Skip to main content
Log in

Role of extracellular matrix proteins in heart function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The cardiac interstitium is populated by nonmyocyte cell types including transcriptionally active cardiac fibroblasts and endothelial cells. Since these cells are the source of many components of the cardiac extracellular matrix, and because changes in cardiac extracellular matrix are suspected of contributing to the genesis of cardiovascular complications in disease states such as diabetes, hypertension, cardiac hypertrophy and congestive heart failure, interest in the mechanisms of activation of fibroblasts and endothelial cells has led to progress in understanding these processes. Recent work provides evidence for the role of the renin-angiotensin-aldosterone system in the pathogenesis of abnormal deposition of extracellular matrix in the cardiac interstitium during the development of inappropriate cardiac hypertrophy and failure. The cardiac extracellular matrix is also known to change in response to altered cardiac performance associated with post-natal aging, and in response to environmental stimuli including intermittent hypoxia and abnormal nutrition. It is becoming clear that the extracellular matrix mainly consists of molecules of collagen types I and III; they form fibrils and provide most of the connective material for tying together myocytes and other structures in the myocardium and thus is involved in the transmission of developed mechanical force. The data available in the literature support the view that the extracellular matrix is a dynamic entity and alterations in this structure result in the development of heart dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Swynghedauw B: Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66: 710–771, 1986

    Google Scholar 

  2. Baldwin KM, Cooke DA, Cheadle WG: Enzyme alteration in neonatal muscle during development. J Mol Cell Cardiol 8: 651–660, 1977

    Google Scholar 

  3. Brooks WW, Bing OH, Blaustein AS, Allen PD: Comparison of contractile state and myosin isoenzymes of rat right and left ventricular myocardium. J Mol Cell Cardiol 19: 433–440, 1987

    Google Scholar 

  4. Foster JA, Curtiss SW: The regulation of lung elastin synthesis. Am J Physiol 259: L13-L23, 1990

    Google Scholar 

  5. Narayanan N: Comparison of ATP-dependent calcium transport and calcium activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages. Mech Aging Dev 38: 127–143, 1987

    Google Scholar 

  6. Cummins P: Contractile proteins in muscle disease. J Muscle Res Cell Motility 4: 5–24, 1983

    Google Scholar 

  7. Dhalla NS, Dixon IMC, Beamish RE: Biochemical basis of heart function and contractile failure. J Appl Cardiol 6: 7–30, 191

    Google Scholar 

  8. Pelouch V, Milerova M, Ostadal B, Prochazka J: Ontogenetic development of protein composition of the right and left ventricular myocardium. In: Marpugo, Jezek (eds.): Cardiac Muscle and Pulmonary Hypertension Springer, 1991

  9. Gevers W: Protein metabolism of the heart. J Mol Cell Cardiol 16: 3–32, 1984

    Google Scholar 

  10. Humphreys JE, Cummins P: Regulatory proteins of the myocardium. atrial and ventricular tropomyosin and troponin in the developing and adult bovine and human heart. J Mol Cell Cardiol 16: 643–657, 1984

    Google Scholar 

  11. Kao KT, Hilker DM, McGavack TH: Connective tissue. V. Comparison of synthesis and turnover of collagen and elastin synthesis in tissues of rats at several ages. Proc Soc Exp Biol Med 106: 335–338, 1961

    Google Scholar 

  12. Laurent GJ: Dynamic state of collagen: Pathways of collagen degradationin vivo and their possible role in regulation of collagen mass. Am J Physiol 252: C1-C9, 1987

    Google Scholar 

  13. Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Weber KT: Structural vs contractile protein remodeling and myocardial stiffness in hypertrophied left ventricle. J Mol Cell Cardiol 20: 1179–1187 (1988)

    Google Scholar 

  14. Weber KT, Janicki JS, Pick R, Abrahams C, Shroff SG, Bashey RI, Chen R: Collagen in thehypertrophied, pressure-overloaded myocardium. Circulation 75 (Suppl I): 140–147, 1987

    Google Scholar 

  15. Weber KT, Janicki JS, Pick R, Capasso J, Anversa P: Myocardial fibrosis and pathological hypertrophy in the rat with renovascular hypertension. Am J Cardiol 65: 1G-7G, 1990

    Google Scholar 

  16. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT: Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64: 1041–1050, 1989

    Google Scholar 

  17. Silver MA, Pick R, Brilla CG, Jalil JE, Janicki JS, Weber KT: Reactive and reparative fibrillar collagen remodeling in the hypertrophied rat left ventricle: Two experimental models of myocardial fibrosis. Cardiovasc Res 24: 741–747, 1990

    Google Scholar 

  18. Bartosova D, Chvapil M, Korecky B, et al.: The growth of muscular and collagenous parts of the rat heart in various forms of cardiomegaly. J Physiol 200: 185–195, 1969

    Google Scholar 

  19. Weber KT, Brilla CG: Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83: 1849–1865, 1991

    Google Scholar 

  20. Caulfield JB, Borg TK: The collagen network of the heart. Lab Invest 40: 364–372, 1979

    Google Scholar 

  21. Bandman E: Myosin isoenzyme transitions in muscle development maturation and disease. International Rev Cytol 97: 97–131, 1985

    Google Scholar 

  22. Ruoslahti E, Yamaguchi Y: Proteoglycans as modulators of growth factor activities. Cell 64: 867–869, 1991

    Google Scholar 

  23. Mori Y, Honda A: Glycosaminoglycans and proteoglycans of cardiac tissue: With special reference to cardiac valves. In: RS Varma, R Varma (eds.): Glycosaminoglycans and proteoglycans in physiological and pathological processes of body systems. Basel, Karger, 1982, pp 187–198

    Google Scholar 

  24. Robinson TF, Factor SM, Sonnenblick EH: The Heart as a suction pump. Scientific American 254: 84–91, 1986

    Google Scholar 

  25. Fouad FM, Tarazi RC: Restoration of cardiac function and structure by converting enzyme inhibition; possibilities and limitations of long-term treatment in hypertension and heart failure. J Cardiovasc Pharmacol 8: S53-S57, 1986

    Google Scholar 

  26. Robinson TF, Cohen-Gould L, Factor SM: The skeletal frame-work of mammalian heart muscle: Arrangement of inter and pericellular connective tissue structures. Lab invest 49: 482–498, 1983

    Google Scholar 

  27. Sadoshima J, Izumo S: Signal transduction pathways of Angiotensin II-induced c-fos gene expression in cardiac myocytesin vitro. Roles of phospholipid-derived second messengers. Circ Res 73: 424–438, 1993

    Google Scholar 

  28. Eghbali M, Blumenfeld OO, Seifter S, Buttrick PM, Leinwand LA, Robinson TF, Zern MA, Gambrione MA: Localization of types I, III, and IV collagen mRNAs in rat heart cells byin situ hybridization. J Mol Cell Cardiol 21: 103–113, 1989

    Google Scholar 

  29. Lundgren E, Gullberg D, Rubin K, Borg TK, Terracio MJ, Terracio L:In vitro studies on adult cardiac myocytes: attachment and biosynthesis of collagen type IV and laminin. J Cell Physiol 136: 43–53, 1988

    Google Scholar 

  30. Ahumada GG, Rennard SI, Figueroa AA, Silver MH: Cardiac fibronectin: Developmental distribution and quantitative comparison of possible sites of synthesis. J Mol Cell Cardiol 13: 667–678, 1981

    Google Scholar 

  31. Speiser B, Riess CF, Schaper J: The extracellular matrix in human myocardium: Part 1: Collagens I, II, IV, and VI. Cardioscience 2: 225–232, 1991

    Google Scholar 

  32. Speiser B, Weihrauch D, Reiss CF, Schaper J: The extracellular matrix in human cardiac tissue part II: Vimentin, laminin, and fibronectin. Cardioscience 3: 41–49, 1992

    Google Scholar 

  33. Eghbali M, Czaja MJ, Zeydel M, Weiner FR, Zern MA, Siefter S, Blumenfeld OO: Collagen mRNAs in isolated adult heart cells. J Mol Cell Cardiol 20: 267–276, 1988

    Google Scholar 

  34. Hynes RO: Fibronectins. New York, Berlin, Heidelburg: Springer, 1990

    Google Scholar 

  35. Wayner E, Carter W, Piotrowitz R, Kunicki T: The function of multiple extracellular matrix receptors mediating cell adhesion to extracellular matrix: Preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins. J Cell Biol 107:1881–1891, 1988

    Google Scholar 

  36. Ahumada GG, Saffitz JE: Fibronectin in rat heart: a link between cardiac myocytes and collagen. J Histochem Cytochem 32: 383–388, 1984

    Google Scholar 

  37. Knowlton AA, Connelly CM, Romo GM, Manuya W, Apstein CS, Brecher P: Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 89: 1060–1068, 1992

    Google Scholar 

  38. French-Constant C, Van de Water L, Dvorak HF, Hynes RO: Reappearance of an embryonic pattern of fibronectin splicing during wound healing in adult rat. J Cell Biol 109: 903–914, 1989

    Google Scholar 

  39. Bashey RI, Martinez-Hernandez A, Jiminez SA: Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ Res 70: 1006–1017, 1992

    Google Scholar 

  40. Weber KT, Jalil JE, Janicki JS, Pick R: Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertension 2: 931–940, 1989

    Google Scholar 

  41. Eghbali M, Tomek R, Suthatme VP, Wood Ch, Bhambi B: Different effects of transforming growth factors and phorbol myristate acetate and cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors. Circ Res 69: 483–490, 1991

    Google Scholar 

  42. Yurchenco PD, Furthmayr H: Self-assembly of basement membrane collagen. Biochemistry 23: 1839–1850, 1984

    Google Scholar 

  43. Kleinmand HK, McGarvey ML, Hassell JR, Martin GR: Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry 22: 4969–4974, 1983

    Google Scholar 

  44. Mark H, Aumailley M, Wick G, Fleischmajer R, Timpl R: Immunochemistry, genuine size and tissue location of collagen VI. Eur J Biochem 36: 1167–1173, 1984

    Google Scholar 

  45. Sugden PH, Fuller SJ: Regulation of protein turnover in skeletal and cardiac muscle. Biochem J 273: 21–37, 1991

    Google Scholar 

  46. Sugden P, Fuller S: Correlations between cardiac protein synthesis rates, intracellular pH and the concentration of creatine metabolites. Biochem J 273: 339–346, 1991

    Google Scholar 

  47. Penney DG: Postnatal modification of cardiac development. A review. J Appl Cardiol 5: 325–337, 1990

    Google Scholar 

  48. McDermott P, Daoot M, Klein I: Contraction regulates myosin content of cultured heart cells. Am J Physiol 249: H763-H769, 1985

    Google Scholar 

  49. Friedman WF: The intrinsic physiologic properties of the developing heart. Prog Cardiovasc Disease 15: 87–111, 1972

    Google Scholar 

  50. Caulfield JB, Tao SB, Nachtigal M: Ventricular collagen matrix and interactions. In: P Harris, PA Poole-Wilson (eds.) Advances in Myocardiology, London, 1985, Plenum Medical Book Corp., pp 257–269

    Google Scholar 

  51. Ross R: The elastic fibres: a review. J Histochem Cytochem 21: 199–208, 1973

    Google Scholar 

  52. Robinson TF, Winegrad S: A variety of intracellular connection in heart muscle. J Mol Cell Cardiol 13: 185–195, 1981

    Google Scholar 

  53. Factor SM: Pathological alterations of myocyte-connective tissue interactions in cardiovascular disease. Structure-function relationships. In: TF Robinson, RKH Kinne (eds): Cardiac myocyte-connective tissue interactions in health and disease. Issues Biomed, Basel, Karger, 1990, vol 13, pp 130–146

    Google Scholar 

  54. Del Rio P: El metodo del carbonato argentico: Revision general de sus tecnicas y aplicaciones en histologia y patoligica. Arch Histol Norm Pathol (Buenos Aires) 2: 231–243, 1943

    Google Scholar 

  55. Weber KT: Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 13: 1637–1652, 1989

    Google Scholar 

  56. Borg TK, Terracio L: Interaction of extracellular matrix with cardiac myocytes during development and disease. In: TF Robinson, RKH Kinne (eds.) Cardiac myocyte-connective tissue interactions in health and disease. Issues Biomed, Basel, Karger, 1990, vol. 13, pp 113–129

    Google Scholar 

  57. Kelly WA, Kesterson JW, Carlton WW: Myocardial lesions in the offspring of female rats fed a copper deficient diet. Exp Mol Pathol 20: 40–56, 1974

    Google Scholar 

  58. Koteliansky VE, Gneusev GH, Shartava AS, Shirinsky VP, Ghukhova M, Goodman SR: The regulation of vinculin of filamin α-actinin and spectrin tetramer-induced actin gel transformation. FEBS Lett. 151: 206–210, 1983

    Google Scholar 

  59. Koteliansky VE, Gneusev GN: Vinculin localization in cardiac muscle. Febs Lett 159: 158–160, 1983

    Google Scholar 

  60. Steinberger C, Hill M, Jennings RD: Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during totalin vitro ischemia in canine heart. Circ Res 60: 478–486, 1987

    Google Scholar 

  61. Teraccio L, Rubin K, Gullberger D, Balog E, Carver W, Syring R, Borg TK: Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res 68: 734–744, 1991

    Google Scholar 

  62. Eghbali M, Robinson T, Seifter S, Blumenfeld OO: Collagen accumulation in healthy ventricles as a function of growth and aging. Cardiovasc Res 23: 723–729, 1989

    Google Scholar 

  63. Jalil JE, Janicki JS, Pick R, Abrahams C, Weber KT: Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Circ Res 65: 258–264, 1989

    Google Scholar 

  64. Zak R: Development and proliferative capacity of cardiac muscle cells. Circ Res (Suppl. II): 17–26, 1974

    Google Scholar 

  65. Medugorac I, Jacob R: Heterogeneity of collagen in the normal and hypertrophied left ventricle of the rat. In: Dr. Steinkopff (ed.): Cardiac adaptation to hemodynamic overload, training and stress. Verlag, 1983, pp 349–353

  66. Blumenfeld OO, Seifter S: Biochemistry of connective tissue with special emphasis on the heart. In: TF Robinson RKH Kinne (eds.): Cardiac myocyte-connective tissue interactions in health and disease. Issues Biomed. Basel, Karger, 1990, vol. 13, pp. 5–36

    Google Scholar 

  67. Abdomain GE: Existence of type VI collagen in the extracellular network surrounding myocytes in the newborn and adult human heart. J Mol Cell Cardiol 17: R15, 1985

    Google Scholar 

  68. Iimoto DS, Covell JW, Harper E: Increase in cross-linking of type I and type III collagens associated with volume-overloaded hypertrophy. Circ Res 63: 399–408, 1988

    Google Scholar 

  69. Chapman D, Weber KT, Eghbali M: Regulation of fibrillar collagen type I and type III and basement membrane type IV. Collagen gene expression in pressure overloaded rat myocardium. Circ Res 67: 787–794, 1990

    Google Scholar 

  70. Bashey RI, Donnelly M, Insinga F, Jiminez SA: Growth properties and biochemical characterization of collagens synthesized by adult rat heart fibroblasts in culture. J Mol Cell Cardiol 24: 691–700, 1992

    Google Scholar 

  71. Weber KT, Pick R, Jalil JE, Janicki JS, Carroll EP: Patterns of myocardial fibrosis. J Mol Cell Cardiol 21: (Suppl V), 121–131, 1989

    Google Scholar 

  72. Debelle L, Wei SM, Jacob MP, Hornebeck W, Alix AJ: Predietions of the secondary structure and antigenecity of human and bovine tropoelastins. Matrix 12: 352–361, 1992

    Google Scholar 

  73. Franke W, Schmid E, Osborn M, Weber K: Different intermediate-size filaments distinguished by immunoflourescence microscopy. Proc Natl Acad Sci 75: 5034–5038, 1978

    Google Scholar 

  74. Yamauchi M, Mechanic GL: Cross-linking of collagen. In: ME Nimni (ed.): Collagen. Biochem, Boca Raton, FL, 1987, CRC Press, vol. 1, pp 157–170

    Google Scholar 

  75. Robbins SP: Analysis of cross-linking components in collagen and elastin. Method Biochem Analysis 28: 330–379, 1982

    Google Scholar 

  76. Reiser KM: Nonenzymatic glycation of collagen in aging and diabetes. Proc Soc Exptl Biol Med 194: 17–29, 1990

    Google Scholar 

  77. Pelouch V, Ostadal B, Prochazka J, Urbanova D, Widimsky J: Effect of high altitude hypoxia on the protein composition of the right ventricular myocardium. (Basel, Karger) Prog Resp Res 20: 41–48, 1985

    Google Scholar 

  78. Mukhejee D, Sen S: Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 67: 1474–1480, 1990

    Google Scholar 

  79. Pelouch V, Ostadal B, Prochozka J: Changes of contractile and collagenous protein induced by chronic hypoxia in myocardium during postnatal development of rat. Biomed Biochim Acta 46: S707-S711, 1987

    Google Scholar 

  80. Morgan HE, Chua BHL, Fuller EO, Sihl D: Regulation of protein synthesis and degradation duringin vitro cardiac work. Am J Physiol 249: H763-H769, 1980

    Google Scholar 

  81. Schreiber SS, Evans CD, Oratz CD, Rothschild L: Protein synthesis and degradation in cardiac stress. Circ Res 48: 601–611, 1981

    Google Scholar 

  82. Morgan HE, Baker KM: Cardiac hypertrophy: Mechanical, neural and endocrine dependence. Circulation 83: 13–25, 1991

    Google Scholar 

  83. Eghbali M, Weber KT: Collagen and the myocardium-fibrillar structure, biosynthesis and degradation in relation to hypertrophy and its regression. Mol Cell Biochem 96: 1–14, 1990

    Google Scholar 

  84. Poupa O, Krofta K, Prochazka J, Turek Z: Acclimatization to simulated high altitude and acute cardiac necrosis. Fed Proc 25: 1243–1246, 1966

    Google Scholar 

  85. McGrath JJ, Prochazka J, Pelouch V, Ostadal B: Physiological responses of rats to intermittent high altitude stress: effect of age. J Appl Physiol 34: 289–293, 1973

    Google Scholar 

  86. Widimsky J, Urbanova D, Ressl J, Ostadal B, Pelouch V, Prochazka J: Effect of intermittent altitude hypoxia on the myocardium and lesser circulation in the rat. Cardiovasc Res 7: 798–808, 1973

    Google Scholar 

  87. Pelouch V, Ostadal B, Urbanova D, Prochazka J, Ressl J, Widimsky J: Effect of intermittent high altitude hypoxia on the structure and enzymatic activity of cardiac myosin. Physiol Bohemoslov 29: 313–322, 1980

    Google Scholar 

  88. Urbanova D, Pelouch V, Ostadal B, Widimsky J, Ressl J, Prochazka J: The development of myocardial changes during intermittent high altitude in rats. Cor Vasa 19: 246–250, 1977

    Google Scholar 

  89. Ostadal B, Widimsky J: Chronic intermittent hypoxia and cardiopulmonary system. Prog Resp Res 26: 1–11, 1990

    Google Scholar 

  90. Ostadal B, Mirejovska E, Hurych J, Pelouch V, Prochazka J: Effect of intermittent high altitude hypoxia on the synthesis of collagenous and noncollagenous proteins of the right and left ventricular myocardium. Cardiovasc Res 12: 301–309 1978

    Google Scholar 

  91. Pelouch V, Ostadal B, Kolar F, Milerova M, Grunemel J: In: Ostadal, Dhalla (eds.): Chronic hypoxia-induced right ventricular enlargement: age-dependent changes of collagenous and non-collagenous cardiac protein fraction. Kluwer Acad Publisher, 1992

  92. Pelouch V, Ostadal B, Prochazka J, Urbanova D, Widimsky J: Effect of high altitude hypoxia on the protein composition of the right ventricular myocardium in young rats. In: S Daum (ed.): Stuttgart, New York, George Thieme Publishers, Inc., 1989

    Google Scholar 

  93. Ressl, J, Urbanova D, Widimsky J, Ostadal B, Pelouch V, Prochazka J: Reversibility of pulmonary hypertension and right ventricular hypertrophy induced by intermittent high altitude hypoxia in rats. Respiration 31: 38–46, 1974

    Google Scholar 

  94. Herget J, Sugget AJ, Leach E, Barer GR: Resolution of pulmonary hypertension and other features induced by chronic hypoxia in rats during complete and intermittent normoxia. Thorax 33: 468–473, 1981

    Google Scholar 

  95. Rabinovitch M, Gamble WJ, Miettinen ES, Reid L: Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Amer J Physiol 240: H62-H72, 1981

    Google Scholar 

  96. Bass A, Ostadal B, Prochazka J, Pelouch V, Smanek M, Stejskalova M: Intermittent high altitude-induced changes in energy metabolism in the rat myocardium and their reversibility. Physiol Bohemoslov 38: 155–161, 1989

    Google Scholar 

  97. Ostadal B, Prochazka J, Pelouch V, Urbanova D, Widimsky J, Stanek V: Pharmacological treatment and spontaneous reversibility of cardiopulmonary changes induced by intermittent high altitude hypoxia. Progr Resp Res 20: 41–48, 1985

    Google Scholar 

  98. Ostadal B, Kolar F, Pelouch V, Bass A, Samanek M, Prochazka J: The effect of chronic hypoxia on the developing cardiopulmonary system. Biomed Biochim Acta 48: S58-S62, 1989

    Google Scholar 

  99. McGrath JJ, Ostadal B, Prochazka J, Wachtlova M, Rychterova V: Experimental cardiac necrosis in hypobaric and anemic hypoxia. J Appl Physiol 39: 205–208, 1975

    Google Scholar 

  100. Faltova E, Mraz M, Pelouch V, Prochazka J, Ostadal B: Increase and regression of the protective effect of high altitude acclimatization on the isoprenaline-induced necrotic lesions in the rat myocardium. Physiol Bohemoslov 36: 43–52, 1987

    Google Scholar 

  101. Meerson FZ, Gomazkov GA, Shimkovich MV: Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol 31: 30–34, 1973

    Google Scholar 

  102. Lebedev AV, Sadretinov SM, Pelouch V, Prochazka J, Levitsky DO, Ostadal B: Free radical membrane scavengers in myocardium of rats of different age exposed to chronic hypoxia. Biomed Biochim Acta 48: S122-S125, 1989

    Google Scholar 

  103. Kazennov AM, Prochazka J, Pelouch V, Ostadal B, Maslova NM: Transport ATPase in the erythrocytes of rats acclimatized to intermittent altitude hypoxia. Physiol Bohemoslov 35: 406–413, 1986

    Google Scholar 

  104. Ziegelhoffer A, Prochazka J, Pelouch V, Ostadal B, Dzurba A, Vrbjar N: Increased affinity to substrate in sarcolemmal ATPases from hearts acclimatized to high altitude hypoxia. Physiol Bohemoslov 36: 403–415, 1987

    Google Scholar 

  105. Barta E, Ostadal B, Pelouch V, Prochazka J, Strec V: Responnes of the rat cardiovascular system to a moderate altitude hypoxia in connection with endurance training. Physiol Bohemoslov 34: 103–110, 1985

    Google Scholar 

  106. Kolar F, Ostadal B, Prochazka J, Pelouch V, Rajecova O, Strec V, Barta E: Age-dependent influence of a moderate altitude (1350 m) on the rat cardiopulmonary system. Physiol Bohemoslov 37: 443–450, 1988

    Google Scholar 

  107. Rajecova O, Pelouch V, Ostadal B, Kolar F, Prochazka J, Strec V: Effect of moderate altitude (1350 m-Strbske pleso) on energy metabolism in rats. Physiol Bohemoslov 36: 377, 1987

    Google Scholar 

  108. Pelouch V, Ostadal B, Barta E, Prochazka J, Kolar F, Strec V, Rajecova O: Changes of the myocardial contractile and collagenous proteins induced by an altitude of 1350 m combined with endurance training in rats. Physiol Bohemoslov 34: 451, 1985

    Google Scholar 

  109. Kolar F, Ostadal B, Prochazka J, Pelouch V, Widimsky J: Comparison of cardiopulmonary responses to intermittent high altitude hypoxia in young and adult rats. Respiration 56:57–62, 1989

    Google Scholar 

  110. Widdowson EM, McCance RA: Some effect of accelerating growth. In: General somatic development. Royal Soc of London, Proc B 152:188–206, 1960

    Google Scholar 

  111. Dowell RT, Martin AF: Perinatal nutritional modification of weaning rat heart contractile proteins. Am J Physiol 247:H967-H972, 1984

    Google Scholar 

  112. Dowell RT: Nutritional modification of rat heart postnatal development. Am J Physiol 246:H332-H338, 1984

    Google Scholar 

  113. Penny DG: A Critical early postnatal period persisted for the stress-induced alteration of heart development: persistent cardiomegaly and altered DNA content. J Appl Cardiol 5:443–453, 1990

    Google Scholar 

  114. Milerova M, Pelouch V, Ostadal B: Litter-size induced changes of the protein composition in the rat myocardium. Physiol Bohemeslov 38:374, 1989

    Google Scholar 

  115. Milerova M, Pelouch V, Ostadal B, Prochazka J: Reversibility of changes in myocardial protein composition induced by nutritional intervention during early phases of postnatal ontogeny. Physiol Bohemeslov 39:565, 1990

    Google Scholar 

  116. Hollenber M, Honbo N, Samorodin AJ: The effect of hypoxia on cardiac growth in neonatal rat. Am J Physiol 231:1445–1450, 1976

    Google Scholar 

  117. Hollenber M, Honbo N, Samorodin AJ: Cardiac cellular responses to altered nutrition in neonatal rat. Am J Physiol H356–H360, 1977

  118. Rakusan K, Raman S, Layberry R, Korecky B: The influence of aging and growth on the postnatal development of cardiac muscle in rats. Circ Res 42:212–218, 1978

    Google Scholar 

  119. Nagano M, Mochizuki S, Dhalla NS (eds.): Cardiovascular disease in diabetes. Boston: Kluwer Academic Press, 1992

    Google Scholar 

  120. Malhotra A, Penpargkul S, Fenn FS, Sonnenblick EH, Scheuer J: The effect of the streptozotocin-induced diabetes in rats on cardiac contractile proteins. Circ Res 49:1243–1250, 1981

    Google Scholar 

  121. Fenn FJ, Stobeck JE, Malhotra A, Scheuer J, Sonnenblick H: Reversibility of diabetic cardiomyopathy with insulin in rats. Circ Res 49:1251–1261, 1981

    Google Scholar 

  122. Nagano M, Dhalla NS (eds.) The diabetic heart. New York, 1991; Raven Press, 1991

    Google Scholar 

  123. Pierce GN, Dhalla NS: The association of membrane alterations with heart dysfunction during experimental diabetes mellitus. In: NS Dhalla, PK Singal, RE Beamish (eds.) Pathophysiology of heart disease. Boston: Nijhoff, 1984: 177–184

    Google Scholar 

  124. Rosen P, Kiesel U, Reinauer H, Boy C, Addicks K: Cardiomyopathy in the spontaneously diabetic (BB) rat. In: M Nagano, NS Dhalla (eds.): Evidence for microangiopathy and autonomic neuropathy in the diabetic heart. The Diabetic Heart, New York: Raven Press, pp 145–158, 1991

    Google Scholar 

  125. Jackson CV, McGrath GM, Tahiliani AJ: A functional and structural analysis of experimental diabetic rat myocardium. Diabetes 34:876–883, 1985

    Google Scholar 

  126. Modrak J: Collagen metabolism in the myocardium from streptozotocin diabetes rats. Diabetes 29:547–550, 1983

    Google Scholar 

  127. Factor SM, Bhan R, Minase T, Wolinsky H, Sonnenblick EH: Hypertensive-diabetic cardiomyopathy in rat: an experimental model of human disease. Am J Pathol 102:219–228, 1981

    Google Scholar 

  128. Hsiao YC, Suzuki K, Abe H: Ultrastructural alterations in cardiac muscle of diabetic BB-rats. Virchows Arch 411:45–52, 1987

    Google Scholar 

  129. Harder B, Yeh CK, Oldewurtel HA, Lyons MM, Regan T: Influence of diabetes on the myocardium and coronary arteries of rhesus monkey fed an atherogenic diet. Circ Res 49:1278–1288, 1981

    Google Scholar 

  130. Regan TJ, Ettinger PO, Khan MI, Jesrani MU, Lyons MM, Oldewurtel HA, Weber M: Altered myocardial function and metabolism in chronic diabetes mellitus without ischemia in dogs. Circ Res 35:222–237, 1974

    Google Scholar 

  131. Regan TJ, Lyons MM, Ahmed SS, Levinston GE, Oldewurtel HA, Ahmed MR, Haider B: Evidence for cardiomyopathy in familiar diabetes mellitus. J Clin Invest 60:885–899, 1977

    Google Scholar 

  132. Regan TJ: Altered left ventricular function in human diabetics. In: M Nagano, NS Dhalla (eds.). The Diabetic Heart, Raven Press, New York, 1991, pp 3–10

    Google Scholar 

  133. Regan TJ, Wu CF, Oldewurtel A, Haider B: Myocardial composition and function in diabetes. Circ Res 49:1268–1277, 1981

    Google Scholar 

  134. Waller BF, Palumbo PJ, Lie JT, Roberts W: Status of the coronary arteries at necropsy in diabetes mellitus with onset after age 30 years. Amer J Med 69:498–506, 1980

    Google Scholar 

  135. Sohar EE, Ravid Y, Ben-Shaulii M, Reshef T, Gafni J: Diabetes fibrillosis: A report of three cases. Am J Med 49:64–69, 1970

    Google Scholar 

  136. Anversa P, Beghi C, Kikkawa Y, Olivetti C: Myocardial infarction in rats: Infarcts size. Myocyte hypertrophy and capillary growth. Circ Res 58:26–37, 1986

    Google Scholar 

  137. Anversa P, Ricci P, Olivetti G: Quantitative structural analysis of the myocardium during physiological growth and induced cardiac hypertrophy: A review. J Am Coll Cardiol 7:1140–1149, 1986

    Google Scholar 

  138. Olivetti G, Ricci R, Langasta C, Maningo E, Sonnenblick EH, Anversa P: Cellular basis of wall remodeling in long-term pressure overload-induced right ventricular hypertrophy in rats. Circ Res 63:648–657, 1988

    Google Scholar 

  139. Anversa P, Palackal LG, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM: Myocyte cell loss and myocyte cellular hyperplasia in hypertrophied aging rat heart. Circ Res 67:871–885, 1990

    Google Scholar 

  140. Frohlich ED: hemodynamics and other determinant in development of left ventricular hypertrophy. Fed Proc 42:2709–2715, 1983

    Google Scholar 

  141. Smith SH, Kramer M, Resis I, Bishop SP, Ingwall S: Regional changes in creatine kinase and myocyte size in hypertensive and non-hypertensive cardiac hypertrophy. Circ Res 67:1334–1344, 1990

    Google Scholar 

  142. Fox CA, Reed GE: Changes in lactate dehydrogenase composition of heart with ventricular hypertrophy. Am J Physiol 216: 1026–1033, 1969

    Google Scholar 

  143. Zierhut W, Zimmer H-G: Significance of myocardial α- and β-adrenoceptors in catecholamine-induced cardiac hypertrophy. Circ Res 65:1417–1425, 1989

    Google Scholar 

  144. Wendt IR, Gallitelli MF: Excitation-contraction-coupling, intracellular calcium shifts and contraction of the heart muscle. In: Evaluation of cardiac contactility, pp 3–20, 1990

  145. Grossman W: Cardiac hypertrophy: Useful adaptation or pathological process. Am J Med 69:576–584, 1980

    Google Scholar 

  146. Simpson PC, Long CS, Waspe LE, Hendrich CJ, Ordahl CP: Transcription of early developmental isogenes in cardiac myocyte hypertrophy. J Mol Cell Cardiol 21:79–89, 1989

    Google Scholar 

  147. Limas CJ: Subcellular changes in compensated and ailing hypertrophied hearts. In: FL Abel, WH Newman (eds.): Functional aspects of the normal hypertrophied and failing heart. Martinus Nijhoff Publishing, Boston/Hague/Dordrecht/Lancaster, 1984, pp 151–170

    Google Scholar 

  148. Stephens N, Swynghedauw B: Cardiovascular adaptation to mechanical overload. Mol Cell Biochem 93:1–6, 1990

    Google Scholar 

  149. Laine GA, Allen SJ: Left ventricular myocardial edema lymph flow, interstitial fibrosis and cardiac function. Circ Res 67:1713–1721, 1991

    Google Scholar 

  150. Bartosova D, Chvapil M, Korecky B, Poupa O, Rakusan K, Turek Z, Vizek M: The growth of the muscular and collagenous parts of the rat heart in various forms of cardiomegaly. J Physiol (London) 200:185–195, 1969

    Google Scholar 

  151. Medugorac I: Characterization of intramuscular collagen in the mammalian left ventricle. Basic Res Cardiol 77:589–598, 1982

    Google Scholar 

  152. Medugorac I: Myocardial collagen in different forms of heart hypertrophy in the rat. Res Exp Med (Berlin) 177: 201–211, 1980

    Google Scholar 

  153. Thiedemann KU, Holubarsch CH, Medugorac I, Jacob R: Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphological, biochemical and mechanical parameters. Basic Res Cardiol 78:140–155, 1983

    Google Scholar 

  154. Flickinger GL, Patterson DF: Coronary lesions associated with congenital subaortic stenosis in the dog. J Path Bact 93:133–141, 1967

    Google Scholar 

  155. Lewis AB, Heymann MA, Stanger P, Hoffman J, Rudolf AM: Evaluation of subendocardial ischemia in valvular aortic stenosis in children. Circulation 49:984–987, 1974

    Google Scholar 

  156. Williams JF, Potter RD, Hern DL, Mathew B, Deiss WP: Hydroxyproline and passive stiffness of pressure-induced hypertrophied myocardium. J Clin Invest 69:309–314, 1982

    Google Scholar 

  157. Laurent GJ, Cockerill P, McAnulty RJ, Hastings JRB: A simplified method for quantification of relative amount of type I and type III collagen in small tissue samples. Anal Biochem 113:301–312, 1981

    Google Scholar 

  158. Pelouch V, Deyl Z, Ostadal B, Wachtlova M: Protein profiling in heart muscle. Physiol Bohemoslovaca 33:278–279, 1984

    Google Scholar 

  159. Michel JB, Salzmann JL, Mlom MO, Bruneval P, Barres D, Cammilleri JP: Morphological analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy. Basic Res Cardiol 81:142–154, 1986

    Google Scholar 

  160. Bonnin CM, Sparrow MP, Taylor RR: Increased protein synthesis and degradation in the dog heart during thyroxine administration. J Mol Cell Cardiol 15:245–250, 1983

    Google Scholar 

  161. von Knorring J: Analysis of myocardial mucopolysaccharides in hypo- and hyperthyroid rats and guinea pigs. Ann Med Exp Fenn 48:8–15, 1970

    Google Scholar 

  162. Gilbert PL, Siegel RJ, Melmed S, Sherman CT, Fishbein MC: Cardiac morphology in rats with growth hormone-producing tumor. J Mol Cell Cardiol 17:805–811, 1985

    Google Scholar 

  163. Bishop SP: Structural alterations in the hyertrophied and failing myocardium. In: FL Abel, WH Newman (eds.): Functional aspects of the normal hypertrophied and failing heart. Martinus Nijhoff Publishing, Boston/Hague/Dordrecht/Lancaster, pp 278–300, 1984

    Google Scholar 

  164. Bishop JE, Greenbaum M, Gibson DG, Yacoub M, Laurent GJ: Enhanced deposition of predominantly type collagen I in myocardial disease. J Mol Cell Cardiol 22:1157–1165, 1990

    Google Scholar 

  165. Dawson R, Milne G, Williams RB: Changes in the collagen of rat heart in copper deficiency-induced cardiac hypertrophy. Cardiovasc Res 16:559–565, 1982

    Google Scholar 

  166. Lee Y-S, Lee F-Y, Change Ch, Chen H, Liang K-F: Biochemical analysis and electron microscopy of human mitral valve collagen in patients with various etiologies of mitral valve diseases. J Heart J 24:529–538, 1983

    Google Scholar 

  167. Rossi MA: Pattern of myocardial fibrosis in idiopathic cardiomyopathies and chronic Chagas cardiomyopathy. Can J Cardiol 7:287–294, 1991

    Google Scholar 

  168. Krayenbuehl HP, Hess OM, Monrat ES, Schneider J, Mall G, Turina M: Left ventricular myocardial structure in aortic valve disease before, intermediate and late after aortic valve replacement. Circulation 79:744–755, 1989

    Google Scholar 

  169. Sen S, Tarazi RC, Bumpus FM: Reversal of cardiac hypertrophy in renal hypertensive rats. Hypertension 2:169–176, 1980

    Google Scholar 

  170. Cutiletta AF, Dowell RT, Rudnik M, Arcilla RA, Zak R: Regression of myocardial hypertrophy: experimental model, changes in heart weight, nucleic acids and collagen. J Mol Cell Cardiol 7: 767–781, 1975

    Google Scholar 

  171. Michel JB, Lattion AL, Salzmann JL, Icerol ML, Philippe M, Cammilers JP, Corvol P: Hormonal and cardiac effect of converting enzyme inhibition in rat myocardial infarction. Circ Res 62: 641–650, 1988

    Google Scholar 

  172. Katz AM: Cellular mechanisms in congestive heart failure. Am J Cardiol 63:3A-8A, 1988

    Google Scholar 

  173. Francis GS: Neuroendocrine manifestation of congestive heart failure. Amer J Cardiol 62:9A-13A, 1988

    Google Scholar 

  174. Parmley WW: Pathophysiology of congestive heart failure. Amer J Cardiol 55:9A-14A, 1985

    Google Scholar 

  175. Francis GS, Cohn JN: Heart failure: mechanism of cardiac and vascular dysfunction and the rationale for pharmacologic intervention. FASEB J 4:3068–3075, 1990

    Google Scholar 

  176. Carafoli E, Bing RJ: Myocardial failure. J Appl Cardiol 3:3–18, 1988

    Google Scholar 

  177. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P: Side-to-side slippage of myocytes participated in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67:23–34, 1990

    Google Scholar 

  178. Geenen DL, Malhotra A, Liang D, Scheuer J: Ventricular function and contractile proteins in the infarcted overloaded rat heart. Cardiovasc Res 25:330–336, 1991

    Google Scholar 

  179. Mill JG, Stefanon I, Leite CM, Vassallo DV: Changes in performance of the surviving myocardium after left ventricular infarction in rats. Cardiovasc Res 24:748–753, 1990

    Google Scholar 

  180. Bech OM, Kahr O, Diamant B, Steiness E: Time course of functional deterioration after artery ligation in rats. Cardiovasc Res 23:649–954, 1989

    Google Scholar 

  181. Kupper W, Bleifeld D, Hanrath P, Mathey D, Effert S: Left ventricular hemodynamics and function in acute myocardial infarction. Studies during acute phase, convalescence and late recovery. Am J Cardiol 40:900–905, 1977

    Google Scholar 

  182. Zimmer H-G, Gerdes M, Lortet S, Mall G: Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol 22:1231–1243, 1990

    Google Scholar 

  183. Sato S, Ashraf M, Fusiwara H, Schwartz A: Connective tissue changes in early ischemia of porcine myocardium. An ultrastructural study. J Mol Cell Cardiol 15:261–275, 1983

    Google Scholar 

  184. Zhao M, Zhang H, Robinson TF, Factor SH, Sonnenblick EH, Eng C: Profound structural alterations of the extracellular matrix in post-ischemic dysfunctional (‘stunned’) but viable myocardium. J Amer Coll Cardiol 10:1322–1334, 1987

    Google Scholar 

  185. Pelouch V, Ostadal B, First T: Structural and enzymatic properties of cardiac myosin in ischemic and non-ischemic regions of the rat myocardium. Pflugers Arch 364:1–6, 1976

    Google Scholar 

  186. Siddiq T, Richardson PJ, Haskim IA, Preedy VR: Effect of acute anesthesia on synthesis of contractile and non-contractile proteins of heart muscle and mixed proteins of types I and II fibre rich skeletal muscle of rat. Cardiovasc Res 25:314–318, 1991

    Google Scholar 

  187. Jugdutt BI, Amy RWM: Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102, 1986

    Google Scholar 

  188. Chiariello M, Ambrosio G, Capelli-Bigazzi M, Perone-Filardi P, Brigante F, Sifola C: Biochemical method for quantification of myocardial scarring after experimental coronary artery conclusion. J Mol Cell Cardiol 18:282–290, 1986

    Google Scholar 

  189. Linzbach AJ: Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382, 1960

    Google Scholar 

  190. Weber KT, Janicki JS, Shroff SG, Pick R, Abrahams C, Chen RM, Bashey RI: Collagen compartment remodeling in the pressure overloaded left ventricle. J Appl Cardiol 3:37–46, 1988

    Google Scholar 

  191. Carver W, Nagpal ML, Nachtigal M, Borg TK, Terraccio LT: Collagen expression in mechanically stimulated cardiac fibroblast. Circ Res 69:116–122, 1991

    Google Scholar 

  192. von Krimpen C, Smits JFM, Cleutjens JPM, Debets JJM, Shoemaker RG, Struyker-Boudier HAJ, Bosman FT, Daeman MJAP: DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: Effects of captopril. J Mol Cell Cardiol 23:1245–1253, 1991

    Google Scholar 

  193. Pfeffer JM, Pfeffer MA, Braunwald E: Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95, 1985

    Google Scholar 

  194. Pfeffer JM, Pfeffer MA, Braunwald E: Hemodynamic benefits and prolonged survival with long-term captopril therapy in rats with myocardial infarction and heart failure. Circulation 75: I149-I155, 1987

    Google Scholar 

  195. Lindpainter K, Ganten D: The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68:905–921, 1991

    Google Scholar 

  196. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ: Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475–482, 1991

    Google Scholar 

  197. Meggs LG, Coupet J, Huang H, Cheng W, Peng L, Capasso JM, Homcy CJ, Anversa P: Regulation of Angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 72:1149–1162, 1993

    Google Scholar 

  198. Kato H, Suzuki H, Tajima S, Ogata Y, Tominaga T, Sato A, Saruta T: Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertension 9:17–22, 1991

    Google Scholar 

  199. Schelling P, Fisher H, Ganten D: Angiotensin and cell growth: a link to cardiovascular hypertrophy? J Hypertension 9:3–15, 1991

    Google Scholar 

  200. Schorb W, Booz DE, Dostal DE, Conrad KM, Chang KC, Baker KM: Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245–1254, 1993

    Google Scholar 

  201. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT: Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67:1355–1364, 1990

    Google Scholar 

  202. Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport L, Samuel JL: Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest 64:65–75, 1991

    Google Scholar 

  203. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM: Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237:268–275, 1987

    Google Scholar 

  204. Liew CC, Liu DK, Gornall AG: Effects of aldosterone on RNA polymerase in rat heart and kidney nuclei. Endocrinology 90: 488–495, 1972

    Google Scholar 

  205. Bhambi B, Eghbali M: Effect of norepinephrine on myocardial collagen gene expression and response of cardiac fibroblasts after norepinephrine treatment. Am J Pathol 139:1131–1142, 1991

    Google Scholar 

  206. Rizzino A: Transforming growth factor β: multiple effects on cell differentiation and extracellular matrices. Developmental Biol 130:411–422, 1988

    Google Scholar 

  207. Eghbali M: Cellular origin and distribution of transforming growth factor-β in the normal rat myocardium. Cell Tissue Res 256:553–558, 1989

    Google Scholar 

  208. Gibbons G, Pratt RE, Dzau VJ: Vascular smooth muscle cell hypertrophy vs. hyperplasia: Autocrine transforming growth factor β1 expression determines growth response to angiotensin II. J Clin Invest 90:456–461, 1992

    Google Scholar 

  209. Stouffer GA, Owens GK: Angiotensin II-induced mitogenesis of spontaneously hypertensive rat-derived cultured smooth muscle cells is dependent on autocrine production of transforming growth factor β. Circ Res 70:820–828, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelouch, V., Dixon, I.M.C., Golfman, L. et al. Role of extracellular matrix proteins in heart function. Mol Cell Biochem 129, 101–120 (1993). https://doi.org/10.1007/BF00926359

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00926359

Key words

Navigation