Skip to main content
Log in

A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquilizers, β-carbolines, and phenobarbitone

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

The potent benzodiazepine receptor ligands β-carboline-3-carboxylic acid ethyl ester (β-CCM) and the corresponding methylester (β-CCM) administered i.v. depressed segmental dorsal root potentials in spinal cats, reversed the prolongation of dorsal root potentials by phenobarbitone, and abolished the depression of a motor performance task induced by phenobarbitone in mice; β-CCE enhanced the low-frequency facilitation of pyramidal population spikes in the hippocampus of anaesthetized rats. These effects of β-carbolines reflect a depression of GABAergic synaptic transmission and, thus, are diametrically opposed to the enhancing action of benzodiazepine tranquilizers. The specific benzodiazepine antagonist, Ro 15-1788, while not affecting dorsal root potentials, hippocampal population spikes or phenobarbitone-induced motor performance depression, abolished the effects of β-CCE on the three parameters and similar effects of β-CCM on the spinal cord and motor performance.

A three-state model of the benzodiazepine receptor is proposed in which benzodiazepine tranquilizers act as agonists enhancing the function of the benzodiazepine receptor as a coupling unit between GABA receptor and chloride channel, β-carbolines act as “inverse agonists” reducing this coupling function, and Ro 15-1788 represents a competitive antagonist blocking both the enhancing effect of agonists and the depressant effect of “inverse agonists” on GABAergic synaptic transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlquist J, Brown MW, Rose D (1982) The effects of amnesia-producing drugs on hippocampal potentiation in the rat. Br J Pharmacol 75:48P

    Google Scholar 

  • Ben-Ari Y, Krnjevic K, Reinhardt W (1979) Hippocampal seizures and failure of inhibition. Can J Physiol Pharmacol 57:1462–1466

    Google Scholar 

  • Bernhard P, Bergen K, Sobiski R, Robson RD (1981) CGS 8216 (2-phenylpyrazolo[4,3-c]quinolin-3(5H)-one), an orally effective benzodiazepine antagonist. Pharmacologist 23:150

    Google Scholar 

  • Besson J-M, Rivot J-P, Aleonard P (1971) Action of picrotoxin on presynaptic inhibition of various origins in the cat's spinal cord. Brain Res 26:212–216

    Google Scholar 

  • Bonetti EP, Pieri L, Cumin R, Schaffner R, Pieri M, Gamzu ER, Müller RKM, Haefely W (1982) Benzodiazepine antagonist Ro 15-1788: Neurological and behavioral effects. Psychopharmacology 78: 8–18

    Google Scholar 

  • Braestrup C, Nielsen M, Olsen CE (1980) Urinary and brain β-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc Natl Acad Sci USA 77:2288–2292

    Google Scholar 

  • Braestrup C, Schmiechen R, Neef G, Nielsen M, Petersen EN (1982) Interaction of convulsive ligands with benzodiazepine receptors. Science 216:1241–1243

    Google Scholar 

  • Cepeda C, Tanaka T, Besselièvre R, Potier P, Naquet R, Rossier J (1981) Proconvulsant effects in baboons of β-carboline, a putative endogenous ligand for benzodiazepine receptors. Neurosci Lett 24:53–57

    Google Scholar 

  • Choi DW, Farb DH, Fischbach GD (1981) Chlordiazepoxide selectively potentiates GABA conductance of spinal cord and sensory neurons in cell culture. J Neurophysiol 45:621–631

    Google Scholar 

  • Costa E, Guidotti A (1979) Molecular mechanisms in the receptor action of benzodiazepines. Ann Rev Pharmacol Toxicol 19:531–545

    Google Scholar 

  • Courvoisier S (1956) Pharmacodynamic basis for the use of chlorpromazine in psychiatry. J Clin Exp Psychopathol 17:25–37

    Google Scholar 

  • Cowen PJ, Green AR, Nutt DJ, Martin IL (1981) Ethyl-β-carboline carboxylate lowers seizure threshold and antagonizes flurazepaminduced sedation in rats. Nature 290:54–55

    Google Scholar 

  • Gee KW, Yamamura H (1982) A novel pyrazoloquinoline that interacts with brain benzodiazepine receptors: characterization of some in vitro and in vivo properties of CGS 9896. Life Sci 30:2245–2252

    Google Scholar 

  • Haefely W, Polc P, Schaffner R, Keller HH, Pieri L, Möhler H (1979) Facilitation of GABAergic transmission by drugs. In: Krogsgaard-Larsen P, Scheel-Krüger J, Kofod H (eds) GABA-Neurotransmitters. Munksgaard, Copenhagen, pp 357–375

    Google Scholar 

  • Haefely W, Pieri L, Polc P, Schaffner R (1981a) General pharmacology and neuropharmacology of benzodiazepine derivatives. In: Hoffmeister F, Stille G (eds) Handbook of experimental pharmacology; Psychotropic agents, vol 55, Part 2. Springer, Berlin Heidelberg New York, pp 13–262

    Google Scholar 

  • Haefely W, Schaffner R, Pole P, Pieri L (1981b) General pharmacology and neuropharmacology of propanediol carbamates. In: Hoffmeister F, Stille G (eds) Handbook of experimental pharmacology; Psychotropic agents, vol 55, Part 2. Springer, Berlin Heidelberg New York, pp 265–283

    Google Scholar 

  • Hunkeler W, Möhler H, Pieri L, Polc P, Bonetti EP, Cumin R, Schaffner R, Haefely W (1981) Selective antagonists of benzodiazepines. Nature 290:514–516

    Google Scholar 

  • Jones BJ, Oakley NR (1981) The convulsant properties of methyl-β-carboline-3-carboxylate in the mouse. Br J Pharmacol 74:884P-885P

    Google Scholar 

  • Macdonald RL, Barker JL (1979) Enhancement of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons: a common mode of anticonvulsant action. Brain Res 167:323–336

    Google Scholar 

  • McMillan JA, Mokha SS (1982) Effects of bicuculline on dorsal root potentials in the cat. J Physiol (London) 322:34P

    Google Scholar 

  • Möhler H, Richards JG (1981) Agonist and antagonist benzodiazepine receptor interaction in vitro. Nature 294:763–765

    Google Scholar 

  • Möhler H, Burkard WP, Keller HH, Richards JG, Haefely W (1981) Benzodiazepine antagonist Ro 15-1788: Binding characteristics and interaction with drug-induced changes in dopamine turnover and cerebellar cGMP levels. J Neurochem 37:714–722

    Google Scholar 

  • Nicoll RA (1978) Selective actions of barbiturates on synaptic transmission. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: A generation of progress. Raven Press, New York, pp 1337–1348

    Google Scholar 

  • Nicoll RA, Alger BE (1979) Presynaptic inhibition: transmitter and ionic mechanisms. Int Rev Neurobiol 21:217–258

    Google Scholar 

  • Nutt DJ, Cowen PJ, Little HJ (1982) Unusual interactions of benzodiazepine receptor antagonists. Nature 295:436–438

    Google Scholar 

  • Oakley NR, Jones BJ (1980) The proconvulsant and diazepam-reversing effects of ethyl-β-carboline-3-carboxylate. Eur J Pharmacol 68:381–382

    Google Scholar 

  • O'Brien RA, Schlosser W, Spirt NM, Franco S, Horst WD, Polc P, Bonetti EP (1981) Antagonism of benzodiazepine receptors by beta carbolines. Life Sci 29:75–82

    Google Scholar 

  • Olsen RW (1981) GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem 37:1–13

    Google Scholar 

  • Polc P, Laurent J-P, Scherschlicht R, Haefely W (1981a) Electrophysiological studies on the specific benzodiazepine antagonist Ro 15-1788. Naunyn-Schmiedeberg's Arch Pharmacol 316:317–325

    Google Scholar 

  • Polc P, Ropert N, Wright DM (1981b) Ethyl β-carboline-3-carboxylate antagonizes the action of GABA and benzodiazepines in the hippocampus. Brain Res 217:216–220

    Google Scholar 

  • Skerritt JH, Willow M, Johnston GAR (1982) Diazepam enhancement of low affinity GABA binding to rat brain membranes. Neurosci Lett 29:63–66

    Google Scholar 

  • Study RE, Barker JL (1981) Diazepam and (−)-pentobarbital: Fluctuation analysis reveals different mechanisms for potentiation of γ-amino-butyric acid responses in cultured central neurons. Proc Natl Acad Sci USA 78:7180–7184

    Google Scholar 

  • Supavilai P, Mannonen A, Karobath M (1982) Modulation of GABA binding sites by CNS depressants and CNS convulsants. Neurochem Int 4:259–268

    Google Scholar 

  • Tenen SS, Hirsch JD (1980) β-Carboline-3-carboxylic acid ethyl ester antagonizes diazepam activity. Nature 28:609–610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polc, P., Bonetti, E.P., Schaffner, R. et al. A three-state model of the benzodiazepine receptor explains the interactions between the benzodiazepine antagonist Ro 15-1788, benzodiazepine tranquilizers, β-carbolines, and phenobarbitone. Naunyn-Schmiedeberg's Arch. Pharmacol. 321, 260–264 (1982). https://doi.org/10.1007/BF00498510

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00498510

Key words

Navigation