Skip to main content

Mechanisms of Multidrug Resistance in Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 596))

Abstract

The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Resistance exists against every effective anticancer drug and can develop by numerous mechanisms including decreased drug uptake, increased drug efflux, activation of detoxifying systems, activation of DNA repair mechanisms, evasion of drug-induced apoptosis, etc. In the first part of this chapter, we briefly summarize the current knowledge on individual cellular mechanisms responsible for MDR, with a special emphasis on ATP-binding cassette transporters, perhaps the main theme of this textbook. Although extensive work has been done to characterize MDR mechanisms in vitro, the translation of this knowledge to the clinic has not been crowned with success. Therefore, identifying genes and mechanisms critical to the development of MDR in vivo and establishing a reliable method for analyzing clinical samples could help to predict the development of resistance and lead to treatments designed to circumvent it. Our thoughts about translational research needed to achieve significant progress in the understanding of this complex phenomenon are therefore discussed in a third section. The pleotropic response of cancer cells to chemotherapy is summarized in a concluding diagram.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lage H (2008) An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 65:3145–3167

    Article  CAS  PubMed  Google Scholar 

  2. Mellor HR, Callaghan R (2008) Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology 81:275–300

    Article  CAS  PubMed  Google Scholar 

  3. Mimeault M, Hauke R, Batra SK (2008) Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther 83:673–691

    Article  CAS  PubMed  Google Scholar 

  4. Flaten GE, Dhanikula AB, Luthman K, Brandl M (2006) Drug permeability across a phospholipid vesicle based barrier: a novel approach for studying passive diffusion. Eur J Pharm Sci 27:80–90

    Article  CAS  PubMed  Google Scholar 

  5. Dobson PD, Kell DB (2008) Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat Rev Drug Discov 7:205–220

    Article  CAS  PubMed  Google Scholar 

  6. Assaraf YG (2007) Molecular basis of antifolate resistance. Cancer Metastasis Rev 26:153–181

    Article  CAS  PubMed  Google Scholar 

  7. Hediger MA, Romero MF, Peng JB et al (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447:465–468

    Article  CAS  PubMed  Google Scholar 

  8. Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447:728–734

    Article  CAS  PubMed  Google Scholar 

  9. Young JD, Yao SY, Sun L, Cass CE, Baldwin SA (2008) Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins. Xenobiotica 38:995–1021

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Visser F, King KM et al (2007) The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 26:85–110

    Article  PubMed  CAS  Google Scholar 

  11. Mackey JR, Mani RS, Selner M et al (1998) Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 58:4349–4357

    CAS  PubMed  Google Scholar 

  12. Farrell JJ, Elsaleh H, Garcia M et al (2009) Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 136: 187–195

    Article  PubMed  Google Scholar 

  13. Smith NF, Acharya MR, Desai N, Figg WD, Sparreboom A (2005) Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther 4:815–818

    Article  CAS  PubMed  Google Scholar 

  14. Smith NF, Marsh S, Scott-Horton TJ et al (2007) Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 81:76–82

    Article  CAS  PubMed  Google Scholar 

  15. Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM (2008) The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48:495–535

    Article  CAS  PubMed  Google Scholar 

  16. Wang DS, Jonker JW, Kato Y et al (2002) Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302:510–515

    Article  CAS  PubMed  Google Scholar 

  17. Kimura N, Masuda S, Tanihara Y et al (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386

    Article  CAS  PubMed  Google Scholar 

  18. Okabe M, Szakacs G, Reimers MA et al (2008) Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther 7:3081–3091

    Article  CAS  PubMed  Google Scholar 

  19. Scherf U, Ross DT, Waltham M et al (2000) A gene expression database for the molecular pharmacology of cancer. Nat Genet 24:236–244

    Article  CAS  PubMed  Google Scholar 

  20. Rabow AA, Shoemaker RH, Sausville EA, Covell DG (2002) Mining the National Cancer Institute’s tumor-screening database: identification of compounds with similar cellular activities. J Med Chem 45:818–840

    Article  CAS  PubMed  Google Scholar 

  21. Shi LM, Fan Y, Lee JK et al (2000) Mining and visualizing large anticancer drug discovery databases. J Chem Inf Comput Sci 40:367–379

    CAS  PubMed  Google Scholar 

  22. Weinstein JN, Kohn KW, Grever MR et al (1992) Neural computing in cancer drug development: predicting mechanism of action. Science 258:447–451

    Article  CAS  PubMed  Google Scholar 

  23. Weinstein JN, Myers TG, O’Connor PM et al (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349

    Article  CAS  PubMed  Google Scholar 

  24. Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775:237–262

    CAS  PubMed  Google Scholar 

  25. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  CAS  PubMed  Google Scholar 

  26. Callaghan R, Crowley E, Potter S, Kerr ID (2008) P-glycoprotein: so many ways to turn it on. J Clin Pharmacol 48:365–378

    Article  CAS  PubMed  Google Scholar 

  27. Deeley RG, Westlake C, Cole SP (2006) Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86:849–899

    Article  CAS  PubMed  Google Scholar 

  28. Polgar O, Robey RW, Bates SE (2008) ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 4:1–15

    Article  CAS  PubMed  Google Scholar 

  29. Awasthi S, Singhal SS, Awasthi YC et al (2008) RLIP76 and Cancer. Clin Cancer Res 14:4372–4377

    Article  CAS  PubMed  Google Scholar 

  30. Kuo MT, Chen HH, Song IS, Savaraj N, Ishikawa T (2007) The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 26:71–83

    Article  CAS  PubMed  Google Scholar 

  31. Drake KJ, Singhal J, Yadav S et al (2007) RALBP1/RLIP76 mediates multidrug resistance. Int J Oncol 30:139–144

    CAS  PubMed  Google Scholar 

  32. Singhal SS, Singhal J, Nair MP et al (2007) Doxorubicin transport by RALBP1 and ABCG2 in lung and breast cancer. Int J Oncol 30:717–725

    CAS  PubMed  Google Scholar 

  33. Gouaze-Andersson V, Cabot MC (2006) Glycosphingolipids and drug resistance. Biochim Biophys Acta 1758:2096–2103

    Article  CAS  PubMed  Google Scholar 

  34. Hendrich AB, Michalak K (2003) Lipids as a target for drugs modulating multidrug resistance of cancer cells. Curr Drug Targets 4:23–30

    Article  CAS  PubMed  Google Scholar 

  35. Thevissen K, Francois IE, Winderickx J, Pannecouque C, Cammue BP (2006) Ceramide involvement in apoptosis and apoptotic diseases. Mini Rev Med Chem 6:699–709

    Article  CAS  PubMed  Google Scholar 

  36. Gouaze-Andersson V, Yu JY, Kreitenberg AJ et al (2007) Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 1771:1407–1417

    CAS  PubMed  Google Scholar 

  37. Liu YY, Yu JY, Yin D et al (2008) A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J 22:2541–2551

    Article  CAS  PubMed  Google Scholar 

  38. Shen DW, Akiyama S, Schoenlein P, Pastan I, Gottesman MM (1995) Characterisation of high-level cisplatin-resistant cell lines established from a human hepatoma cell line and human KB adenocarcinoma cells: cross-resistance and protein changes. Br J Cancer 71:676–683

    CAS  PubMed  Google Scholar 

  39. Shen D, Pastan I, Gottesman MM (1998) Cross-resistance to methotrexate and metals in human cisplatin-resistant cell lines results from a pleiotropic defect in accumulation of these compounds associated with reduced plasma membrane binding proteins. Cancer Res 58:268–275

    CAS  PubMed  Google Scholar 

  40. Shen DW, Goldenberg S, Pastan I, Gottesman MM (2000) Decreased accumulation of (14C)carboplatin in human cisplatin-resistant cells results from reduced energy-dependent uptake. J Cell Physiol 183:108–116

    Article  CAS  PubMed  Google Scholar 

  41. Shen DW, Su A, Liang XJ, Pai-Panandiker A, Gottesman MM (2004) Reduced expression of small GTPases and hypermethylation of the folate binding protein gene in cisplatin-resistant cells. Br J Cancer 91:270–276

    CAS  PubMed  Google Scholar 

  42. Liang XJ, Shen DW, Garfield S, Gottesman MM (2003) Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines. Cancer Res 63:5909–5916

    CAS  PubMed  Google Scholar 

  43. Liang XJ, Mukherjee S, Shen DW, Maxfield FR, Gottesman MM (2006) Endocytic recycling compartments altered in cisplatin-resistant cancer cells. Cancer Res 66:2346–2353

    Article  CAS  PubMed  Google Scholar 

  44. Chauhan SS, Liang XJ, Su AW et al (2003) Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. Br J Cancer 88:1327–1334

    Article  CAS  PubMed  Google Scholar 

  45. Liang XJ, Yin JJ, Zhou JW et al (2004) Changes in biophysical parameters of plasma membranes influence cisplatin resistance of sensitive and resistant epidermal carcinoma cells. Exp Cell Res 293:283–291

    Article  CAS  PubMed  Google Scholar 

  46. Brown CM, Reisfeld B, Mayeno AN (2008) Cytochromes P450: a structure-based summary of biotransformations using representative substrates. Drug Metab Rev 40:1–100

    Article  CAS  PubMed  Google Scholar 

  47. Oyama T, Kagawa N, Kunugita N et al (2004) Expression of cytochrome P450 in tumor tissues and its association with cancer development. Front Biosci 9:1967–1976

    Article  CAS  PubMed  Google Scholar 

  48. Purnapatre K, Khattar SK, Saini KS (2008) Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 259:1–15

    Article  CAS  PubMed  Google Scholar 

  49. van Schaik RH (2008) CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updat 11:77–98

    Article  PubMed  CAS  Google Scholar 

  50. Xie HJ, Yasar U, Lundgren S et al (2003) Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharma­cogenomics J 3:53–61

    Article  CAS  PubMed  Google Scholar 

  51. Xie H, Griskevicius L, Stahle L et al (2006) Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur J Pharm Sci 27:54–61

    Article  CAS  PubMed  Google Scholar 

  52. Rodriguez-Novoa S, Barreiro P, Rendon A et al (2005) Influence of 516G>T polymorphisms at the gene encoding the CYP450–2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. Clin Infect Dis 40:1358–1361

    Article  CAS  PubMed  Google Scholar 

  53. Rotger M, Colombo S, Furrer H et al (2005) Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. Pharmacogenet Genomics 15:1–5

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Sonnerborg A, Rane A et al (2006) Identification of a novel specific CYP2B6 allele in Africans causing impaired metabolism of the HIV drug efavirenz. Pharmacogenet Genomics 16:191–198

    Article  PubMed  CAS  Google Scholar 

  55. Huttunen KM, Mahonen N, Raunio H, Rautio J (2008) Cytochrome P450-activated prodrugs: targeted drug delivery. Curr Med Chem 15:2346–2365

    Article  CAS  PubMed  Google Scholar 

  56. Pal D, Mitra AK (2006) MDR- and CYP3A4-mediated drug-drug interactions. J Neuro­immune Pharmacol 1:323–339

    Article  PubMed  Google Scholar 

  57. Ghezzi P, Di Simplicio P (2007) Glutathiony­lation pathways in drug response. Curr Opin Pharmacol 7:398–403

    Article  CAS  PubMed  Google Scholar 

  58. Iyanagi T (2007) Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol 260:35–112

    Article  CAS  PubMed  Google Scholar 

  59. Hemmerich S, Verdugo D, Rath VL (2004) Strategies for drug discovery by targeting sulfation pathways. Drug Discov Today 9:967–975

    Article  CAS  PubMed  Google Scholar 

  60. Townsend DM, Findlay VL, Tew KD (2005) Glutathione S-transferases as regulators of kinase pathways and anticancer drug targets. Methods Enzymol 401:287–307

    Article  CAS  PubMed  Google Scholar 

  61. Sorich MJ, Smith PA, Miners JO, Mackenzie PI, McKinnon RA (2008) Recent advances in the in silico modelling of UDP glucuronosyltransferase substrates. Curr Drug Metab 9:60–69

    Article  CAS  PubMed  Google Scholar 

  62. Gamage N, Barnett A, Hempel N et al (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    Article  CAS  PubMed  Google Scholar 

  63. Butcher NJ, Tiang J, Minchin RF (2008) Regulation of arylamine N-acetyltransferases. Curr Drug Metab 9:498–504

    Article  CAS  PubMed  Google Scholar 

  64. Ekhart C, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD (2009) An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev 35:18–31

    Article  CAS  PubMed  Google Scholar 

  65. Safaei R, Larson BJ, Cheng TC et al (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595–1604

    Article  CAS  PubMed  Google Scholar 

  66. Liang XJ, Shen DW, Chen KG et al (2005) Trafficking and localization of platinum complexes in cisplatin-resistant cell lines monitored by fluorescence-labeled platinum. J Cell Physiol 202:635–641

    Article  CAS  PubMed  Google Scholar 

  67. Safaei R, Katano K, Larson BJ et al (2005) Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells. Clin Cancer Res 11:756–767

    CAS  PubMed  Google Scholar 

  68. Kalayda GV, Wagner CH, Buss I, Reedijk J, Jaehde U (2008) Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer 8:175

    Article  PubMed  CAS  Google Scholar 

  69. Chen KG, Valencia JC, Lai B et al (2006) Melanosomal sequestration of cytotoxic drugs contributes to the intractability of malignant melanomas. Proc Natl Acad Sci USA 103:9903–9907

    Article  CAS  PubMed  Google Scholar 

  70. Chen KG, Szakacs G, Annereau JP et al (2005) Principal expression of two mRNA isoforms (ABCB 5alpha and ABCB 5beta ) of the ATP-binding cassette transporter gene ABCB 5 in melanoma cells and melanocytes. Pigment Cell Res 18:102–112

    Article  CAS  PubMed  Google Scholar 

  71. Steinbach D, Gillet JP, Sauerbrey A et al (2006) ABCA3 as a possible cause of drug resistance in childhood acute myeloid leukemia. Clin Cancer Res 12:4357–4363

    Article  CAS  PubMed  Google Scholar 

  72. Chapuy B, Koch R, Radunski U et al (2008) Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration. Leukemia 22:1576–1586

    Article  CAS  PubMed  Google Scholar 

  73. Cheong N, Madesh M, Gonzales LW et al (2006) Functional and trafficking defects in ATP binding cassette A3 mutants associated with respiratory distress syndrome. J Biol Chem 281:9791–9800

    Article  CAS  PubMed  Google Scholar 

  74. Theocharis SE, Margeli AP, Klijanienko JT, Kouraklis GP (2004) Metallothionein expression in human neoplasia. Histopathology 45:103–118

    Article  CAS  PubMed  Google Scholar 

  75. Thirumoorthy N, Manisenthil Kumar KT, Shyam Sundar A, Panayappan L, Chatterjee M (2007) Metallothionein: an overview. World J Gastroenterol 13:993–996

    CAS  PubMed  Google Scholar 

  76. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  CAS  PubMed  Google Scholar 

  77. Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways–recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14:4032–4037

    Article  CAS  PubMed  Google Scholar 

  78. Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14:1291–1295

    Article  CAS  PubMed  Google Scholar 

  79. Sarkaria JN, Kitange GJ, James CD et al (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14:2900–2908

    Article  CAS  PubMed  Google Scholar 

  80. Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589–605

    Article  CAS  PubMed  Google Scholar 

  81. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8:193–204

    Article  CAS  PubMed  Google Scholar 

  82. Dabholkar M, Bostick-Bruton F, Weber C et al (1992) ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. J Natl Cancer Inst 84:1512–1517

    Article  CAS  PubMed  Google Scholar 

  83. Kang S, Ju W, Kim JW et al (2006) Association between excision repair cross-complementation group 1 polymorphism and clinical outcome of platinum-based chemotherapy in patients with epithelial ovarian cancer. Exp Mol Med 38:320–324

    CAS  PubMed  Google Scholar 

  84. Olaussen KA, Dunant A, Fouret P et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    Article  CAS  PubMed  Google Scholar 

  85. Metzger R, Leichman CG, Danenberg KD et al (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16:309–316

    CAS  PubMed  Google Scholar 

  86. Fink D, Nebel S, Norris PS et al (1998) Enrichment for DNA mismatch repair-deficient cells during treatment with cisplatin. Int J Cancer 77:741–746

    Article  CAS  PubMed  Google Scholar 

  87. Strathdee G, MacKean MJ, Illand M, Brown R (1999) A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18:2335–2341

    Article  CAS  PubMed  Google Scholar 

  88. Karran P, Marinus MG (1982) Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature 296:868–869

    Article  CAS  PubMed  Google Scholar 

  89. Yoshioka K, Yoshioka Y, Hsieh P (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22:501–510

    Article  CAS  PubMed  Google Scholar 

  90. Verbeek B, Southgate TD, Gilham DE, Margison GP (2008) O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull 85:17–33

    Article  CAS  PubMed  Google Scholar 

  91. Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603

    Article  CAS  PubMed  Google Scholar 

  92. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review. Clin Cancer Res 11:3155–3162

    Article  PubMed  Google Scholar 

  93. Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475

    Article  CAS  PubMed  Google Scholar 

  94. Tait SW, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:6452–6461

    Article  CAS  PubMed  Google Scholar 

  95. Rodriguez-Nieto S, Zhivotovsky B (2006) Role of alterations in the apoptotic machinery in sensitivity of cancer cells to treatment. Curr Pharm Des 12:4411–4425

    Article  CAS  PubMed  Google Scholar 

  96. Viktorsson K, Lewensohn R, Zhivotovsky B (2005) Apoptotic pathways and therapy resistance in human malignancies. Adv Cancer Res 94:143–196

    Article  CAS  PubMed  Google Scholar 

  97. Sjostrom J, Blomqvist C, von Boguslawski K et al (2002) The predictive value of bcl-2, bax, bcl-xL, bag-1, fas, and fasL for chemotherapy response in advanced breast cancer. Clin Cancer Res 8:811–816

    CAS  PubMed  Google Scholar 

  98. Malamou-Mitsi V, Gogas H, Dafni U et al (2006) Evaluation of the prognostic and predictive value of p53 and Bcl-2 in breast cancer patients participating in a randomized study with dose-dense sequential adjuvant chemotherapy. Ann Oncol 17:1504–1511

    Article  CAS  PubMed  Google Scholar 

  99. Krug LM, Miller VA, Filippa DA et al (2003) Bcl-2 and bax expression in advanced non-small cell lung cancer: lack of correlation with chemotherapy response or survival in patients treated with docetaxel plus vinorelbine. Lung Cancer 39:139–143

    Article  PubMed  Google Scholar 

  100. Bonetti A, Zaninelli M, Leone R et al (1998) Bcl-2 but not p53 expression is associated with resistance to chemotherapy in advanced breast cancer. Clin Cancer Res 4:2331–2336

    CAS  PubMed  Google Scholar 

  101. Buchholz TA, Davis DW, McConkey DJ et al (2003) Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy. Cancer J 9:33–41

    Article  CAS  PubMed  Google Scholar 

  102. Kedersha NL, Rome LH (1986) Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA. J Cell Biol 103:699–709

    Article  CAS  PubMed  Google Scholar 

  103. Kedersha NL, Heuser JE, Chugani DC, Rome LH (1991) Vaults. III. Vault ribonucleoprotein particles open into flower-like structures with octagonal symmetry. J Cell Biol 112:225–235

    Article  CAS  PubMed  Google Scholar 

  104. Rome L, Kedersha N, Chugani D (1991) Unlocking vaults: organelles in search of a function. Trends Cell Biol 1:47–50

    Article  CAS  PubMed  Google Scholar 

  105. Kedersha NL, Miquel MC, Bittner D, Rome LH (1990) Vaults. II. Ribonucleoprotein structures are highly conserved among higher and lower eukaryotes. J Cell Biol 110:895–901

    Article  CAS  PubMed  Google Scholar 

  106. van Zon A, Mossink MH, Scheper RJ, Sonneveld P, Wiemer EA (2003) The vault complex. Cell Mol Life Sci 60:1828–1837

    Article  PubMed  CAS  Google Scholar 

  107. Izquierdo MA, Scheffer GL, Flens MJ et al (1996) Broad distribution of the multidrug resistance-related vault lung resistance protein in normal human tissues and tumors. Am J Pathol 148:877–887

    CAS  PubMed  Google Scholar 

  108. Kickhoefer VA, Rajavel KS, Scheffer GL et al (1998) Vaults are up-regulated in multidrug-resistant cancer cell lines. J Biol Chem 273:8971–8974

    Article  CAS  PubMed  Google Scholar 

  109. Mossink MH, van Zon A, Scheper RJ, Sonneveld P, Wiemer EA (2003) Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene 22:7458–7467

    Article  CAS  PubMed  Google Scholar 

  110. Steiner E, Holzmann K, Elbling L, Micksche M, Berger W (2006) Cellular functions of vaults and their involvement in multidrug resistance. Curr Drug Targets 7:923–934

    Article  CAS  PubMed  Google Scholar 

  111. Berger W, Steiner E, Grusch M, Elbling L, Micksche M (2009) Vaults and the major vault protein: novel roles in signal pathway regulation and immunity. Cell Mol Life Sci 66:43–61

    Article  CAS  PubMed  Google Scholar 

  112. Scheper RJ, Broxterman HJ, Scheffer GL et al (1993) Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res 53:1475–1479

    CAS  PubMed  Google Scholar 

  113. Kitazono M, Okumura H, Ikeda R et al (2001) Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int J Cancer 91:126–131

    Article  CAS  PubMed  Google Scholar 

  114. Kitazono M, Sumizawa T, Takebayashi Y et al (1999) Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells. J Natl Cancer Inst 91:1647–1653

    Article  CAS  PubMed  Google Scholar 

  115. Laurencot CM, Scheffer GL, Scheper RJ, Shoemaker RH (1997) Increased LRP mRNA expression is associated with the MDR phenotype in intrinsically resistant human cancer cell lines. Int J Cancer 72:1021–1026

    Article  CAS  PubMed  Google Scholar 

  116. Scheffer GL, Wijngaard PL, Flens MJ et al (1995) The drug resistance-related protein LRP is the human major vault protein. Nat Med 1:578–582

    Article  CAS  PubMed  Google Scholar 

  117. Siva AC, Raval-Fernandes S, Stephen AG et al (2001) Up-regulation of vaults may be necessary but not sufficient for multidrug resistance. Int J Cancer 92:195–202

    Article  CAS  PubMed  Google Scholar 

  118. van Zon A, Mossink MH, Schoester M et al (2004) Efflux kinetics and intracellular distribution of daunorubicin are not affected by major vault protein/lung resistance-related protein (vault) expression. Cancer Res 64:4887–4892

    Article  PubMed  Google Scholar 

  119. Mossink MH, van Zon A, Franzel-Luiten E et al (2002) Disruption of the murine major vault protein (MVP/LRP) gene does not induce hypersensitivity to cytostatics. Cancer Res 62:7298–7304

    CAS  PubMed  Google Scholar 

  120. Mossink MH, de Groot J, van Zon A et al (2003) Unimpaired dendritic cell functions in MVP/LRP knockout mice. Immunology 110:58–65

    Article  CAS  PubMed  Google Scholar 

  121. Jin S, Scotto KW (1998) Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 18:4377–4384

    CAS  PubMed  Google Scholar 

  122. Li H, Liu H, Wang Z et al (2008) The role of transcription factors Sp1 and YY1 in proximal promoter region in initiation of transcription of the mu opioid receptor gene in human lymphocytes. J Cell Biochem 104:237–250

    Article  CAS  PubMed  Google Scholar 

  123. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150

    Article  CAS  PubMed  Google Scholar 

  124. Cosse JP, Michiels C (2008) Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem 8:790–797

    CAS  PubMed  Google Scholar 

  125. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503

    CAS  PubMed  Google Scholar 

  126. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  127. Tredan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  CAS  PubMed  Google Scholar 

  128. Magzoub M, Jin S, Verkman AS (2008) Enhanced macromolecule diffusion deep in tumors after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan decorin. FASEB J 22:276–284

    Article  CAS  PubMed  Google Scholar 

  129. Padera TP, Stoll BR, Tooredman JB et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695

    Article  CAS  PubMed  Google Scholar 

  130. Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658

    CAS  PubMed  Google Scholar 

  131. Netti PA, Hamberg LM, Babich JW et al (1999) Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc Natl Acad Sci USA 96:3137–3142

    Article  CAS  PubMed  Google Scholar 

  132. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60:4324–4327

    CAS  PubMed  Google Scholar 

  133. Salnikov AV, Iversen VV, Koisti M et al (2003) Lowering of tumor interstitial fluid pressure specifically augments efficacy of chemotherapy. FASEB J 17:1756–1758

    CAS  PubMed  Google Scholar 

  134. Roos A (1978) Weak acids, weak bases and intracellular pH. Respir Physiol 33:27–30

    Article  CAS  PubMed  Google Scholar 

  135. Gerweck LE, Vijayappa S, Kozin S (2006) Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther 5:1275–1279

    Article  CAS  PubMed  Google Scholar 

  136. Boyer MJ (1997) Bioreductive agents: a clinical update. Oncol Res 9:391–395

    CAS  PubMed  Google Scholar 

  137. Lluis JM, Morales A, Blasco C et al (2005) Critical role of mitochondrial glutathione in the survival of hepatocytes during hypoxia. J Biol Chem 280:3224–3232

    Article  CAS  PubMed  Google Scholar 

  138. Murphy BJ, Laderoute KR, Chin RJ, Sutherland RM (1994) Metallothionein IIA is up-regulated by hypoxia in human A431 squamous carcinoma cells. Cancer Res 54:5808–5810

    CAS  PubMed  Google Scholar 

  139. Comerford KM, Wallace TJ, Karhausen J et al (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  140. Liu L, Ning X, Sun L et al (2008) Hypoxia-inducible factor-1 alpha contributes to hypoxia-induced chemoresistance in gastric cancer. Cancer Sci 99:121–128

    CAS  PubMed  Google Scholar 

  141. Han HK, Han CY, Cheon EP, Lee J, Kang KW (2007) Role of hypoxia-inducible factor-alpha in hepatitis-B-virus X protein-mediated MDR1 activation. Biochem Biophys Res Commun 357:567–573

    Article  CAS  PubMed  Google Scholar 

  142. Song X, Liu X, Chi W et al (2006) Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol 58:776–784

    Article  CAS  PubMed  Google Scholar 

  143. Krishnamurthy P, Ross DD, Nakanishi T et al (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279:24218–24225

    Article  CAS  PubMed  Google Scholar 

  144. Alkatout I, Kabelitz D, Kalthoff H, Tiwari S (2008) Prowling wolves in sheep’s clothing: the search for tumor stem cells. Biol Chem 389:799–811

    Article  CAS  PubMed  Google Scholar 

  145. Trumpp A, Wiestler OD (2008) Mechanisms of Disease: cancer stem cells–targeting the evil twin. Nat Clin Pract Oncol 5:337–347

    CAS  PubMed  Google Scholar 

  146. Kim M, Turnquist H, Jackson J et al (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28

    CAS  PubMed  Google Scholar 

  147. Zhou S, Schuetz JD, Bunting KD et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  CAS  PubMed  Google Scholar 

  148. Bunting KD (2002) ABC transporters as phenotypic markers and functional regulators of stem cells. Stem Cells 20:11–20

    Article  CAS  PubMed  Google Scholar 

  149. Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233

    Article  CAS  PubMed  Google Scholar 

  150. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  CAS  PubMed  Google Scholar 

  151. Frank NY, Margaryan A, Huang Y et al (2005) ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–4333

    Article  CAS  PubMed  Google Scholar 

  152. Frank NY, Pendse SS, Lapchak PH et al (2003) Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 278:47156–47165

    Article  CAS  PubMed  Google Scholar 

  153. Fromm MF (2004) Importance of P-glyco­protein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429

    Article  CAS  PubMed  Google Scholar 

  154. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  CAS  PubMed  Google Scholar 

  155. Trowsdale J, Hanson I, Mockridge I et al (1990) Sequences encoded in the class II region of the MHC related to the ‘ABC’ superfamily of transporters. Nature 348:741–744

    Article  CAS  PubMed  Google Scholar 

  156. Abele R, Tampe R (2004) The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. Physiology (Bethesda) 19:216–224

    CAS  Google Scholar 

  157. Takahashi K, Kimura Y, Nagata K et al (2005) ABC proteins: key molecules for lipid homeostasis. Med Mol Morphol 38:2–12

    Article  CAS  PubMed  Google Scholar 

  158. Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  CAS  PubMed  Google Scholar 

  159. Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 84:3004–3008

    Article  CAS  PubMed  Google Scholar 

  160. Ueda K, Clark DP, Chen CJ et al (1987) The human multidrug resistance (mdr1) gene. cDNA cloning and transcription initiation. J Biol Chem 262:505–508

    CAS  PubMed  Google Scholar 

  161. Cole SP, Bhardwaj G, Gerlach JH et al (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  CAS  PubMed  Google Scholar 

  162. Doyle LA, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670

    Article  CAS  PubMed  Google Scholar 

  163. Ambudkar SV, Kim IW, Sauna ZE (2006) The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Eur J Pharm Sci 27:392–400

    Article  CAS  PubMed  Google Scholar 

  164. Cascorbi I (2006) Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol Ther 112:457–473

    Article  CAS  PubMed  Google Scholar 

  165. Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231–259

    Article  CAS  PubMed  Google Scholar 

  166. Ieiri I, Takane H, Otsubo K (2004) The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet 43:553–576

    Article  CAS  PubMed  Google Scholar 

  167. Kimchi-Sarfaty C, Oh JM, Kim IW et al (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  168. Fung KL, Gottesman MM (2009) A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochim Biophys Acta 1794:860–871

    CAS  PubMed  Google Scholar 

  169. Kohno K, Sato S, Takano H, Matsuo K, Kuwano M (1989) The direct activation of human multidrug resistance gene (MDR1) by anticancer agents. Biochem Biophys Res Commun 165:1415–1421

    Article  CAS  PubMed  Google Scholar 

  170. Chaudhary PM, Roninson IB (1993) Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 85:632–639

    Article  CAS  PubMed  Google Scholar 

  171. Robey RW, Polgar O, Deeken J, To KW, Bates SE (2007) ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev 26:39–57

    Article  CAS  PubMed  Google Scholar 

  172. Hirose M, Hosoi E, Hamano S, Jalili A (2003) Multidrug resistance in hematological malignancy. J Med Invest 50:126–135

    PubMed  Google Scholar 

  173. Ross DD (2000) Novel mechanisms of drug resistance in leukemia. Leukemia 14:467–473

    Article  CAS  PubMed  Google Scholar 

  174. van den Heuvel-Eibrink MM, Sonneveld P, Pieters R (2000) The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia. Int J Clin Pharmacol Ther 38:94–110

    PubMed  Google Scholar 

  175. Marie JP, Legrand O (1999) MDR1/P-GP expression as a prognostic factor in acute leukemias. Adv Exp Med Biol 457:1–9

    CAS  PubMed  Google Scholar 

  176. Wuchter C, Leonid K, Ruppert V et al (2000) Clinical significance of P-glycoprotein expression and function for response to induction chemotherapy, relapse rate and overall survival in acute leukemia. Haematologica 85:711–721

    CAS  PubMed  Google Scholar 

  177. Tafuri A, Gregorj C, Petrucci MT et al (2002) MDR1 protein expression is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood 100:974–981

    Article  CAS  PubMed  Google Scholar 

  178. Wattel E, Lepelley P, Merlat A et al (1995) Expression of the multidrug resistance P glycoprotein in newly diagnosed adult acute lymphoblastic leukemia: absence of correlation with response to treatment. Leukemia 9:1870–1874

    CAS  PubMed  Google Scholar 

  179. Larkin A, O’Driscoll L, Kennedy S et al (2004) Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression in invasive breast cancer: a prognostic study. Int J Cancer 112:286–294

    Article  CAS  PubMed  Google Scholar 

  180. Leonessa F, Clarke R (2003) ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer 10:43–73

    Article  CAS  PubMed  Google Scholar 

  181. Efferth T, Gillet JP, Sauerbrey A et al (2006) Expression profiling of ATP-binding cassette transporters in childhood T-cell acute lymphoblastic leukemia. Mol Cancer Ther 5:1986–1994

    Article  CAS  PubMed  Google Scholar 

  182. Gillet JP, Schneider J, Bertholet V et al (2006) Microarray Expression Profiling of ABC Transporters in Human Breast Cancer. Cancer Genom Proteom 3:97–106

    CAS  Google Scholar 

  183. Gillet JP, Efferth T, Steinbach D et al (2004) Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res 64:8987–8993

    Article  CAS  PubMed  Google Scholar 

  184. Szakacs G, Annereau JP, Lababidi S et al (2004) Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6:129–137

    Article  CAS  PubMed  Google Scholar 

  185. Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the cancer transcriptome. Nat Genet 37(Suppl):S31–S37

    Article  CAS  PubMed  Google Scholar 

  186. Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180

    Article  CAS  PubMed  Google Scholar 

  187. Rhodes DR, Kalyana-Sundaram S, Tomlins SA et al (2007) Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9:443–454

    Article  CAS  PubMed  Google Scholar 

  188. Rhodes DR, Yu J, Shanker K et al (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6:1–6

    CAS  PubMed  Google Scholar 

  189. Annereau JP, Szakacs G, Tucker CJ et al (2004) Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance. Mol Pharmacol 66:1397–1405

    Article  CAS  PubMed  Google Scholar 

  190. Orina JN, Calcagno AM, Wu C-P, et al (2009) Evaluation of current methods to analyze the expression profiles of ABC transporters yields an improved drug-discovery database. Mol Cancer Ther 8:2057–2066

    Article  CAS  PubMed  Google Scholar 

  191. Filipits M, Stranzl T, Pohl G et al (2000) Drug resistance factors in acute myeloid leukemia: a comparative analysis. Leukemia 14:68–76

    Article  CAS  PubMed  Google Scholar 

  192. Hart SM, Ganeshaguru K, Scheper RJ et al (1997) Expression of the human major vault protein LRP in acute myeloid leukemia. Exp Hematol 25:1227–1232

    CAS  PubMed  Google Scholar 

  193. List AF, Spier CS, Grogan TM et al (1996) Overexpression of the major vault transporter protein lung-resistance protein predicts treatment outcome in acute myeloid leukemia. Blood 87:2464–2469

    CAS  PubMed  Google Scholar 

  194. Xu D, Arestrom I, Virtala R et al (1999) High levels of lung resistance related protein mRNA in leukaemic cells from patients with acute myelogenous leukaemia are associated with inferior response to chemotherapy and prior treatment with mitoxantrone. Br J Haematol 106:627–633

    Article  CAS  PubMed  Google Scholar 

  195. Legrand O, Simonin G, Beauchamp-Nicoud A, Zittoun R, Marie JP (1999) Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. Blood 94:1046–1056

    CAS  PubMed  Google Scholar 

  196. Leith CP, Kopecky KJ, Chen IM et al (1999) Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 94:1086–1099

    CAS  PubMed  Google Scholar 

  197. Schaich M, Soucek S, Thiede C, Ehninger G, Illmer T (2005) MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br J Haematol 128:324–332

    Article  CAS  PubMed  Google Scholar 

  198. Sunnaram BL, Gandemer V, Sebillot M et al (2003) LRP overexpression in monocytic lineage. Leuk Res 27:755–759

    Article  CAS  PubMed  Google Scholar 

  199. van den Heuvel-Eibrink MM, Wiemer EA, Prins A et al (2002) Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia 16:833–839

    Article  PubMed  CAS  Google Scholar 

  200. Borg AG, Burgess R, Green LM, Scheper RJ, Yin JA (1998) Overexpression of lung-resistance protein and increased P-glycoprotein function in acute myeloid leukaemia cells predict a poor response to chemotherapy and reduced patient survival. Br J Haematol 103:1083–1091

    Article  CAS  PubMed  Google Scholar 

  201. Filipits M, Pohl G, Stranzl T et al (1998) Expression of the lung resistance protein predicts poor outcome in de novo acute myeloid leukemia. Blood 91:1508–1513

    CAS  PubMed  Google Scholar 

  202. Pirker R, Pohl G, Stranzl T et al (1999) The lung resistance protein (LRP) predicts poor outcome in acute myeloid leukemia. Adv Exp Med Biol 457:133–139

    CAS  PubMed  Google Scholar 

  203. Oh EJ, Kahng J, Kim Y et al (2003) Expression of functional markers in acute lymphoblastic leukemia. Leuk Res 27:903–908

    Article  CAS  PubMed  Google Scholar 

  204. Valera ET, Scrideli CA, Queiroz RG, Mori BM, Tone LG (2004) Multiple drug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia. Sao Paulo Med J 122:166–171

    Article  PubMed  Google Scholar 

  205. Volm M, Stammler G, Zintl F, Koomagi R, Sauerbrey A (1997) Expression of lung resistance-related protein (LRP) in initial and relapsed childhood acute lymphoblastic leukemia. Anticancer Drugs 8:662–665

    Article  CAS  PubMed  Google Scholar 

  206. Ohno N, Tani A, Uozumi K et al (2001) Expression of functional lung resistance–related protein predicts poor outcome in adult T-cell leukemia. Blood 98:1160–1165

    Article  CAS  PubMed  Google Scholar 

  207. Filipits M, Drach J, Pohl G et al (1999) Expression of the lung resistance protein predicts poor outcome in patients with multiple myeloma. Clin Cancer Res 5:2426–2430

    CAS  PubMed  Google Scholar 

  208. Raaijmakers HG, Izquierdo MA, Lokhorst HM et al (1998) Lung-resistance-related protein expression is a negative predictive factor for response to conventional low but not to intensified dose alkylating chemotherapy in multiple myeloma. Blood 91:1029–1036

    CAS  PubMed  Google Scholar 

  209. Rimsza LM, Campbell K, Dalton WS et al (1999) The major vault protein (MVP), a new multidrug resistance associated protein, is frequently expressed in multiple myeloma. Leuk Lymphoma 34:315–324

    CAS  PubMed  Google Scholar 

  210. Brinkhuis M, Izquierdo MA, Baak JP et al (2002) Expression of multidrug resistance-associated markers, their relation to quantitative pathologic tumour characteristics and prognosis in advanced ovarian cancer. Anal Cell Pathol 24:17–23

    CAS  PubMed  Google Scholar 

  211. Izquierdo MA, van der Zee AG, Vermorken JB et al (1995) Drug resistance-associated marker Lrp for prediction of response to chemotherapy and prognoses in advanced ovarian carcinoma. J Natl Cancer Inst 87: 1230–1237

    Article  CAS  PubMed  Google Scholar 

  212. Mayr D, Pannekamp U, Baretton GB et al (2000) Immunohistochemical analysis of drug resistance-associated proteins in ovarian carcinomas. Pathol Res Pract 196:469–475

    CAS  PubMed  Google Scholar 

  213. Arts HJ, Katsaros D, de Vries EG et al (1999) Drug resistance-associated markers P-glycoprotein, multidrug resistance-associated protein 1, multidrug resistance-associated protein 2, and lung resistance protein as prognostic factors in ovarian carcinoma. Clin Cancer Res 5:2798–2805

    CAS  PubMed  Google Scholar 

  214. Burger H, Foekens JA, Look MP et al (2003) RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 9:827–836

    CAS  PubMed  Google Scholar 

  215. Linn SC, Pinedo HM, van Ark-Otte J et al (1997) Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer 71:787–795

    Article  CAS  PubMed  Google Scholar 

  216. Schneider J, Lucas R, Sanchez J et al (2000) Modulation of molecular marker expression by induction chemotherapy in locally advanced breast cancer: correlation with the response to therapy and the expression of MDR1 and LRP. Anticancer Res 20:4373–4377

    CAS  PubMed  Google Scholar 

  217. Kanzaki A, Toi M, Nakayama K et al (2001) Expression of multidrug resistance-related transporters in human breast carcinoma. Jpn J Cancer Res 92:452–458

    CAS  PubMed  Google Scholar 

  218. Pohl G, Filipits M, Suchomel RW et al (1999) Expression of the lung resistance protein (LRP) in primary breast cancer. Anticancer Res 19:5051–5055

    CAS  PubMed  Google Scholar 

  219. Volm M, Mattern J, Koomagi R (1997) Expression of lung resistance-related protein (LRP) in non-small cell lung carcinomas of smokers and non-smokers and its predictive value for doxorubicin resistance. Anticancer Drugs 8:931–936

    Article  CAS  PubMed  Google Scholar 

  220. Volm M, Rittgen W (2000) Cellular predictive factors for the drug response of lung cancer. Anticancer Res 20:3449–3458

    CAS  PubMed  Google Scholar 

  221. Chiou JF, Liang JA, Hsu WH et al (2003) Comparing the relationship of Taxol-based chemotherapy response with P-glycoprotein and lung resistance-related protein expression in non-small cell lung cancer. Lung 181:267–273

    Article  CAS  PubMed  Google Scholar 

  222. Dingemans AM, van Ark-Otte J, van der Valk P et al (1996) Expression of the human major vault protein LRP in human lung cancer samples and normal lung tissues. Ann Oncol 7:625–630

    CAS  PubMed  Google Scholar 

  223. Berger W, Setinek U, Hollaus P et al (2005) Multidrug resistance markers P-glycoprotein, multidrug resistance protein 1, and lung resistance protein in non-small cell lung cancer: prognostic implications. J Cancer Res Clin Oncol 131:355–363

    Article  CAS  PubMed  Google Scholar 

  224. Diestra JE, Condom E, Del Muro XG et al (2003) Expression of multidrug resistance proteins P-glycoprotein, multidrug resistance protein 1, breast cancer resistance protein and lung resistance related protein in locally advanced bladder cancer treated with neoadjuvant chemotherapy: biological and clinical implications. J Urol 170:1383–1387

    Article  CAS  PubMed  Google Scholar 

  225. Uozaki H, Horiuchi H, Ishida T et al (1997) Overexpression of resistance-related proteins (metallothioneins, glutathione-S-transferase pi, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Relationship with poor prognosis. Cancer 79:2336–2344

    Article  CAS  PubMed  Google Scholar 

  226. Gaumann A, Tews DS, Mentzel T et al (2003) Expression of drug resistance related proteins in sarcomas of the pulmonary artery and poorly differentiated leiomyosarcomas of other origin. Virchows Arch 442:529–537

    CAS  PubMed  Google Scholar 

  227. Plaat BE, Hollema H, Molenaar WM et al (2000) Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors: differences in clinical outcome and expression of multidrug resistance proteins. J Clin Oncol 18:3211–3220

    CAS  PubMed  Google Scholar 

  228. Zurita AJ, Diestra JE, Condom E et al (2003) Lung resistance-related protein as a predictor of clinical outcome in advanced testicular germ-cell tumours. Br J Cancer 88:879–886

    Article  CAS  PubMed  Google Scholar 

  229. Mandoky L, Geczi L, Doleschall Z et al (2004) Expression and prognostic value of the lung resistance-related protein (LRP) in germ cell testicular tumors. Anticancer Res 24:1097–1104

    CAS  PubMed  Google Scholar 

  230. Boonstra R, Timmer-Bosscha H, van Echten-Arends J et al (2004) Mitoxantrone resistance in a small cell lung cancer cell line is associated with ABCA2 upregulation. Br J Cancer 90:2411–2417

    CAS  PubMed  Google Scholar 

  231. Vulevic B, Chen Z, Boyd JT et al (2001) Cloning and characterization of human adenosine 5′-triphosphate-binding cassette, sub-family A, transporter 2 (ABCA2). Cancer Res 61:3339–3347

    CAS  PubMed  Google Scholar 

  232. Takara K, Sakaeda T, Okumura K (2006) An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des 12:273–286

    Article  CAS  PubMed  Google Scholar 

  233. Calcagno AM, Kim IW, Wu CP, Shukla S, Ambudkar SV (2007) ABC drug transporters as molecular targets for the prevention of multidrug resistance and drug-drug interactions. Curr Drug Deliv 4:324–333

    Article  CAS  PubMed  Google Scholar 

  234. Smith AJ, van Helvoort A, van Meer G et al (2000) MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 275:23530–23539

    Article  CAS  PubMed  Google Scholar 

  235. Huang Y, Anderle P, Bussey KJ et al (2004) Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 64:4294–4301

    Article  CAS  PubMed  Google Scholar 

  236. Childs S, Yeh RL, Hui D, Ling V (1998) Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein. Cancer Res 58:4160–4167

    CAS  PubMed  Google Scholar 

  237. Deeley RG, Cole SP (2006) Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580:1103–1111

    Article  CAS  PubMed  Google Scholar 

  238. Guminski AD, Balleine RL, Chiew YE et al (2006) MRP2 (ABCC2) and cisplatin sensitivity in hepatocytes and human ovarian carcinoma. Gynecol Oncol 100:239–246

    Article  CAS  PubMed  Google Scholar 

  239. Huisman MT, Chhatta AA, van Tellingen O, Beijnen JH, Schinkel AH (2005) MRP2 (ABCC2) transports taxanes and confers paclitaxel resistance and both processes are stimulated by probenecid. Int J Cancer 116:824–829

    Article  CAS  PubMed  Google Scholar 

  240. Jedlitschky G, Hoffmann U, Kroemer HK (2006) Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2:351–366

    Article  CAS  PubMed  Google Scholar 

  241. Materna V, Stege A, Surowiak P, Priebsch A, Lage H (2006) RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells. Biochem Biophys Res Commun 348:153–157

    Article  CAS  PubMed  Google Scholar 

  242. Zelcer N, Saeki T, Reid G, Beijnen JH, Borst P (2001) Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J Biol Chem 276:46400–46407

    Article  CAS  PubMed  Google Scholar 

  243. Zeng H, Chen ZS, Belinsky MG, Rea PA, Kruh GD (2001) Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 61:7225–7232

    CAS  PubMed  Google Scholar 

  244. Chen ZS, Lee K, Kruh GD (2001) Transport of cyclic nucleotides and estradiol 17-beta-d-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 276:33747–33754

    Article  CAS  PubMed  Google Scholar 

  245. Ritter CA, Jedlitschky G, Meyer zu Schwabedissen H et al (2005) Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metab Rev 37:253–278

    Article  CAS  PubMed  Google Scholar 

  246. Tian Q, Zhang J, Chan SY et al (2006) Topotecan is a substrate for multidrug resistance associated protein 4. Curr Drug Metab 7:105–118

    Article  CAS  PubMed  Google Scholar 

  247. Tian Q, Zhang J, Tan TM et al (2005) Human multidrug resistance associated protein 4 confers resistance to camptothecins. Pharm Res 22:1837–1853

    Article  CAS  PubMed  Google Scholar 

  248. Pratt S, Shepard RL, Kandasamy RA et al (2005) The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 4:855–863

    Article  CAS  PubMed  Google Scholar 

  249. Belinsky MG, Chen ZS, Shchaveleva I, Zeng H, Kruh GD (2002) Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 62:6172–6177

    CAS  PubMed  Google Scholar 

  250. Naramoto H, Uematsu T, Uchihashi T et al (2007) Multidrug resistance-associated protein 7 expression is involved in cross-resistance to docetaxel in salivary gland adenocarcinoma cell lines. Int J Oncol 30:393–401

    CAS  PubMed  Google Scholar 

  251. Hopper-Borge E, Chen ZS, Shchaveleva I, Belinsky MG, Kruh GD (2004) Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 64:4927–4930

    Article  CAS  PubMed  Google Scholar 

  252. Chen ZS, Guo Y, Belinsky MG, Kotova E, Kruh GD (2005) Transport of bile acids, sulfated steroids, estradiol 17-beta-d-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol 67:545–557

    Article  CAS  PubMed  Google Scholar 

  253. Guo Y, Kotova E, Chen ZS et al (2003) MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′, 3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. J Biol Chem 278:29509–29514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute. We would like to thank George Leiman for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Gottesman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gillet, JP., Gottesman, M.M. (2010). Mechanisms of Multidrug Resistance in Cancer. In: Zhou, J. (eds) Multi-Drug Resistance in Cancer. Methods in Molecular Biology, vol 596. Humana Press. https://doi.org/10.1007/978-1-60761-416-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-416-6_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-415-9

  • Online ISBN: 978-1-60761-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics