Skip to main content
Book cover

Heparanase pp 759–770Cite as

Heparanase, Heparan Sulfate and Viral Infection

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

The story of heparanase (HPSE) in viral infection has roots in the longstanding connection between heparan sulfate (HS) and a large number of viruses. As a major viral attachment and entry receptor present on the cell surface, HS serves as the first point of contact between a virus particle and its target host cell. Likewise, direct regulation of HS levels on the cell surface by HPSE enzymatic activity dictates the extent of virus release after replication has occurred. Additionally, virus-induced HPSE activation and nuclear translocation results in higher expression of pro-inflammatory factors and delayed wound healing leading to worsened disease. In this chapter, using herpes simplex virus (HSV) as a prototype virus we provide a brief synopsis of important stages in viral infection, describe how these processes are governed by HS and HPSE, and discuss the recent discoveries that designate HPSE as a major host virulence factor and driver of pathogenesis for several different viruses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Medeiros, G. F., Mendes, A., Castro, R. A., Bau, E. C., Nader, H. B., & Dietrich, C. P. (2000). Distribution of sulfated glycosaminoglycans in the animal kingdom: Widespread occurrence of heparin-like compounds in invertebrates. Biochimica et Biophysica Acta, 1475(3), 287–294.

    Article  CAS  Google Scholar 

  2. Esko, J. D., & Lindahl, U. (2001). Molecular diversity of heparan sulfate. Journal of Clinical Investigation, 108(2), 169–173. https://doi.org/10.1172/jci200113530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shriver, Z., Capila, I., Venkataraman, G., & Sasisekharan, R. (2012). Heparin and heparan sulfate: Analyzing structure and microheterogeneity. Handbook of Experimental Pharmacology, 207, 159–176. https://doi.org/10.1007/978-3-642-23056-1_8.

    Article  CAS  Google Scholar 

  4. Barth, H., Schafer, C., Adah, M. I., Zhang, F. M., Linhardt, R. J., Toyoda, H., Kinoshita-Toyoda, A., Toida, T., Van Kuppevelt, T. H., Depla, E., Von Weizsacker, F., Blum, H. E., & Baumert, T. F. (2003). Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. Journal of Biological Chemistry, 278(42), 41003–41012. https://doi.org/10.1074/jbc.M302267200.

    Article  PubMed  Google Scholar 

  5. Chen, Y. P., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J., & Marks, R. M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine, 3(8), 866–871. https://doi.org/10.1038/nm0897-866.

    Article  CAS  PubMed  Google Scholar 

  6. Feldman, S. A., Audet, S., & Beeler, J. A. (2000). The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. Journal of Virology, 74(14), 6442–6447. https://doi.org/10.1128/jvi.74.14.6442-6447.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giroglou, T., Florin, L., Schafer, F., Streeck, R. E., & Sapp, M. (2001). Human papillomavirus infection requires cell surface heparan sulfate. Journal of Virology, 75(3), 1565–1570. https://doi.org/10.1128/jvi.75.3.1565-1570.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roderiquez, G., Oravecz, T., Yanagishita, M., Bou-Habib, D. C., Mostowski, H., & Norcross, M. A. (1995). Mediation of human immunodeficiency virus type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp120-gp41. Journal of Virology, 69(4), 2233–2239.

    Article  CAS  Google Scholar 

  9. Shukla, D., & Spear, P. G. (2001). Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry. The Journal of Clinical Investigation, 108(4), 503–510. https://doi.org/10.1172/JCI13799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shukla, D., Liu, J., Blaiklock, P., Shworak, N. W., Bai, X., Esko, J. D., Cohen, G. H., Eisenberg, R. J., Rosenberg, R. D., & Spear, P. G. (1999). A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell, 99(1), 13–22.

    Article  CAS  Google Scholar 

  11. Dogra, P., Martin, E. B., Williams, A., Richardson, R. L., Foster, J. S., Hackenback, N., Kennel, S. J., Sparer, T. E., & Wall, J. S. (2015). Novel heparan sulfate-binding peptides for blocking herpesvirus entry. PLoS One, 10(5), e0126239. https://doi.org/10.1371/journal.pone.0126239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jaishankar, D., Yakoub, A. M., Bogdanov, A., Valyi-Nagy, T., & Shukla, D. (2015). Characterization of a proteolytically stable D-peptide that suppresses herpes simplex virus 1 infection: Implications for the development of entry-based antiviral therapy. Journal of Virology, 89(3), 1932–1938. https://doi.org/10.1128/JVI.02979-14.

    Article  CAS  PubMed  Google Scholar 

  13. Jaishankar, D., Buhrman, J. S., Valyi-Nagy, T., Gemeinhart, R. A., & Shukla, D. (2016). Extended release of an anti-Heparan Sulfate peptide from a contact Lens suppresses corneal herpes simplex Virus-1 infection. Investigative Ophthalmology & Visual Science, 57(1), 169–180. https://doi.org/10.1167/iovs.15-18365.

    Article  CAS  Google Scholar 

  14. Tiwari, V., Liu, J., Valyi-Nagy, T., & Shukla, D. (2011). Anti-heparan sulfate peptides that block herpes simplex virus infection in vivo. The Journal of Biological Chemistry, 286(28), 25406–25415. https://doi.org/10.1074/jbc.M110.201103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oh, M. J., Akhtar, J., Desai, P., & Shukla, D. (2010). A role for heparan sulfate in viral surfing. Biochemical and Biophysical Research Communications, 391(1), 176–181. https://doi.org/10.1016/j.bbrc.2009.11.027.

    Article  CAS  PubMed  Google Scholar 

  16. O’donnell, C. D., Tiwari, V., Oh, M. J., & Shukla, D. (2006). A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology, 346(2), 452–459. https://doi.org/10.1016/j.virol.2005.11.003.

    Article  CAS  PubMed  Google Scholar 

  17. Xia, G., Chen, J., Tiwari, V., Ju, W., Li, J. P., Malmstrom, A., Shukla, D., & Liu, J. (2002). Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. The Journal of Biological Chemistry, 277(40), 37912–37919. https://doi.org/10.1074/jbc.M204209200.

    Article  CAS  PubMed  Google Scholar 

  18. Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D. 2006. A novel role for phagocytosis-like uptake in herpes simplex virus entry. The Journal of Cell Biology 174(7):1009–1021. PubMed PMID: 17000878; PubMed Central PMCID: PMC2064392.

  19. Taddeo, B., & Roizman, B. (2006). The virion host shutoff protein (UL41) of herpes simplex virus 1 is an endoribonuclease with a substrate specificity similar to that of RNase a. Journal of Virology, 80(18), 9341–9345. https://doi.org/10.1128/JVI.01008-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cohen, S., Au, S., & Pante, N. (2011). How viruses access the nucleus. Biochimica et Biophysica Acta, 1813(9), 1634–1645. https://doi.org/10.1016/j.bbamcr.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  21. Honess, R. W., & Roizman, B. (1974). Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. Journal of Virology, 14(1), 8–19.

    Article  CAS  Google Scholar 

  22. Sandwall, E., Bodevin, S., Nasser, N. J., Nevo, E., Avivi, A., Vlodavsky, I., & Li, J. P. (2009). Molecular structure of heparan sulfate from Spalax. Implications of heparanase and hypoxia. The Journal of Biological Chemistry, 284(6), 3814–3822. https://doi.org/10.1074/jbc.M802196200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, G., Wang, D., Vikramadithyan, R., Yagyu, H., Saxena, U., Pillarisetti, S., & Goldberg, I. J. (2004). Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry, 43(17), 4971–4977. https://doi.org/10.1021/bi0356552.

    Article  CAS  PubMed  Google Scholar 

  24. Goldberg, R., Meirovitz, A., Hirshoren, N., Bulvik, R., Binder, A., Rubinstein, A. M., & Elkin, M. (2013). Versatile role of heparanase in inflammation. Matrix Biology, 32(5), 234–240. https://doi.org/10.1016/j.matbio.2013.02.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Teoh, M. L., Fitzgerald, M. P., Oberley, L. W., & Domann, F. E. (2009). Overexpression of extracellular superoxide dismutase attenuates heparanase expression and inhibits breast carcinoma cell growth and invasion. Cancer Research, 69(15), 6355–6363. https://doi.org/10.1158/0008-5472.CAN-09-1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiao, W., Chen, Y., Song, H., Li, D., Mei, H., Yang, F., Fang, E., Wang, X., Huang, K., Zheng, L., & Tong, Q. (2018). HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene, 37(20), 2728–2745. https://doi.org/10.1038/s41388-018-0128-0.

    Article  CAS  PubMed  Google Scholar 

  27. Wu, X., Dao Thi, V. L., Huang, Y., Billerbeck, E., Saha, D., Hoffmann, H. H., Wang, Y., Silva, L. a. V., Sarbanes, S., Sun, T., Andrus, L., Yu, Y., Quirk, C., Li, M., Macdonald, M. R., Schneider, W. M., An, X., Rosenberg, B. R., & Rice, C. M. (2018). Intrinsic immunity shapes viral resistance of stem cells. Cell, 172(3), 423–438. e25. https://doi.org/10.1016/j.cell.2017.11.018.

    Article  CAS  PubMed  Google Scholar 

  28. Meirovitz, A., Goldberg, R., Binder, A., Rubinstein, A. M., Hermano, E., & Elkin, M. (2013). Heparanase in inflammation and inflammation-associated cancer. The FEBS Journal, 280(10), 2307–2319. https://doi.org/10.1111/febs.12184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vlodavsky, I., & Friedmann, Y. (2001). Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. The Journal of Clinical Investigation, 108(3), 341–347. https://doi.org/10.1172/JCI13662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parish, C. R., Freeman, C., & Hulett, M. D. (2001). Heparanase: A key enzyme involved in cell invasion. Biochimica et Biophysica Acta, 1471(3), M99–M108.

    CAS  PubMed  Google Scholar 

  31. Schonherr, E., & Hausser, H. J. (2000). Extracellular matrix and cytokines: A functional unit. Developmental Immunology, 7(2–4), 89–101.

    Article  CAS  Google Scholar 

  32. Hadigal, S. R., Agelidis, A. M., Karasneh, G. A., Antoine, T. E., Yakoub, A. M., Ramani, V. C., Djalilian, A. R., Sanderson, R. D., & Shukla, D. (2015). Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nature Communications, 6, 6985. https://doi.org/10.1038/ncomms7985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hopkins, J., Yadavalli, T., Agelidis, A. M., & Shukla, D. (2018). Host enzymes Heparanase and Cathepsin L promote herpes simplex virus 2 release from cells. Journal of Virology, 92(23). https://doi.org/10.1128/JVI.01179-18.

  34. Andela, V. B., Schwarz, E. M., Puzas, J. E., O’keefe, R. J., & Rosier, R. N. (2000). Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Research, 60(23), 6557–6562.

    CAS  PubMed  Google Scholar 

  35. Cao, H. J., Fang, Y., Zhang, X., Chen, W. J., Zhou, W. P., Wang, H., Wang, L. B., & Wu, J. M. (2005). Tumor metastasis and the reciprocal regulation of heparanase gene expression by nuclear factor kappa B in human gastric carcinoma tissue. World Journal of Gastroenterology, 11(6), 903–907.

    Article  CAS  Google Scholar 

  36. Wu, W., Pan, C. E., Meng, K., Zhao, L., Du, L., Liu, Q., & Lin, R. (2010). Hypoxia activates heparanase expression in an NF-kappa B dependent manner. Oncology Reports, 23(1), 255–261. https://doi.org/10.3892/or_00000631.

    Article  CAS  PubMed  Google Scholar 

  37. Air, G. M., & Laver, W. G. (1989). The neuraminidase of influenza virus. Proteins, 6(4), 341–356. https://doi.org/10.1002/prot.340060402.

    Article  CAS  PubMed  Google Scholar 

  38. Hayden, F. G., Atmar, R. L., Schilling, M., Johnson, C., Poretz, D., Paar, D., Huson, L., Ward, P., Mills, R. G., & Grp, O. S. (1999). Use of the selective oral neuraminidase inhibitor oseltamivir to prevent influenza. New England Journal of Medicine, 341(18), 1336–1343. https://doi.org/10.1056/Nejm199910283411802.

    Article  CAS  PubMed  Google Scholar 

  39. Guo, C., Zhu, Z., Guo, Y., Wang, X., Yu, P., Xiao, S., Chen, Y., Cao, Y., & Liu, X. (2017a). Heparanase Upregulation contributes to porcine reproductive and respiratory syndrome virus release. Journal of Virology, 91(15). https://doi.org/10.1128/JVI.00625-17.

  40. Guo, C., Zhu, Z., Wang, X., Chen, Y., & Liu, X. (2017b). Pyrithione inhibits porcine reproductive and respiratory syndrome virus replication through interfering with NF-kappaB and heparanase. Veterinary Microbiology, 201, 231–239. https://doi.org/10.1016/j.vetmic.2017.01.033.

    Article  CAS  PubMed  Google Scholar 

  41. Khanna, M., Ranasinghe, C., Browne, A. M., Li, J. P., Vlodavsky, I., & Parish, C. R. (2019). Is host heparanase required for the rapid spread of heparan sulfate binding viruses? Virology, 529, 1–6. https://doi.org/10.1016/j.virol.2019.01.001.

    Article  CAS  PubMed  Google Scholar 

  42. Agelidis, A. M., Hadigal, S. R., Jaishankar, D., & Shukla, D. (2017). Viral activation of Heparanase drives pathogenesis of herpes simplex Virus-1. Cell Reports, 20(2), 439–450. https://doi.org/10.1016/j.celrep.2017.06.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fux, L., Feibish, N., Cohen-Kaplan, V., Gingis-Velitski, S., Feld, S., Geffen, C., Vlodavsky, I., & Ilan, N. (2009). Structure-function approach identifies a COOH-terminal domain that mediates heparanase signaling. Cancer Research, 69(5), 1758–1767. https://doi.org/10.1158/0008-5472.CAN-08-1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ljubimov, A. V., & Saghizadeh, M. (2015). Progress in corneal wound healing. Progress in Retinal and Eye Research, 49, 17–45. https://doi.org/10.1016/j.preteyeres.2015.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Puerta-Guardo, H., Glasner, D. R., & Harris, E. (2016). Dengue virus NS1 disrupts the endothelial Glycocalyx, leading to Hyperpermeability. PLoS Pathogens, 12(7), e1005738. https://doi.org/10.1371/journal.ppat.1005738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Glasner, D. R., Ratnasiri, K., Puerta-Guardo, H., Espinosa, D. A., Beatty, P. R., & Harris, E. (2017). Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathogens, 13(11), e1006673. https://doi.org/10.1371/journal.ppat.1006673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agelidis, A., Shukla, D. (2020). Heparanase, Heparan Sulfate and Viral Infection. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_32

Download citation

Publish with us

Policies and ethics