
↵119. Rieusset J, Seydoux J, Anghel SI, Escher P, Michalik L, Soon Tan N, Metzger D, Chambon P, Wahli W, and Desvergne B (2004) Altered growth in male peroxisome proliferator-activated receptor gamma (PPARgamma) heterozygous mice: involvement of PPARgamma in a negative feedback regulation of growth hormone action. Mol Endocrinol 18: 2363-2377
↵120. Beamer BA, Yen CJ, Andersen RE, Muller D, Elahi D, Cheskin LJ, Andres R, Roth J, and Shuldiner AR (1998) Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-gamma2 gene with obesity in two Caucasian populations. Diabetes 47: 1806-1808
↵121. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, and Auwerx J (1998) A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20: 284-287
↵122. Ek J, Urhammer SA, Sorensen TI, Andersen T, Auwerx J, and Pedersen O (1999) Homozygosity of the Pro12Ala variant of the peroxisome proliferation-activated receptor-gamma2 (PPAR-gamma2): divergent modulating effects on body mass index in obese and lean Caucasian men. Diabetologia 42: 892-895
↵123. Kersten S, Desvergne B, and Wahli W (2000) Roles of PPARs in health and disease. Nature (Lond) 405: 421-424
↵124. Valve R, Sivenius K, Miettinen R, Pihlajamaki J, Rissanen A, Deeb SS, Auwerx J, Uusitupa M, and Laakso M (1999) Two polymorphisms in the peroxisome proliferator-activated receptor-gamma gene are associated with severe overweight among obese women. J Clin Endocrinol Metab 84: 3708-3712
↵125. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer AJ, et al. (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature (Lond) 402: 880-883
↵126. Desvergne B, Michalik L, and Wahli W (2004) Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol 18: 1321-1333
↵127. Lee CH, Olson P, and Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144: 2201-2207
↵128. Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, and Glass CK (1998) Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 95: 7614-7619
↵129. Cesario RM, Stone J, Yen WC, Bissonnette RP, and Lamph WW (2006) Differentiation and growth inhibition mediated via the RXR:PPARgamma heterodimer in colon cancer. Cancer Lett 240: 225-233
↵130. Kim E, Chen F, Wang CC, and Harrison LE (2006) CDK5 is a novel regulatory protein in PPARgamma ligand-induced antiproliferation. Int J Oncol 28: 191-194
↵131. Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB, Aaltonen LA, de la Chapelle A, Spiegelman BM, and Eng C (1999) Loss-of-function mutations in PPAR gamma associated with human colon cancer. Mol Cell 3: 799-804
↵132. Sasaki T, Fujii K, Yoshida K, Shimura H, Sasahira T, Ohmori H, and Kuniyasu H (2005) Peritoneal metastasis inhibition by linoleic acid with activation of PPARgamma in human gastrointestinal cancer cells. Virchows Arch 448: 422-427
↵133. Mueller E, Smith M, Sarraf P, Kroll T, Aiyer A, Kaufman DS, Oh W, Demetri G, Figg WD, Zhou XP, et al. (2000) Effects of ligand activation of peroxisome proliferator-activated receptor gamma in human prostate cancer. Proc Natl Acad Sci USA 97: 10990-10995
↵134. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, and Robinson BG (2003) Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88: 354-357
↵135. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG, and Leite V (2002) Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87: 3947-3952
↵136. Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW, Tallini G 2nd, Kroll TG, and Nikiforov YE (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88: 2318-2326
↵137. Tomaru T, Satoh T, Yoshino S, Ishizuka T, Hashimoto K, Monden T, Yamada M, and Mori M (2006) Isolation and characterization of a transcriptional cofactor and its novel isoform that bind the deoxyribonucleic acid-binding domain of peroxisome proliferator-activated receptor-gamma. Endocrinology 147: 377-388