Skip to main content

β2 Agonists

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 237))

Abstract

History suggests β agonists, the cognate ligand of the β2 adrenoceptor, have been used as bronchodilators for around 5,000 years, and β agonists remain today the frontline treatment for asthma and chronic obstructive pulmonary disease (COPD). The β agonists used clinically today are the products of significant expenditure and over 100 year’s intensive research aimed at minimizing side effects and enhancing therapeutic usefulness. The respiratory physician now has a therapeutic toolbox of long acting β agonists to prophylactically manage bronchoconstriction, and short acting β agonists to relieve acute exacerbations. Despite constituting the cornerstone of asthma and COPD therapy, these drugs are not perfect; significant safety issues have led to a black box warning advising that long acting β agonists should not be used alone in patients with asthma. In addition there are a significant proportion of patients whose asthma remains uncontrolled. In this chapter we discuss the evolution of β agonist use and how the understanding of β agonist actions on their principal target tissue, airway smooth muscle, has led to greater understanding of how these drugs can be further modified and improved in the future. Research into the genetics of the β2 adrenoceptor will also be discussed, as will the implications of individual DNA profiles on the clinical outcomes of β agonist use (pharmacogenetics). Finally we comment on what the future may hold for the use of β agonists in respiratory disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    CAS  PubMed  Google Scholar 

  • Baker JG (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol 160:1048–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes PJ (2004) Distribution of receptor targets in the lung. Proc Am Thorac Soc 1:345–351

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2006) Drugs for asthma. Br J Pharmacol 147(Suppl 1):S297–S303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basu K, Palmer CN, Tavendale R, Lipworth BJ, Mukhopadhyay S (2009) Adrenergic beta(2)-receptor genotype predisposes to exacerbations in steroid-treated asthmatic patients taking frequent albuterol or salmeterol. J Allergy Clin Immunol 124:1188–1194.e3

    Article  CAS  PubMed  Google Scholar 

  • Bhagat R, Kalra S, Swystun VA, Cockcroft DW (1995) Rapid onset of tolerance to the bronchoprotective effect of salmeterol. Chest 108:1235–1239

    Article  CAS  PubMed  Google Scholar 

  • Billington CK, Penn RB (2003) Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Bleecker ER, Yancey SW, Baitinger LA, Edwards LD, Klotsman M, Anderson WH, Dorinsky PM (2006) Salmeterol response is not affected by beta2-adrenergic receptor genotype in subjects with persistent asthma. J Allergy Clin Immunol 118:809–816

    Article  CAS  PubMed  Google Scholar 

  • Bleecker ER, Postma DS, Lawrance RM, Meyers DA, Ambrose HJ, Goldman M (2007) Effect of ADRB2 polymorphisms on response to longacting beta2-agonist therapy: a pharmacogenetic analysis of two randomised studies. Lancet 370:2118–2125

    Article  CAS  PubMed  Google Scholar 

  • Bleecker ER, Nelson HS, Kraft M, Corren J, Meyers DA, Yancey SW, Anderson WH, Emmett AH, Ortega HG (2010) Beta2-receptor polymorphisms in patients receiving salmeterol with or without fluticasone propionate. Am J Respir Crit Care Med 181:676–687

    Article  CAS  PubMed  Google Scholar 

  • British National Formulary (online) London: BMJ Group and Pharmaceutical Press

    Google Scholar 

  • Brittain RT, Farmer JB, Jack D, Martin LE, Simpson WT (1968) Alpha-[(t-Butylamino)methyl]-4-hydroxy-m-xylene-alpha 1, alpha 3-diol (AH.3365): a selective beta-adrenergic stimulant. Nature 219:862–863

    Article  CAS  PubMed  Google Scholar 

  • Callaerts-Vegh Z, Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF, Giles H, Shardonofsky FR, Bond RA (2004) Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci U S A 101:4948–4953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castle W, Fuller R, Hall J, Palmer J (1993) Serevent nationwide surveillance study: comparison of salmeterol with salbutamol in asthmatic patients who require regular bronchodilator treatment. BMJ 306:1034–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung D, Timmers MC, Zwinderman AH, Bel EH, Dijkman JH, Sterk PJ (1992) Long-term effects of a long-acting beta 2-adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma. N Engl J Med 327:1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Chu EK, Drazen JM (2005) Asthma: one hundred years of treatment and onward. Am J Respir Crit Care Med 171:1202–1208

    Article  PubMed  Google Scholar 

  • Cullum VA, Farmer JB, Jack D, Levy GP (1969) Salbutamol: a new, selective beta-adrenoceptive receptor stimulant. Br J Pharmacol 35:141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande DA, Theriot BS, Penn RB, Walker JK (2008) Beta-arrestins specifically constrain beta2-adrenergic receptor signaling and function in airway smooth muscle. FASEB J 22:2134–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande DA, Yan H, Kong KC, Tiegs BC, Morgan SJ, Pera T, Panettieri RA, Eckhart AD, Penn RB (2014) Exploiting functional domains of GRK2/3 to alter the competitive balance of pro- and anticontractile signaling in airway smooth muscle. FASEB J 28:956–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewar JC, Wheatley AP, Venn A, Morrison JF, Britton J, Hall IP (1998) Beta2-adrenoceptor polymorphisms are in linkage disequilibrium, but are not associated with asthma in an adult population. Clin Exp Allergy 28:442–448

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE, Mumford RA, Slater EE, Sigal IS, Caron MG, Lefkowitz RJ, Strader CD (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  CAS  PubMed  Google Scholar 

  • Garland SL (2013) Are GPCRs still a source of new targets? J Biomol Screen 18:947–966

    Article  CAS  PubMed  Google Scholar 

  • Green SA, Cole G, Jacinto M, Innis M, Liggett SB (1993) A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268:23116–23121

    CAS  PubMed  Google Scholar 

  • Grove A, Lipworth BJ (1995) Bronchodilator subsensitivity to salbutamol after twice daily salmeterol in asthmatic patients. Lancet 346:201–206

    Article  CAS  PubMed  Google Scholar 

  • Hall IP, Blakey JD, Al Balushi KA, Wheatley A, Sayers I, Pembrey ME, Ring SM, Mcardle WL, Strachan DP (2006) Beta2-adrenoceptor polymorphisms and asthma from childhood to middle age in the British 1958 birth cohort: a genetic association study. Lancet 368:771–779

    Article  CAS  PubMed  Google Scholar 

  • Hanania NA, Singh S, El-Wali R, Flashner M, Franklin AE, Garner WJ, Dickey BF, Parra S, Ruoss S, Shardonofsky F, O’Connor BJ, Page C, Bond RA (2008) The safety and effects of the beta-blocker, nadolol, in mild asthma: an open-label pilot study. Pulm Pharmacol Ther 21(1):134–141

    Article  CAS  PubMed  Google Scholar 

  • Israel E, Drazen JM, Liggett SB, Boushey HA, Cherniack RM, Chinchilli VM, Cooper DM, Fahy JV, Fish JE, Ford JG, Kraft M, Kunselman S, Lazarus SC, Lemanske RF, Martin RJ, Mclean DE, Peters SP, Silverman EK, Sorkness CA, Szefler SJ, Weiss ST, Yandava CN (2000) The effect of polymorphisms of the beta(2)-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med 162:75–80

    Article  CAS  PubMed  Google Scholar 

  • Israel E, Chinchilli VM, Ford JG, Boushey HA, Cherniack R, Craig TJ, Deykin A, Fagan JK, Fahy JV, Fish J, Kraft M, Kunselman SJ, Lazarus SC, Lemanske RF Jr, Liggett SB, Martin RJ, Mitra N, Peters SP, Silverman E, Sorkness CA, Szefler SJ, Wechsler ME, Weiss ST, Drazen JM (2004) Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet 364:1505–1512

    Article  CAS  PubMed  Google Scholar 

  • Jackson M (2009) Asthma: the biography. Oxford University Press, Oxford

    Google Scholar 

  • Kang DS, Tian X, Benovic JL (2014) Role of beta-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Curr Opin Cell Biol 27:63–71

    Article  PubMed  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302

    Article  CAS  PubMed  Google Scholar 

  • Kong KC, Gandhi U, Martin TJ, Anz CB, Yan H, Misior AM, Pascual RM, Deshpande DA, Penn RB (2008) Endogenous Gs-coupled receptors in smooth muscle exhibit differential susceptibility to GRK2/3-mediated desensitization. Biochemistry 47:9279–9288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume H, Hall IP, Washabau RJ, Tagaki K, Kotlikoff MI (1994) β-adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest 93:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lands AM, Luduena FP, Buzzo HJ (1967) Differentiation of receptors responsive to isoproterenol. Life Sci 6:2241–2249

    Article  CAS  PubMed  Google Scholar 

  • Lipworth B, Tan S, Devlin M, Aiken T, Baker R, Hendrick D (1998) Effects of treatment with formoterol on bronchoprotection against methacholine. Am J Med 104:431–438

    Article  CAS  PubMed  Google Scholar 

  • Litonjua AA, Silverman EK, Tantisira KG, Sparrow D, Sylvia JS, Weiss ST (2004) Beta 2-adrenergic receptor polymorphisms and haplotypes are associated with airways hyperresponsiveness among nonsmoking men. Chest 126:66–74

    Article  CAS  PubMed  Google Scholar 

  • Melland B (1910) The treatment of spasmodic asthma by the hypodermic injection of adrenalin. Lancet 175:1407–1411

    Article  Google Scholar 

  • Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, VON Mutius E, Farrall M, Lathrop M, Cookson WO (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363:1211–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan SJ, Deshpande DA, Tiegs BC, Misior AM, Yan H, Hershfeld AV, Rich TC, Panettieri RA, An SS, Penn RB (2014) Beta-agonist-mediated relaxation of airway smooth muscle is PKA-dependent. J Biol Chem 289:23065–23074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson HS (2006) Long-acting beta-agonists in adult asthma: evidence that these drugs are safe. Prim Care Respir J 15:271–277

    Article  PubMed  Google Scholar 

  • Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM (2006) The salmeterol multicenter asthma research trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest 129:15–26

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LP, Lin R, Parra S, Omoluabi O, Hanania NA, Tuvim MJ, Knoll BJ, Dickey BF, Bond RA (2009) Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci U S A 106:2435–2440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega VE, Peters SP (2010) Beta-2 adrenergic agonists: focus on safety and benefits versus risks. Curr Opin Pharmacol 10:246–253

    Article  CAS  PubMed  Google Scholar 

  • Palmer CN, Lipworth BJ, Lee S, Ismail T, Macgregor DF, Mukhopadhyay S (2006) Arginine-16 beta2 adrenoceptor genotype predisposes to exacerbations in young asthmatics taking regular salmeterol. Thorax 61:940–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penn RB (2008) Embracing emerging paradigms of G protein-coupled receptor agonism and signaling to address airway smooth muscle pathobiology in asthma. Naunyn Schmiedebergs Arch Pharmacol 378:149–169

    Article  CAS  PubMed  Google Scholar 

  • Penn RB, Benovic JL (1998) Regulation of G protein-coupled receptors. In: Conn PM (ed) Handbook of physiology. Oxford University Press, New York

    Google Scholar 

  • Penn RB, Parent JL, Pronin AN, Panettieri RA Jr, Benovic JL (1999) Pharmacological inhibition of protein kinases in intact cells: antagonism of beta adrenergic receptor ligand binding by H-89 reveals limitations of usefulness. J Pharmacol Exp Ther 288:428–437

    CAS  PubMed  Google Scholar 

  • Penn RB, Pascual RM, Kim YM, Mundell SJ, Krymskaya VP, Panettieri RA Jr, Benovic JL (2001) Arrestin specificity for G protein-coupled receptors in human airway smooth muscle. J Biol Chem 276:32648–32656

    Article  CAS  PubMed  Google Scholar 

  • Penn RB, Bond RA, Walker JK (2014) GPCRs and arrestins in airways: implications for asthma. Handb Exp Pharmacol 219:387–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay CE, Hayden CM, Tiller KJ, Burton PR, Goldblatt J, Lesouef PN (1999) Polymorphisms in the beta2-adrenoreceptor gene are associated with decreased airway responsiveness. Clin Exp Allergy 29:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Reihsaus E, Innis M, Macintyre N, Liggett SB (1993) Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8:334–339

    Article  CAS  PubMed  Google Scholar 

  • Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  CAS  PubMed  Google Scholar 

  • Roscioni SS, Elzinga CR, Schmidt M (2008) Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol 377:345–357

    Article  CAS  PubMed  Google Scholar 

  • Salpeter SR, Buckley NS, Ormiston TM, Salpeter EE (2006) Meta-analysis: effect of long-acting beta-agonists on severe asthma exacerbations and asthma-related deaths. Ann Intern Med 144:904–912

    Article  CAS  PubMed  Google Scholar 

  • Sears MR, Taylor DR, Print CG, Lake DC, Li QQ, Flannery EM, Yates DM, Lucas MK, Herbison GP (1990) Regular inhaled beta-agonist treatment in bronchial asthma. Lancet 336:1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short PM, Williamson PA, Anderson WJ, Lipworth BJ (2013) Randomized placebo-controlled trial to evaluate chronic dosing effects of propranolol in asthma. Am J Respir Crit Care Med 187:1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Stallaert W, Dorn JF, VAN DER Westhuizen E, Audet M, Bouvier M (2012) Impedance responses reveal beta(2)-adrenergic receptor signaling pluridimensionality and allow classification of ligands with distinct signaling profiles. PLoS One 7, e29420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamm M, Richards DH, Beghe B, Fabbri L (2012) Inhaled corticosteroid and long-acting beta2-agonist pharmacological profiles: effective asthma therapy in practice. Respir Med 106(Suppl 1):S9–S19

    Article  PubMed  Google Scholar 

  • Taylor DR, Drazen JM, Herbison GP, Yandava CN, Hancox RJ, Town GI (2000) Asthma exacerbations during long term beta agonist use: influence of beta(2) adrenoceptor polymorphism. Thorax 55:762–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanawala VJ, Forkuo GS, Al-Sawalha N, Azzegagh Z, Nguyen LP, Eriksen JL, Tuvim MJ, Lowder TW, Dickey BF, Knoll BJ, Walker JK, Bond RA (2013) beta2-Adrenoceptor agonists are required for development of the asthma phenotype in a murine model. Am J Respir Cell Mol Biol 48:220–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldeck B (2002) Beta-adrenoceptor agonists and asthma – 100 years of development. Eur J Pharmacol 445:1–12

    Article  CAS  PubMed  Google Scholar 

  • Walker JK, Fong AM, Lawson BL, Savov JD, Patel DD, Schwartz DA, Lefkowitz RJ (2003) Beta-arrestin-2 regulates the development of allergic asthma. J Clin Invest 112:566–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JK, Penn RB, Hanania NA, Dickey BF, Bond RA (2011) New perspectives regarding beta(2)-adrenoceptor ligands in the treatment of asthma. Br J Pharmacol 163:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan YI, Shrine NR, Soler Artigas M, Wain LV, Blakey JD, Moffatt MF, Bush A, Chung KF, Cookson WO, Strachan DP, Heaney L, Al-Momani BA, Mansur AH, Manney S, Thomson NC, Chaudhuri R, Brightling CE, Bafadhel M, Singapuri A, Niven R, Simpson A, Holloway JW, Howarth PH, Hui J, Musk AW, James AL, Brown MA, Baltic S, Ferreira MA, Thompson PJ, Tobin MD, Sayers I, Hall IP (2012) Genome-wide association study to identify genetic determinants of severe asthma. Thorax 67:762–768

    Article  CAS  PubMed  Google Scholar 

  • Wechsler ME, Lehman E, Lazarus SC, Lemanske RF Jr, Boushey HA, Deykin A, Fahy JV, Sorkness CA, Chinchilli VM, Craig TJ, Dimango E, Kraft M, Leone F, Martin RJ, Peters SP, Szefler SJ, Liu W, Israel E (2006) beta-Adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med 173:519–526

    Article  CAS  PubMed  Google Scholar 

  • Wechsler ME, Kunselman SJ, Chinchilli VM, Bleecker E, Boushey HA, Calhoun WJ, Ameredes BT, Castro M, Craig TJ, Denlinger L, Fahy JV, Jarjour N, Kazani S, Kim S, Kraft M, Lazarus SC, Lemanske RF Jr, Markezich A, Martin RJ, Permaul P, Peters SP, Ramsdell J, Sorkness CA, Sutherland ER, Szefler SJ, Walter MJ, Wasserman SI, Israel E (2009) Effect of beta2-adrenergic receptor polymorphism on response to longacting beta2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial. Lancet 374:1754–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisler JW, Dewire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ (2007) A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A 104:16657–16662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Deshpande DA, Misior AM, Miles MC, Saxena H, Riemer EC, Pascual RM, Panettieri RA, Penn RB (2011) Anti-mitogenic effects of beta-agonists and PGE2 on airway smooth muscle are PKA dependent. FASEB J 25:389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zieba BJ, Artamonov MV, Jin L, Momotani K, Ho R, Franke AS, Neppl RL, Stevenson AS, Khromov AS, Chrzanowska-Wodnicka M, Somlyo AV (2011) The cAMP-responsive Rap1 guanine nucleotide exchange factor, Epac, induces smooth muscle relaxation by down-regulation of RhoA activity. J Biol Chem 286:16681–16692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Funding

The authors are funded by grants HL58506, AI110007, and P01 HL114471 (RBP), MRC grant MR/M004643/1 (CKB), and MRC grant G1000861 (IPH). We thank Dr Shams-un-nisa Naveed and Mr Vaz Raziq for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian P. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Billington, C.K., Penn, R.B., Hall, I.P. (2016). β2 Agonists. In: Page, C., Barnes, P. (eds) Pharmacology and Therapeutics of Asthma and COPD. Handbook of Experimental Pharmacology, vol 237. Springer, Cham. https://doi.org/10.1007/164_2016_64

Download citation

Publish with us

Policies and ethics