Receptor Nomenclature | NR1I1 |
Receptor code | |
Other names | |
Molecular information | Hs: 427aa, P11473, chr. 12q13.111 |
Rn: 423aa, P13053, chr. 7q362 | |
Mm: 422aa, P48281, chr. 15 F13 | |
DNA binding | |
Structure | Heterodimer, RXR partner |
HRE core sequence | DR-3 |
Partners | |
Agonists | KH1060 (6.5 × 10–11 M), EB1089 (2.7 × 10–10 M), 1α ,25-(OH)2D3 (6.2 × 10–10 M),* 25-OHD3 (1.2 × 10–9 M), (23S,25R)-1α ,25-(OH)2D3-26,23-lactone (3.1 × 10–8 M) [Kd]4–7; 2MD (1 × 10–10 M) [ED50]8; MC903 (131), TV-02 (66), F6-1α ,25(OH)2D3 (45), Gemini [1R,25-dihydroxy-21-(3-hydroxy-3-methylbutyl)vitamin D3] (38), OCT (10) [RCI]5,9–13; Ro-26-9228 (6.2 × 10–9 M) [IC50]14; LG190178 (1.5 × 10–7 M), 3-keto-LCA (2.9 × 10–7 M), LCA (8 × 10–6 M) [Ki]15,16; ED-71, 1α -OHD2, 19-nor-1α ,25(OH)2D217,18 |
Antagonists | TEI-9647 (10), ZK159222 (7) [RCI]19,20 |
Coactivator | |
Corepressor | |
Biologically important isoforms | |
Tissue distribution | |
Functional assay | |
Main target genes | |
Mutant phenotype | Knockout mice exhibit typical rachitic features such as hypocalcemia, hyperparathyroidism, impaired bone formation, uterine hypoplasia, growth retardation, and alopecia after weaning; they also have an impaired insulin secretory capacity {Mm} [knockout21–23] |
Human disease | Vitamin D-dependent rickets type II24,25 |
aa, amino acids; chr., chromosome; HRE, hormone response element; OCT, 22-oxa-1α ,25-dihydroxyvitamin-D3; LCA, lithocholic acid; RCI, relative competitive index
↵* Radioligand
↵1. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, and O'Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85: 3294-3298
↵2. Burmester JK, Maeda N, and DeLuca HF (1988) Isolation and expression of rat 1,25-dihydroxyvitamin D3 receptor cDNA. Proc Natl Acad Sci USA 85: 1005-1009
↵3. Kamei Y, Kawada T, Fukuwatari T, Ono T, Kato S, and Sugimoto E (1995) Cloning and sequencing of the gene encoding the mouse vitamin D receptor. Gene 152: 281-282
↵4. Wiberg K, Ljunghall S, Binderup L, and Ljunggren O (1995) Studies on two new vitamin D analogs, EB 1089 and KH 1060: effects on bone resorption and osteoclast recruitment in vitro. Bone 17: 391-395
↵5. Bishop JE, Collins ED, Okamura WH, and Norman AW (1994) Profile of ligand specificity of the vitamin D binding protein for 1α ,25-dihydroxyvitamin D3, and its analogs. J Bone Miner Res 9: 1277-1288
↵6. Erben RG, Soegiarto DW, Weber K, Zeitz U, Lieberherr M, Gniadecki R, Möller G, Adamski J, and Balling R (2002) Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 16: 1524-1537
↵7. Shiina Y, Abe E, Miyaura C, Tanaka H, Yamada S, Ohmori M, Nakayama K, Takayama H, Matsunaga I, Nishii Y, et al. (1983) Biological activity of 24,24-difluoro-1α ,25-dihydroxyvitamin D3 and 1α ,25-dihydroxyvitamin D3-26,23-lactone in inducing differentiation of human myeloid leukemia cells. Arch Biochem Biophys 220: 90-94
↵8. Sicinski RR, Prahl JM, Smith CM, and DeLuca HF (1998) New 1α ,25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem 41: 4662-4674
↵9. Ikeda M, Takahashi K, Dan A, Koyama K, Kubota K, Tanaka T, and Hayashi M Synthesis and biological evaluations of A-ring isomers of 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3. Bioorg Med Chem 8: 2157-2166
↵10. Weyts FA, Dhawan P, Zhang X, Bishop JE, Uskokovic MR, Ji Y, Studzinski GP, Norman AW, and Christakos S (2004) Novel Gemini analogs of 1α ,25-dihydroxyvitamin D3 with enhanced transcriptional activity. Biochem Pharmacol 67: 1327-1336
↵11. Abe J, Takita Y, Nakano T, Miyaura C, Suda T, and Nishii Y (1989) A synthetic analogue of vitamin D, 22-oxa-1α ,25-dihydroxyvitamin D3, is a potent modulator of in vivo immunoregulating activity without inducing hypercalcemia in mice. Endocrinology 124: 2645-2647
↵12. Sato K, Nishii Y, Woodiel FN, and Raisz LG (1993) Effects of two new vitamin D3 derivatives, 22-oxa-1α ,25-dihydroxyvitamin-D3 (OCT) and 2β-(3-hydroxypropoxy)-1α ,25-dihydroxyvitamin-D3 (ED-71), on bone metabolism in organ culture. Bone 14: 47-51
↵13. Okano T, Tsugawa N, Masuda S, Takeuchi A, Kobayashi T, and Nishii Y (1989) Protein-binding properties of 22-oxa-1α ,25-dihydroxyvitamin D, a synthetic analogue of 1α ,25-dihydroxyvitamin D. J Nutr Sci Vitaminol (Tokyo) 35: 529-533
↵14. Peleg S, Uskokovic M, Ahene A, Vickery B, and Avnur Z (2002) Cellular and molecular events associated with the bone-protecting activity of the noncalcemic vitamin D analog Ro-26-9228 in osteopenic rats. Endocrinology 143: 1625-1636
↵15. Boehm MF, Fitzgerald P, Zou A, Elgort MG, Bischoff ED, Mere L, Mais DE, Bissonnette RP, Heyman RA, Nadzan AM, et al. (2002) Novel nonsecosteroidal vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1,25-dihydroxyvitamin D3. Chem Biol 6: 265-275
↵16. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, and Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science (Wash DC) 296: 1313-1316
↵17. Miyamoto K, Murayama E, Ochi K, Watanabe H, and Kubodera N (1993) Synthetic studies of vitamin D analogues. XIV. Synthesis and calcium regulating activity of vitamin D3 analogues bearing a hydroxyalkoxy group at the 2β -position. Chem Pharm Bull (Tokyo) 41: 1111-1113
↵18. Okano T, Tsugawa N, Masuda S, Takeuchi A, Kobayashi T, Takita Y, and Nishii Y (1989) Regulatory activities of 2 β -(3-hydroxypropoxy)-1α ,25-dihydroxyvitamin D3, a novel synthetic vitamin D3 derivative, on calcium metabolism. Biochem Biophys Res Commun 163: 1444-1449
↵19. Miura D, Manabe K, Ozono K, Saito M, Gao Q, Norman AW, and Ishizuka S (1999) Antagonistic action of novel 1α ,25-dihydroxyvitamin D3-26, 23-lactone analogs on differentiation of human leukemia cells (HL-60) induced by 1α ,25-dihydroxyvitamin D3. J Biol Chem 274: 16392-16399
↵20. Fujishima T, Kojima Y, Azumaya I, Kittaka A, and Takayama H (2003) Design and synthesis of potent vitamin D receptor antagonists with A-ring modifications: remarkable effects of 2α -methyl introduction on antagonistic activity. Bioorg Med Chem 11: 3621-3631
↵21. Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Arioka K, Sato H, Uchiyama Y, et al. (1997) Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 16: 391-396
↵22. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, and Demay MB (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94: 9831-9835
↵23. Zeitz U, Weber K, Soegiarto DW, Wolf E, Balling R, and Erben RG (2003) Impaired insulin secretory capacity in mice lacking a functional vitamin D receptor. FASEB J 17: 509-511
↵24. Hughes MR, Malloy PJ, Kieback DG, Kesterson RA, Pike JW, Feldman D, and O'Malley BW (1988) Point mutations in the human vitamin D receptor associated with hypocalcemic rickets. Science (Wash DC) 242: 1702-1705
↵25. Malloy PJ, Pike JW, and Feldman D (1999) The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev 20: 156-188