Skip to main content

FRET-Based Measurement of GPCR Conformational Changes

  • Protocol
  • First Online:
Book cover G Protein-Coupled Receptors in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 552))

Summary

The C-termini of G protein-coupled receptors (GPCRs) interact with specific kinases and arrestins in an agonist-dependent manner suggesting that conformational changes induced by ligand binding within the transmembrane domains are transmitted to the C-terminus. Förster resonance energy transfer (FRET) can be used to monitor changes in distance between two protein domains if each site can be specifically and efficiently labeled with a donor or acceptor fluorophore. In order to probe GPCR conformational changes, we have developed a FRET technique that uses site-specific donor and acceptor fluorophores introduced by two orthogonal labeling chemistries. Using this strategy, we examined ligand-induced changes in the distance between two labeled sites in the β2 adrenoceptor (β2-AR), a well-characterized GPCR model system. The donor fluorophore, Lumio™Green, is chelated by a CCPGCC motif [Fluorescein Arsenical Helix or Hairpin binder (FlAsH) site] introduced through mutagenesis. The acceptor fluorophore, Alexa Fluor 568, is attached to a single reactive cysteine (C265). FRET analyses revealed that the average distance between the intracellular end of transmembrane helix (TM) six and the C-terminus of the β2-AR is 62 Å. This relatively large distance suggests that the C-terminus is extended and unstructured. Nevertheless, ligand-specific conformational changes were observed (1). The results provide new insight into the structure of the β2-AR C-terminus and ligand-induced conformational changes that may be relevant to arrestin interactions. The FRET labeling technique described herein can be applied to many GPCRs (and other membrane proteins) and is suitable for conformational studies of domains other than the C-terminus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granier, S., Kim, S., Shafer, A. M., Ratnala, V. R., Fung, J. J., Zare, R. N., and Kobilka, B. (2007) Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: Insights from fluorescence resonance energy transfer studies. J. Biol. Chem. 282, 13895–13905.

    Article  PubMed  CAS  Google Scholar 

  2. Ji, T. H., Grossmann, M., and Ji, I. (1998) G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J. Biol. Chem. 273, 17299–17302.

    Article  PubMed  CAS  Google Scholar 

  3. Swaminath, G., Xiang, Y., Lee, T. W., Steenhuis, J., Parnot, C., and Kobilka, B. K. (2004) Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J. Biol. Chem. 279, 686–691.

    Article  PubMed  CAS  Google Scholar 

  4. Ghanouni, P., Gryczynski, Z., Steenhuis, J. J., Lee, T. W., Farrens, D. L., Lakowicz, J. R., and Kobilka, B. K. (2001) Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta2 adrenergic receptor. J. Biol. Chem. 276, 24433–24436.

    Article  PubMed  CAS  Google Scholar 

  5. Ghanouni, P., Steenhuis, J. J., Farrens, D. L., and Kobilka, B. K. (2001) Agonist-induced conformational changes in the G protein-coupling domain of the beta2 adrenergic receptor. Proc. Natl. Acad. Sci. USA 98, 5997–6002.

    Article  PubMed  CAS  Google Scholar 

  6. Benovic, J. L. (2002) Novel beta2-adrenergic receptor signaling pathways. J. Allergy Clin. Immunol. 110, S229–S235.

    Article  PubMed  CAS  Google Scholar 

  7. Reiter, E., and Lefkowitz, R. J. (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165.

    Article  PubMed  CAS  Google Scholar 

  8. Lefkowitz, R. J., and Shenoy, S. K. (2005) Transduction of receptor signals by beta-arrestins. Science 308, 512–517.

    Article  PubMed  CAS  Google Scholar 

  9. Ren, X. R., Reiter, E., Ahn, S., Kim, J., Chen, W., and Lefkowitz, R. J. (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc. Natl. Acad. Sci. USA 102, 1448–1453.

    Article  PubMed  CAS  Google Scholar 

  10. Azzi, M., Charest, P. G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M., and Pineyro, G. (2003) Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 100, 11406–11411.

    Article  PubMed  CAS  Google Scholar 

  11. Rasmussen, S. G., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R., Sanishvili, R., Fischetti, R. F., Schertler, G. F., Weis, W. I., and Kobilka, B. K. (2007) Crystal structure of the human beta2 adrenergic G protein-coupled receptor. Nature 450, 383–387.

    Article  PubMed  CAS  Google Scholar 

  12. Rosenbaum, D. M., Cherezov, V., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Yao, X. J., Weis, W. I., Stevens, R. C., and Kobilka, B. K. (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318, 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  13. Ha, T., Ting, A. Y., Liang, J., Caldwell, W. B., Deniz, A. A., Chemla, D. S., Schultz, P. G., and Weiss, S. (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc. Natl. Acad. Sci. USA 96, 893–898.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, R. F. (1965) Fluorescence quantum yield measurements: vitamin B6 compounds. Science 150, 1593–1595.

    Article  PubMed  CAS  Google Scholar 

  15. Magde, D., Wong, R., and Seybold, P. G. (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75, 327–334.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

S.G. thanks Brian Kobilka for his constant support and for the supervision of this project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Granier, S., Kim, S., Fung, J.J., Bokoch, M.P., Parnot, C. (2009). FRET-Based Measurement of GPCR Conformational Changes. In: Leifert, W. (eds) G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, vol 552. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-317-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-317-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-316-9

  • Online ISBN: 978-1-60327-317-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics