TABLE 1

G4-virus “Hall of fame“

Examples of G4 motifs in viral genomes (aptamers are not considered here) with relevance in antiviral research. A motif found in a host-cell promoter is also shown in this table because of its role in viral replication (Shen et al., 2020). In articles in which multiple sequences were reported, only one sequence was chosen among the highest-scoring motifs. Some motifs shown here correspond to a fragment of a larger DNA/RNA sequence studied in the corresponding article. Unless marked with an asterisk (*), the sequences below have been verified to form G4 structures experimentally. Sequences are ranked according to their G4-Hunter score (G4H): Different sequences from the same virus may be listed from different works.

ChemVirus/GeneExample of G4-Prone SequenceaLengthG4HReference
DNAKSHVGGG​GCG​GGG​GAC​GGG​GGA​GGG​G(22)3.18Madireddy et al. (2016)
DNAHSV-1GGG​GTT​GGG​GTT​GGG​GTT​GGG​G(22)2.91Artusi et al. (2015)
RNARVFVGGG​GGT​TGG​GGG​GAA​GGG​GAG​TTG​GGG(27)2.85Charley et al. (2018)
DNAHSV-2GGG​GAC​GGC​GGG​GGC​GGG​GG(20)2.85Frasson et al. (2019)
DNAHSV-1GGG​GGG​TGT​GTT​TTG​GGG​GGG(21)2.57Biswas et al. (2018)
DNAHSV-1GGG​GAG​GGG​AAA​GGC​GTG​GGG(21)2.48Frasson et al. (2019)
DNAbTMPRSS2 (P)GGA​GGG​CGG​CGG​GGG​CGG​GGG​CGG​GCG​GG(29)2.41Shen et al. (2020)
DNAHCMVGGG​GTC​GGG​AAT​GGG​GGC​AGA​GCA​GGG​GGT​ATT​GGG​G(37)2.16Ravichandran et al. (2018)
RNAHCVGGG​AGG​GGG​GGU​CCU​GGA​GG(20)2.05Jaubert et al. (2018)
DNAHIV-2GGG​GGG​AGG​ACA​TGG​GCC​GGG​AGG​G(25)2.00Krafčíková et al. (2017a)
DNAMarburgGGG​GAC​TGG​TTG​GGG​TCT​GGG​TGG(24)1.96Krafčíková et al. (2017b)
DNAVZVGGGCGGGCGACGGGCGGG(18)1.83Frasson et al. (2019)
DNAHPVGGG​CAG​GGG​ACA​CAG​GGT​AGG​G(22)1.82Tlučková et al. (2013)
DNAHTLV-2GGG​GAA​GTG​GGT​AAG​GGT​GAG​G(22)1.82*Ruggiero et al., (2019)
RNAHCVGGG​CUG​CGG​GUG​GGC​GGG​A(19)1.79Wang et al., (2016a)
DNAEbolaGGG​GTG​GTG​TTT​GAG​GGT​TTG​GG(23)1.74Krafčíková et al. (2017b)
DNAHPVGGG​TAG​GGC​AGG​GGA​CAC​AGG​GT(23)1.74Marušič and Plavec (2019)
DNAEbolaGGG​GTC​ATA​TGG​GAG​GGA​TTG​AAG​G(25)1.52Wang et al. (2016b)
DNAEBVGGGGCAGGAGCAGGAGGA(18)1.50Murat et al. (2014)
RNAZikaGGA​UGU​GGC​AGA​GGG​GGC​UGG​AG(23)1.43Fleming et al. (2016)
DNAHIV-1GGG​AGG​CGT​GGC​CTG​GGC​GGG(21)1.43Perrone et al. (2013a)
DNAHIV-1TGG​CCT​GGG​CGG​GAC​TGG​G(19)1.32Amrane et al. (2014)
DNAHBVGGG​AGT​GGG​AGC​ATT​CGG​GCC​AGG​G(25)1.28Biswas et al. (2017)
RNASARS-CoV-2CCC​CAA​AAU​CAG​CGA​AAU​GCA​CCC​C(25)1.28c*Bartas et al. (2020)
DNAHPVGGG​TCG​GGT​ACA​GGC​GGA​CGC​ACT​GGG(27)1.11Marušič et al. (2017)
RNANipahGUG​CGG​GGA​GGU​AAA​GAG​GAG​GCC​AGG(27)1.11Majee et al. (2020)
RNASARS-CoV-2GGA​UUG​GCU​UCG​AUG​UCG​AGG​GG(23)1.04*Panera et al. (2020)
RNASARS-CoV-2GGCUGGCAAUGGCGG(15)0.87Zhao et al. (2021)
RNASARS-CoV-2GGU​AUG​UGG​AAA​GGU​UAU​GG(20)0.85dJi et al. (2020)
  • a Sequences for which structural information is available are provided in the next table.

  • b DNA sequence from a promoter in the human host cell.

  • c Calculated for the complementary strand (this is a C-rich motif).

  • d G4 formation was confirmed in vitro, but stability was low (Tm below physiologic temperature).

  • * The sequence is only computationally predicted to form G4 structure.