Skip to main content

Design and Use of Fluorescent Ligands to Study Ligand–Receptor Interactions in Single Living Cells

  • Protocol
  • First Online:
Book cover Receptor Signal Transduction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 746))

Abstract

The interaction of ligands with G protein-coupled receptors (GPCRs) has been traditionally studied using radiolabelled variants of receptor ligands. More recently, increased knowledge about the way in which GPCRs exist in a highly organised membrane environment has led to an interest in investigating receptor–ligand interactions in single cells. In addition, substantial improvements in imaging technology and an increase in the expense of radioactive waste disposal have resulted in an expansion in the use of fluorescent technologies. One major requirement for these methods is a suitable fluorescent ligand for the receptor of interest. The design of fluorescent ligands for GPCRs is complex, and has to take into account their pharmacological, photophysical, and also physicochemical properties. Here, we describe some basic considerations in the design of fluorescent GPCR ligands, including choice of pharmacological template, linker, and fluorophore. In addition, we describe basic protocols for determining the photophysical properties of the ligand and determining the cellular localisation of their interaction with the target receptors. Finally, we provide a basic protocol for using fluorescent GPCR ligands to quantify the number and diffusion of receptor–ligand complexes in small areas of the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Middleton, R.J., and Kellam B. (2005) Fluorophore-tagged GPCR ligands. Curr. Op. Chem. Biol. 9, 517–525.

    Article  CAS  Google Scholar 

  2. Daly, C.J. and McGrath, J.C. (2003) Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol. Ther. 100, 101–118.

    Article  PubMed  CAS  Google Scholar 

  3. Leopoldo, M., Lacivita, E., Berardi, F., and Perrone, R. (2009) Developments in fluorescent probes for receptor research. Drug. Discov. Today 14, 706–712.

    Article  PubMed  CAS  Google Scholar 

  4. Ostrom, R.S, and Insel, P.A. (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signalling: implication for molecular pharmacology. Br. J. Pharmacol. 143, 235–245.

    Article  PubMed  CAS  Google Scholar 

  5. Insel, P.A., Head, B.P., Ostrom, R.S., Patel, H.H., Swaney, J.S., Tang, C.M., Roth, D.M. (2005) Caveolae and lipid rafts: G-protein-coupled receptor signalling microdomains in cardiac myocytes. Ann. N.Y. Acad. Sci. 1047, 166–172.

    Article  CAS  Google Scholar 

  6. Hern, J.A., Baig, A.H., Mashanov, G.I., Birdsall, B., Corrie, J.E., Lazareno, S., Molloy, J.E., and Birdsall, N.J. (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc. Natl. Acad. Sci. USA 107, 2693–2698.

    Article  PubMed  CAS  Google Scholar 

  7. Miquel, M.R., Segura, V., Ali, Z., D’Ocon, M.P., McGrath, J.C., and Daly, C.J. (2005) 3-D image analysis of fluorescent drug binding. Mol. Imaging 4, 40–52.

    PubMed  Google Scholar 

  8. Briddon, S.J., Cordeaux, Y., Middleton, R.J., Weinstein, J, George, M.W., Kellam, B., and Hill, S.J. (2004) Quantitative analysis of the formation and diffusion of A(1)-adenosine receptor-antagonist complexes in single living cells Proc. Natl. Acad. Sci. USA 101, 4673–4678.

    Article  CAS  Google Scholar 

  9. Daly, C.J., Ross, R., Whyte, J., Henstridge, C., Irving, A., and McGrath, J. (2010) Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and ‘cannabinoid-like’ receptors in small arteries. Br. J. Pharmacol. In Press, DOI: 10.1111/j.1476-5381.2009.00608.x

    Google Scholar 

  10. Jones, J.W., Greene, T.A., Grygon, C.A., Doranz, B.J., and Brown, M.P. (2008) Cell-free assay of G-protein-coupled receptors using fluorescence polarization. J. Biomol. Screen 13, 424–429.

    Article  PubMed  CAS  Google Scholar 

  11. Harikumar, K.G., Pinon, D.L. and Miller, L.J. (2006) Fluorescence characteristics of hydrophobic partial agonist probes of the cholecystokinin receptor. Biosci. Rep. 26, 89–100.

    Article  PubMed  CAS  Google Scholar 

  12. Harikumar, K.G., Hosohata, K., Pinon, D.I., and Miller, L.J. (2006) Use of probes with fluorescent indicator distributed throughout the pharmacophore to examine the peptide agonist-binding environment of the family B G protein-coupled secretin receptor. J. Biol. Chem. 281, 2543–2550.

    Article  PubMed  CAS  Google Scholar 

  13. Ilien, B., Franchet, C., Bernard, P., Morisset, S., Well, C.O., Bourguignon, J.J., Hibert, M., and Galzi, J.L. (2003) Fluorescence resonance energy transfer to probe human M1 muscarinic receptor structure and drug binding properties. J. Neurochem. 85, 768–778.

    Article  PubMed  CAS  Google Scholar 

  14. Tahtaoui, C., Guillier, F., Klotz, P., Galzi, J.L., Hibert, M. and Ilien, B (2005) On the use of nonfluorescent dye labelled ligands in FRET-based receptor binding studies. J. Med. Chem. 48, 7847–7859.

    Article  PubMed  CAS  Google Scholar 

  15. Middleton, R.J., Briddon, S.J., Cordeaux, Y., Yates, A.S., Dale, C.L., George, M.W., Baker, J.G., Hill, S.J., and Kellam, B. (2007) New fluorescent adenosine A1-receptor agonists which allow quantification of ligand-receptor interactions in microdomains of single living cells. J. Med. Chem. 50, 782–793.

    Article  PubMed  CAS  Google Scholar 

  16. Briddon, S.J. and Hill, S.J. (2007) Pharmacology under the microscope: the use of fluorescence correlation spectroscopy to determine the properties of ligand receptor complexes. Trends Pharmacol. Sci. 28, 637–645.

    Article  PubMed  CAS  Google Scholar 

  17. Cordeaux Y, Briddon SJ, Alexander SPH, Kellam B & Hill SJ (2008) Agonist-occupied A3 adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB J. 22, 850–860.

    Article  PubMed  CAS  Google Scholar 

  18. Hegener O, Prenner L, Runkel F, Baader SL, Kappler J & Haberlein H (2004) Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43, 6190–6199.

    Article  PubMed  CAS  Google Scholar 

  19. Ziemek, R., Brennauer, A., Schneider, E., Cabrele, C., Beck-Sickinger, A.G., Bernhardt, G., and Buschauer, A. (2006) Fluorescence- and luminescence -based methods for the determination of affinity and activity of neuropeptide Y2 receptor. Eur. J. Pharmacol. 551, 10–18.

    Article  PubMed  CAS  Google Scholar 

  20. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications Cell Biochem. Biophys. 34, 383–408.

    CAS  Google Scholar 

  21. Kim S, Heinze K & Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat. Methods 4, 963–973.

    Article  PubMed  CAS  Google Scholar 

  22. Baker, J.G., Middleton, R.J., Adams, L., Briddon, S.J., Kellam, B, and Hill, S.J. (2010) Pharmacological characteristics of different fluorescent ligands at the human adenosine-A1 receptor. Br. J. Pharmacol 159, 772–786.

    Google Scholar 

  23. Wohland T, Friedrich K, Hovius R & Vogel H (1999) Study of ligand-receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3As receptor binds only one ligand. Biochemistry 38, 8671–8681.

    Article  PubMed  CAS  Google Scholar 

  24. Cornelius, P., Lee, E., Lin, W., Wang, R., Werner, W., Brown, J.A., Stuhmeier, F., Boyd, J.G., and McClure, K. (2009) Design, synthesis and pharmacology of fluorescently labeled analogs of serotonin: application to screening of the 5-HT2C receptor. J. Biomol. Screen. 14, 360–370.

    Article  PubMed  CAS  Google Scholar 

  25. Briddon, S.J., Hern, J.A., and Hill, S.J. (2009) Use of fluorescence correlation spectroscopy to study GPCRs. In G-protein coupled receptors – Essential Methods (Poyner, D. and Wheatley, M., ed.), Wiley-Blackwell, 169–191.

    Google Scholar 

  26. Pramanik A & Rigler R (2001) FCS-analysis of ligand-receptor interactions in living cells. In Fluorescence Correlation Spectroscopy: Theory and Applications, (Elson, E. & Rigler, R., ed.) Springer, Heidelberg. 101–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Briddon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Briddon, S.J., Kellam, B., Hill, S.J. (2011). Design and Use of Fluorescent Ligands to Study Ligand–Receptor Interactions in Single Living Cells. In: Willars, G., Challiss, R. (eds) Receptor Signal Transduction Protocols. Methods in Molecular Biology, vol 746. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-126-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-126-0_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-125-3

  • Online ISBN: 978-1-61779-126-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics