Skip to main content
Log in

The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

We have studied the pharmacokinetics of methotrexate in patients with rheumatoid arthritis concurrently treated with choline magnesium trisalicylate, ibuprofen, naproxen, or a non-NSAID analgesic (control treatment).

The apparent systemic clearance of methotrexate was significantly reduced by all three treatments. Trisalicylate and ibuprofen both significantly reduced methotrexate renal clearance, but only the trisalicylate significantly displaced methotrexate from protein, increasing the fraction unbound by 28%.

These data show that NSAIDs can affect the disposition of methotrexate, possibly increasing the potential for toxicity and necessitating dosage adjustments. However, large inter-subject variability precludes specific dosage recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Health and Public Policy Committee, American College of Physicians (1987) Methotrexate in rheumatoid arthritis. Ann Intern Med 107: 418–419

    Google Scholar 

  2. Furst DE, Kremer JM (1988) Methotrexate in rheumatoid arthritis. Arth Rheum 31: 305–314

    Google Scholar 

  3. Tugwell P, Bennett K, Gent M (1987) Methotrexate in rheumatoid arthritis: indications, contraindications, efficacy and safety. Ann Intern Med 107: 358–366

    Google Scholar 

  4. Hall S, Buchbinder R, Harkness A, Littlejohn G, Miller M, Ryan P (1988) Safety and efficacy of low dosage long term methotrexate in rheumatoid arthritis assessed by lifetable analysis of treatment terminations (abstract). Arth Rheum 31 [Suppl]: S116

  5. Weinblatt ME, Trentham DE, Fraser PA, Holdworth DE, Falcheck KR, Weissman BN, Coblyn JS (1988) Long term prospective trial of low dose methotrexate in rheumatoid arthritis. Arth Rheum 31: 167–175

    Google Scholar 

  6. Furst DE, Koehnke R, Burmeister LF, Kohler J, Cargill I (1989) Increasing methotrexate effect with increasing dose in the treatment of resistant rheumatoid arthritis. J Rheumatol 16: 313–320

    Google Scholar 

  7. Stewart CF, Fleming RA, Arkin CR, Evans WE (1990) Coad-ministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis. Clin Pharmacol Ther 47: 540–546

    Google Scholar 

  8. Nierenberg DW (1983) Competitive inhibition of methotrexate in rabbit kidney slices by nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther 226: 1–6

    Google Scholar 

  9. Nuernberg B, Koehnke R, Solsky M, Hoffman J, Furst DE (1990) Biliary elimination of low-dose methotrexate in humans. Arth Rheum 1990; 33: 898–902

    Google Scholar 

  10. Creaven PJ, Hansen HH, Alford DA, Allen LM (1973) Methotrexate in liver and bile after intravenous dosage in man. Br J Canc 28: 589–591

    Google Scholar 

  11. Liegler DG, Henderson ES, Hahn MA, Oliverio VT (1969) The effect of organic acids on renal clearance of methotrexate in man. Clin Pharmacol Ther 10: 849–857

    Google Scholar 

  12. Furst D, Herman R, Koehnke R, Ericksen N, Hash L, Riggs CE, Porras A, Veng-Pedersen P (1990) The effect of aspirin and sulindac on methotrexate clearance. J Pharm Sci 79: 782–786

    Google Scholar 

  13. Skeith KJ, Russell AS, Jamali F, Coates J (1990) Lack of significant interaction between low-dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis. J Rheumatol 17: 1008–1010

    Google Scholar 

  14. Singh RR, Malaviya AN, Pandey JN, Guleria JS (1986) Fatal interaction between methotrexate and naproxen. Lancet I: 1390

    Google Scholar 

  15. Daly H, Boyle J, Roberts C, Scott G (1986) Interaction between methotrexate and nonsteroidal anti-inflammatory drugs. Lancet I: 559

    Google Scholar 

  16. MacKinnon SK, Starkebaum G, Willkens RF (1985) Pancytopenia associated with low-dose pulse methotrexate in the treatment of rheumatoid arthritis. Semin Arth Rheum 15: 119–136

    Google Scholar 

  17. Tracy TS, Jones DR, Hall SD, Brater DC, Bradley JD, Krohn K (1990) The effect of NSAIDs on methotrexate disposition in patients with rheumatoid arthritis. Clin Pharmacol Ther 47: 138

    Google Scholar 

  18. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, Medsger TA, Mitchell DM, Neustadt DH, Pinals RS, Schaller JG, Sharp JT, Wilder RL, Hunder GG (1988) The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arth Rheum 31: 315–324

    Google Scholar 

  19. Sand TE, Jacobsen S (1981) Effect of urine pH and flow on renal clearance of methotrexate. Eur J Clin Pharmacol 19: 453–456

    Google Scholar 

  20. Chiou WL (1978) Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule for the calculation of the area under the plasma concentration time curve. J Pharmacokinet Biopharm 6: 539–546

    Google Scholar 

  21. Einot I, Gabriel KR (1975) A study of the powers of several methods of multiple comparisons. J Am Stat Assoc 70: 351

    Google Scholar 

  22. Albert KS, Gernaat CM (1984) Pharmacokinetics of ibuprofen. Am J Med 71A: 40–46

    Google Scholar 

  23. Runkel RA, Forchielli E, Sevelius H, Chaplin M, Segre E (1974) Nonlinear plasma level response to high doses of naproxen. Clin Pharmacol Ther 15: 261–266

    Google Scholar 

  24. Wosilait W (1976) Theoretical analysis of the binding of salicylate by human serum albumin. The relationship between free and bound drug and therapeutic levels. Eur J Clin Pharmacol 9: 285–290

    Google Scholar 

  25. Sjoholm I (1986) The specificity of drug binding sites on human serum albumin. In: Reidenberg MM, Erill S (eds) Drug-protein binding, Praeger Scientific, New York, pp 36–44

    Google Scholar 

  26. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12: 1052–1061

    Google Scholar 

  27. Hall SD, Rowland M (1985) Influence of fraction unbound upon the renal clearance of furosemide in the isolated perfused rat kidney. J Pharmacol Exp Ther 232: 263–268

    Google Scholar 

  28. Runkel R, Forchielli E, Boost G, Chaplin M, Hill R, Sevelius H, Thompson G, Segre E (1973) Naproxen metabolism, excretion and comparative pharmacokinetics. Scand J Rheum [Suppl] 2: 29–36

    Google Scholar 

  29. Levy G, Tsuchiya T, Amsel LP (1972) Limited capacity of salicylphenolic glucuronide formation and its effects on the kinetics of salicylate elimination in man. Clin Pharmacol Ther 13: 258–268

    Google Scholar 

  30. Koch PA, Schultz CA, Wills RJ, Hallquist SL, Welling PG (1978) Influence of food and fluid ingestion on aspirin bioavailability. J Pharm Sci 67: 1533–1535

    Google Scholar 

  31. Herman RA, Veng-Pedersen P, Hoffman J, Koehnke R, Furst DE (1989) Pharmacokinetics of low-dose methotrexate in rheumatoid arthritis patients. J Pharm Sci 78: 165–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracy, T.S., Krohn, K., Jones, D.R. et al. The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis. Eur J Clin Pharmacol 42, 121–125 (1992). https://doi.org/10.1007/BF00278469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00278469

Key words

Navigation