Skip to main content
Log in

Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, and corpora allata of an adult lepidopteran insect, Manduca sexta (L)

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

In the brain of adult specimens of the tobacco hornworm moth, Manduca sexta (L), cells immunoreactive for several kinds of neuropeptides were localized by means of the PAP procedure, by use of antisera raised against mammalian hormones or hormonal peptides. In contrast, no such neurosecretory cells were found in the corpora cardiaca and corpora allata (CC/CA); in the CC/CA, however, immunoreactive nerve fibres were observed, reaching these organs from the brain.

The neurosecretory cells found in the brain were immunoreactive with at least one of the following mammalian antisera, namely those raised against the insulin B-chain, somatostatin, glucagon C-terminal, glucagon N-terminal, pancreatic polypeptide (PP), secretin, vasoactive intestinal polypeptide (VIP), glucose-dependent insulinotropic peptide (GIP), gastrin C-terminus, enkephalin, α-and β-endorphin, Substance P, and calcitonin. No cells were immunoreactive with antisera specific for detecting neurons containing the insulin A-chain, nerve growth factor, epidermal growth factor, insulin connecting peptide (C-peptide), polypeptide YY (PYY), gastrin mid-portion (sequence 6–13), cholecystokinin (CCK) mid-portion (sequences 9–20 and 9–25), neurotensin C-terminus, bombesin, motilin, ACTH, or serotonin.

All the neuropeptide-immunoreactive cells observed emitted nerve fibers passing through the brain to the CC and in some cases also to the CA. In CC these immunoreactive nerve fibers tended to accumulate near the aorta. It was speculated that neuropeptides are released into the circulating haemolymph and act as neurohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alumets J, Håkanson R, Sundler F, Thorell J (1979) Neuronal localization of immunoreactive enkephalin and β-endorphin in the earthworm. Nature 279:805–806

    PubMed  Google Scholar 

  • Bell RA, Joachim FG (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Amer 69:365–373

    Google Scholar 

  • Benedeczky I, Kiss JZ, Somogyi P (1982) Light and electronmicroscopic localization of substance P-like immunoreactivity in the cerebral ganglion of locust with a monoclonal antibody. Histochemistry 75:123–131

    PubMed  Google Scholar 

  • Blundell TL, Humbel RE (1980) Hormone families: Pancreatic hormones and homologous growth factors. Nature 287:781–787

    PubMed  Google Scholar 

  • Buehner TS, Nettleton GS, Longley JB (1979) Staining properties of aldehyde fuchsin analogs. J Histochem Cytochem 27:782–787

    PubMed  Google Scholar 

  • Buffa R, Grivelli O, Fiocca R, Fontana P, Solcia E (1979) Complement-mediated unspecific binding of immunoglobulins to some endocrine cells. Histochemistry 63:15–21

    PubMed  Google Scholar 

  • Doerr-Schott J, Joly L, Dubois MP (1978) Sur l'existence dans la pars intercerebralis d'un insecte (Locusta migratoria R et F) de cellules neurosécrétrices fixant un antisérum antisomatostatin. C R Acad Sci 206:93–95

    Google Scholar 

  • Duve H, Thorpe A (1979) Immunofluorescent localization of insulin-material in the median neurosecretory cells of the blowfly, Calliphora vomitoria (Diptera). Cell Tissue Res 200:187–191

    PubMed  Google Scholar 

  • Duve H, Thorpe A (1980) Localization of pancreatic polypeptide (PP)-like immunoreactive material in neurons of the brain of the blowfly, Calliphora erythrocephala (Diptera). Cell Tissue Res 210:101–109

    PubMed  Google Scholar 

  • Duve H, Thorpe A (1981) Gastrin/cholecystokinin (CCK)-like immunoreactive neurones in the brain of the blowfly, Calliphora erythrocephala (Diptera). Gen Comp Endocrinol 43:381–391

    PubMed  Google Scholar 

  • Duve H, Thorpe A (1982) Vertebrate-type brain/gut peptides in the brain of the blowfly, Calliphora vomitoria: Immunocytochemical localisation of α-endorphin-like peptide. Gen Comp Endocrinol 46:371 (Abstract)

    Google Scholar 

  • Duve H, Thorpe A, Lazarus NR (1979) The isolation of material displaying insulin-like immunological and biological activity from the brain of the blowfly, Calliphora vomitoria. Biochem J 184:221–227

    PubMed  Google Scholar 

  • Duve H, Thorpe A, Neville R, Lazarus NR (1981) Isolation and partial characterization of pancreatic polypeptide-like material in the brain of the blowfly, Calliphora vomitoria. Biochem J 197:767–770

    PubMed  Google Scholar 

  • El-Salhy M (1981a) On the phylogeny of the gastro-entero-pancreatic (GEP) neuroendocrine system. Acta Univ Upsal 385:1–39

    Google Scholar 

  • El-Salhy M (1981b) Immunohistochemical localization of pancreatic polypeptide (PP) in the brain of the larval instar of the hoverfly, Eristalis aeneus (Diptera). Experientia 37:1009

    Google Scholar 

  • El-Salhy M, Abou-El-Ela R, Falkmer S, Grimelius L, Wilander E (1980) Immunohistochemical evidence of gastro-entero-pancreatic neurohormonal peptides of vertebrate type in the nervous system of the larva of a dipteran insect, the hoverfly, Eristalis aeneus. Regul Peptides 1:187–204

    Google Scholar 

  • El-Salhy M, Falkmer S, Kramer KJ (1982) The brain of the tobacco hornworm, Manduca sexta, as a neuro-endocrine organ. — A clue to the evolution of the diffuse neuroendocrine system. Abstract 4th Internat Sympos Gastrointest Horm, Stockholm, June 20–23, 1982, p 59 (Abstract)

  • Falkmer S, Carraway RE, El-Salhy M, Emdin SO, Grimelius L, Rehfeld JF, Reinecke M, Schwartz TFW (1980a) Phylogeny of the GEP neuroendocrine system. A review. UCLA Forum Med Sci 23:21–42

    Google Scholar 

  • Falkmer S, Ebert R, Arnold R, Creutzfeldt W (1980b) Some phylogenetic aspects on the enteroinsular axis with particular regard to the appearance of the gastric inhibitory polypeptide. Front Horm Res 7:1–6

    Google Scholar 

  • Falkmer S, Emdin SO (1981) Insulin evolution. In: Dodson G, Glusker JP, Sayre D (eds) Structural studies of molecules of biological interest. Oxford Univ Press, Oxford, pp 420–440

    Google Scholar 

  • Falkmer S, Van Noorden S (1983) Ontogeny and phylogeny of the glucagon cell. Chapter 5 in: Born GVR, Farah A, Herken H, Welch AD (eds) Handbuch der experimentellen Pharmakologie; vol 66/I, Lefebvre PJ (ed) Glucagon, Springer Verlag, Heidelberg, pp 81–119

    Google Scholar 

  • Grimelius L, Wilander E (1980) Silver stains in the study of endocrine cells in the gut and pancreas. Invest Cell Path 3:3–12

    Google Scholar 

  • Grimmelikhuijzen CJP, Dockray GJ, Yanaihara N (1981) Bombesin-like immunoreactivity in the nervous system of hydra. Histochemistry 73:171–180

    PubMed  Google Scholar 

  • Gros C, Lafon-Cazal M, Dray F (1978) Présence de substances immunoréactivement apparentées aux enképhalines chez un insecte, Locusta migratoria. C R Acad Sci 287:647–650

    Google Scholar 

  • Hansen BL, Hansen GN, Scharrer B (1982) Immunoreactive material resembling vertebrate neuropeptides in the corpus cardiacum and corpus allatum of the insect Leucophaea maderae. Cell Tissue Res 225:319–329

    PubMed  Google Scholar 

  • Imagawa K, Nishino T, Shin S, Uehata S, Hashimura E, Yanaihara C, Yanaihara N (1979) Production of antiglucagon sera with a C-terminal fragment of pancreatic glucagon. Endocrinol Jap 26:123–131

    Google Scholar 

  • Kramer KJ (1983) Vertebrate hormones in insects. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 7: Endocrinology I, Pergamon Press, Oxford, (in press)

    Google Scholar 

  • Kramer KJ, Speirs RD, Childs CN (1977) Immunochemical evidence for a gastrin-like peptide in insect neuroendocrine system. Gen Comp Endocrinol 32:423–426

    PubMed  Google Scholar 

  • Kramer KJ, Tager HS, Childs CN (1980) Insulin-like and glucagon-like peptides in insect haemolymph. Insect Biochem 10:179–182

    Google Scholar 

  • Kramer KJ, Childs CN, Speirs RD, Jacobs RM (1982) Purification of insulin-like peptides from insect haemolymph and royal jelly. Insect Biochem 12:91–98

    Google Scholar 

  • Lane NJ (1974) The organization of insect nervous system. In: Treherne JE (ed) Insect neurobiology, vol 35. Neuberger A, Tatum EL (eds) Frontiers biol. North-Holland Publ, Amsterdam, pp 1–71

    Google Scholar 

  • Le Roith D, Lesniak MA, Roth J (1981) Insulin in insects and annelids. Diabetes 30:70–76

    PubMed  Google Scholar 

  • Martin G, Dubois MP (1981) A somatostatin-like antigen in the nervous system of an isopod Porcellio dilatatus Brandt. Gen Comp Endocrinol 45:125–130

    PubMed  Google Scholar 

  • Martin R, Frösch D, Weber E, Voigt KH (1979) Met-enkephalin-like immunoreactivity in a cephalopod neurohemal organ. Neurosci Lett 15:253–257

    PubMed  Google Scholar 

  • Rémy C, Dubois MP (1979) Localization par immunofluorescence de peptides analogues à l'α-endorphine dans les ganglions infra-oesophagiens du lombricide, Dendrobaena subrubicunda Eisen. Experientia 35:137–138

    Google Scholar 

  • Rémy C, Dubois MP (1981) Immunohistological evidence of methionine-enkephalin-like material in the brain of the migratory locust. Cell Tissue Res 218:271–278

    PubMed  Google Scholar 

  • Rémy C, Girardie J, Dubois MP (1978) Présence dans le ganglion sous-oesophagien de la chenille processionaire du pin (Thaumetopoea pityocampa Schiff) de cellules révélèes en immunofluorescence par un anticorps anti-α-endorphine. C R Acad Sci 286:651–653

    Google Scholar 

  • Rémy C, Girardie J, Dubois MP (1979) Vertebrate neuropeptide-like substances in the suboesophageal ganglion of two insects, Locusta migratoria R and F (Orthoptera) and Bombyx mori L (Lepidoptera). Immunohistochemical investigation. Gen Comp Endocrinol 37:93–100

    PubMed  Google Scholar 

  • Sabesan MN (1980) Secondary structural and active site homologies between nerve growth factor and insulin. J Theoret Biol 83:469–476

    Google Scholar 

  • Scharrer B (1983) Neurosecretion — The development of a concept. Proc 9th Internat Symp Comp Endocr, held in Hong Kong, Dec 7–11, 1981, B Lofts (ed) Hong Kong Univ Press (in press)

  • Scharrer E, Scharrer B (1937) Über Drüsennervenzellen und neurosekretorische Organe bei Wirbellosen und Wirbeltieren. Biol Rev Cambr Phil Soc 12:185–216

    Google Scholar 

  • Schot LPC, Boer HH, Swaab EF, Van Noorden S (1981) Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail, Lymnaea stagnalis, with antisera raised to biologically active peptides of vertebrates. Cell Tissue Res 216:273–291

    PubMed  Google Scholar 

  • Stefano GB, Scharrer B (1981) High affinity binding of an enkephalin analog in the cerebral ganglion of the insect Leucophaea maderae (Blattaria). Brain Res 225:107–114

    PubMed  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd ed, John Wiley & Sons, New York, pp 1–354

    Google Scholar 

  • Sundler F, Håkanson R, Alumets J, Walles B (1977) Neuronal localization of pancreatic polypeptide (PP) and vasoactive intestinal peptide (VIP) immunoreactivity in the earthworm (Lumbricus terrestris). Brain Res Bull 2:61–65

    PubMed  Google Scholar 

  • Tager HS, Kramer KJ (1980) Insect glucagon-like peptides: Evidence for a high molecular weight form in midgut from Manduca sexta (L.). Insect Biochem 10:617–619

    Google Scholar 

  • Tager HS, Markese J, Kramer KJ, Speirs RD, Childs CW (1976) Glucagon-like and insulin-like hormones of the insect neurosecretory system. Biochem J 156:515–520

    PubMed  Google Scholar 

  • Tatemoto K, (1982a) Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc. Natl. Acad. Sci (USA) 79:2514–2518

    Google Scholar 

  • Tatemoto K (1982b) Neuropeptide Y: Complete amino acid sequence of the brain peptide. Proc. Natl. Acad. Sci (USA) 79:5485–5489

    Google Scholar 

  • Van Noorden S, Falkmer S (1980) Gut-islet endocrinology. Some evolutionary aspects. Invest Cell Pathol 3:21–36

    PubMed  Google Scholar 

  • Van Noorden S, Fritsch HAR, Grillo TAI, Polak JM, Pearse AGE (1980) Immunocytochemical staining for vertebrate peptides in the nervous system of a gastropod mollusc. Gen Comp Endocrinol 40:375–376

    Google Scholar 

  • Yui R, Fujita T, Ito S (1980) Insulin-, gastrin-, pancreatic-polypeptide-like immunoreactive neurons in the brain of the silkworm, Bombyx mori. Biomed Res 1:42–46

    Google Scholar 

  • Zipser B (1980) Identification of specific leech neurons immunoreactive to enkephalin. Nature 283:857–858

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Salhy, M., Falkmer, S., Kramer, K.J. et al. Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, and corpora allata of an adult lepidopteran insect, Manduca sexta (L). Cell Tissue Res. 232, 295–317 (1983). https://doi.org/10.1007/BF00213788

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00213788

Key words

Navigation