Skip to main content
Log in

Alterations of β-adrenoceptor-G-protein-regulated adenylyl cyclase in heart failure

  • Part III: Signal Transduction
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alterations of receptor-G-protein-regulated adenylyl cyclase activity have been suggested to represent an important alteration leading to contractile dysfunction in the failing human heart. Recent experiments suggest that the β1-adrenoceptor(α1AR) density and mRNA levels are reduced, while β2-adrenoceptors and stimulatory G-proteins are unchanged (mRNA and protein level). Functional assays demonstrated that the catalyst of the adenylyl cyclase is not different between failing and nonfailing myocardium. Inhibitory G-proteins are increased (pertussis toxin substrates, protein and mRNA) and correlate to the reduced inotropic effects of β-adrenoceptor agonists and of CAMP-PDE inhibitors. Giα-coupled m-cholinoceptors and A1-adrenergic receptors are unchanged in density and affinity. Stimulation of these receptors resulted in an unchanged antiadrenergic effect on force of contraction. In conclusion, a downregulation of β1-AR and an increase of Giα have been observed as signal transduction alteration in failing human myocardium. These alterations are due to alterations of gene expression in the failing heart and are related to a defective regulation of force of contraction in heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Packer M: Neurohormonal interactions and adaptations, in congestive heart failure. Circulation 77: 721–730, 1988

    PubMed  Google Scholar 

  2. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T: Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311: 819–823.

  3. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L.: Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. Circulation 82: 1730–1736, 1990

    PubMed  Google Scholar 

  4. Swedberg K, Viquerat C, Rouleau JL, Roizen M, Atherton B, Parmley WW, Chatterjee K: Comparison of myocardial catecholamine balance in chronic congestive heart failure and in angina pectoris without failure. Am J Cardiol 54: 783–789, 1984

    PubMed  Google Scholar 

  5. Bristow MR, Anderson FL, Port DP, Skerl L, Hershberger RS, Larabee P, O'Conell JB, Renlund DG, Volkman K, Murray J, Feldman AM: Differences in β-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84: 1024–1039, 1991

    PubMed  Google Scholar 

  6. Lohse MJ: Mechanisms of β-adrenergic receptor desensitization. In: P.A. Hargrave, K.P. Hofmann, U.B. Kaupp (eds). Signal Transmission in Photoreceptor Systems. Berlin, Springer-Verlag, 1992, pp 160–171

    Google Scholar 

  7. Hausdorff WP, Caron MG, Lefkowitz RJ: Turning off the signal: Desensitization of β-adrenergic receptor function. FASEB J 4: 2881–2889, 1990

    PubMed  Google Scholar 

  8. Hadcock JR, Malbon CC: Regulation of receptor expression by agonists: Transcriptional and posttranscriptional controls. Trends Neurosci 14: 242–247, 1991

    PubMed  Google Scholar 

  9. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ: β-Arrestin: A protein that regulates β-adrenergic receptor function. Science 248: 1547–1550, 1990

    PubMed  Google Scholar 

  10. Lohse MJ, Benovic JL, Caron MG, Lefkowitz RJ: Multiple pathways of rapid β2-adrenergic receptor densitization. J Biol Chem 265: 3202–3209, 1990

    PubMed  Google Scholar 

  11. Clark RB, Kunkel MW, Friedman J, Goka TJ, Johnson JA: Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylyl cyclase in S49 wild-type lymphoma cells. Proc Natl Acad Sci USA 85: 1442–1446, 1988

    PubMed  Google Scholar 

  12. Bristow MR, Ginsburg R, Minobe W, Cubiciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DE, Stinson EB: Decreased catecholamine sensitivity and beta-adrenergic receptor density in failing human hearts. N Engl J Med 307: 205–211, 1982

    PubMed  Google Scholar 

  13. Böhm M, Beuckelmann D, Brown L, Feiler G, Lorenz B, Näbauer M, Kemkes B, Erdmann E: Reduction of beta-adrenoceptor density and evaluation of positive inotropic responses in isolated, diseased human myocardium. Eur Heart J 9: 844–852, 1988

    PubMed  Google Scholar 

  14. Brodde OE: β1-, and β2-adrenoceptors in the human heart: Properties, function, and alterations in chronic heart failure. Pharmacol Rev 43: 203–242, 1991

    PubMed  Google Scholar 

  15. Steinfath M, Geertz B, Schmitz W, Scholz H, Haverich A, Breil I, Hanrath P, Reupcke C, Sigmund M, Lo HB: Distinct downregulation of cardiac β1- and β2-adrenoceptors in different human heart diseases. Naunyn Schmiedeberg's Arch Pharmacol 343: 217–220, 1991

    Google Scholar 

  16. Böhm M, Pieske B, Schnabel P, Schwinger R, Kemkes B, Klövekorn WP, Erdmann E: Reduced effects of dopexamine on force of contraction in the failing human heart despite preserved β2-adrenoceptor subpopulation. J Cardiovasc Pharmacol 14: 549–559, 1989

    PubMed  Google Scholar 

  17. Steinfath M, Danielsen W, von der Leyen H, Mende U, Meyer W, Neumann J, Nose M, Reich T, Schmitz W, Scholz H, Starbatty J, Stein B, Döring V, Kalmar P, Haverich A: Reduced α1- and β2-adrenoceptor-mediated positive inotropic effects in human end-stage heart failure. Br J Pharmacol 105: 463–469, 1992

    PubMed  Google Scholar 

  18. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R: β1-and β2-Adrenergicr receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 35: 295–303, 1989

    PubMed  Google Scholar 

  19. Böhm M, Diet F, Feiler G, Kemkes B, Kreuzer E, Weinhold C, Erdmann E: Subsensitivity of the failing human heart to isoprenaline and milrinone is related to beta-adrenoceptor downregulation. J Cardiovasc Pharmacol 12: 726–732, 1988

    PubMed  Google Scholar 

  20. Feldman MD, Copelas L, Gwathmey JK, Philips P, Warren SE, Schoen FJ, Grossman W, Morgan JP: Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75: 331–339, 1987

    PubMed  Google Scholar 

  21. Böhm M, Morano I, Pieske B, Rüegg JC, Wankerl M, Zimmermann R, Erdmann E: Contribution of cAMP-phosphodiesterase inhibition and sensitization of the contractile proteins for calcium to the inotropic effect of pimobendan in the failing human myocardium. Circ Res 68: 689–701, 1991

    PubMed  Google Scholar 

  22. Bouvier M, Collins S, O'Dowd BF, Campbell PT, DeBlasi A, Koollka BK, MacGregor C, Irons GP, Caron MG, Lefkowitz RJ: Two dietinct pathways for cAMP-mediated down-regulation of the β2-adrenergic receptor Phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 264: 16786–16792, 1989

    PubMed  Google Scholar 

  23. Mahan LC, Koachman AM, Insel PA: Genetic analysis of β-adrenergic receptor internalization and down-regulation. Proc Natl Acad Sci USA 82: 129–133, 1985

    PubMed  Google Scholar 

  24. Allen JM, Abrass IB, Palmiter RD: β1-Adrenergic receptor regulation after transfection into a cell line deficient in the cAMP-dependent protein kinase. Mol Pharm 36: 248–255, 1989

    Google Scholar 

  25. Hadcock JR, Ros M, Malbon CC: Agonist regulation of β-adrenergic receptor mRNA: Analysis in S49 mouse lymphoma mutants. J biol Chem 264: 13956–13961, 1989

    PubMed  Google Scholar 

  26. Campbell PT, Hantowich M, O'Dowd BF, Caron MG, Lefkowitz RJ, Hausdorff WP: Mutations of the human β2-adrenergic receptor that impair coupling to Gs interfere with receptor down-regulation but not sequestration. Mol Pharm 39: 192–198, 1991

    Google Scholar 

  27. Hadcock JR, Wang H, Malbon CC: Agonist-induced destabilization of β-adrenergic receptor mRNA.: Attenuation of glucocorticoidinduced up-regulation of β-adrenergic receptors. J Biol Chem 264: 19928–19933, 1989

    PubMed  Google Scholar 

  28. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ: Altered expression of β-adrenergic receptor kinase and β2-adrenergic receptors in the failing hjman heart. Circulation 87: 454–463, 1993

    PubMed  Google Scholar 

  29. Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, Feldman AM: Reduced β2-receptor messenger RNA abundance in the failing human heart. J Clin Invest 92: 2737–2745, 1993

    PubMed  Google Scholar 

  30. Gille E, Lemoine H, Ehle B, Kaumann AJ: the affinity of (−)-propranolol for β1- and β2-adrenoceptors of human hearts. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (−)-noradrenaline and (−)-adrenaline. Naunyn-Schmiedeberg's Arch Pharmacol 331: 60–70, 1985

    Google Scholar 

  31. Pippig S, Andexinger S, Daniel K, Puzicha M, Caron MG, Lefkowitz RJ, Lohse MJ: Overexpression of β-arrestin and β-adrenergic receptor kinase augment desensitization of receptors. J Biol Chem 268: 3201–3208, 1993

    PubMed  Google Scholar 

  32. Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E: Increase of Giα in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82: 1249–1265, 1990

    PubMed  Google Scholar 

  33. Schmitz W, von der Leyen H, Meyer W, Neumann J, Scholz H: Phosphodiesterase inhibition and positive inotropic effects. J Cardiovasc Pharmacol 14 (Suppl 3): S11-S14, 1989

    PubMed  Google Scholar 

  34. Seamon KB, Daly JW: Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res 20: 1–150, 1989

    Google Scholar 

  35. Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C: Increase in the 40,000-mol wt pertussis toxin substrate (G-protein) in the failing human heart. J Clin Invest 82: 189–197, 1988

    PubMed  Google Scholar 

  36. Limbird LE, Hickey AR, Lefkowitz RJ: Unique uncoupling of the frog erythrocyte adenylate cyclase system by manganese: loss of hormone and guanine nucleotide-sensitive enzyme activities without loss of nucleotide-sensitive, high affinity agonist binding. J Biol Chem 254: 2677–2683, 1979

    PubMed  Google Scholar 

  37. Cech SY, Broaddus WC, Maguire ME: Adenylate cyclase: the role of magnesium and other divalent cations. Mol Cell Biochem 33: 67–92, 1980

    PubMed  Google Scholar 

  38. Hershberger RE, Feldman AM, Bristow MR: A1-Adenosine receptor inhibition of adenylate cyclase in failing and nonfailing human ventricular myocardium. Circulation 83: 1343–1351, 1991

    PubMed  Google Scholar 

  39. Gilman AG: G proteins: Transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649 1987

    PubMed  Google Scholar 

  40. Cassel D, Selinger Z: Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74: 3307–3311, 1977

    PubMed  Google Scholar 

  41. Bray P, Carter A, Guo V, Puckett C, Kamholz J, Spiegel A, Nirenberg M: Human cDNA clones for an α subunit of Gi signal-transduction protein. Proc Natl Acad Sci USA 84: 5115–5119, 1987

    PubMed  Google Scholar 

  42. Moss J, Vaughan M: ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymol 61: 13303–13379, 1988

    Google Scholar 

  43. Schnabel P, Böhm M, Gierschik P, Jakobs KH, Erdmann E: Improvement of cholera toxin-catalyzed ADP-ribosylation by endogenous ADP-ribosylation factor from bovine brain provides evidence for an unchanged amount of Gsα in failing human myocardium. J Mol Cell Cardiol 22: 73–82, 1990

    PubMed  Google Scholar 

  44. Insel PA, Ransnäs LA: G proteins and cardiovascular disease. Circulation 78: 1511–1513, 1988

    PubMed  Google Scholar 

  45. Ransnäs LA, Insel PA: Quantification of the stimulatory guanine nucleotide binding protein Gs in S49 cell membranes, using antipeptide antibodies to αs. J Biol Chem 263: 9482–9485, 1988

    PubMed  Google Scholar 

  46. Milligan G: Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J 255: 1–13, 1988

    PubMed  Google Scholar 

  47. Neumann J, Scholz H, Döring V, Schmitz W, v. Meyerinck L, Kalmar P: Increase in myocardial Gi-proteins in heart failure. Lancet II: 936–937 1988

    Google Scholar 

  48. West RE Jr, Moss J, Vaughan M, Liu T, Liu TY: Pertussis toxincatalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J Biol Chem 260: 14428–14430, 1985

    PubMed  Google Scholar 

  49. Ribeiro-Neto F, Matera R, Grenet D, Sekura RD, Birnbaumer L, Field JB: Adenosine disphosphate ribosylation of G proteins by pertussis and cholera toxin in isolated membranes. Different requirement for and effects of guanine nucleotides and Mg2+. Mol Endocrinol 1: 472–481, 1987

    PubMed  Google Scholar 

  50. Ribeiro-Neto F, Mattera R, Hildebrandt JD, Codina J, Field JB, Birnbaumer L, Sekura RD: ADP-ribosylation of membrane components by pertussis and cholera toxin. Meth Enzymol 109: 566–582, 1985

    PubMed  Google Scholar 

  51. Tsai SC, Adamik R, Kanaho Y, Hewlett EL, Moss J: Effects of gaanyl nucleotides and rhodopsin on ADP-ribosylation of the inhibitory GTP-binding component of adenylate cyclase by pertussis toxin. J Biol Chem 259: 1530–15323, 1984

    Google Scholar 

  52. Neer EJ, Lok JM, Wolf LG: Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem 259: 14222–14229, 1984

    PubMed  Google Scholar 

  53. Ohguro H, Fukada Y, Yoshizawa T, Saito T, Akino T: A specific β-subunit of transducin stimulates ADP-ribosylation of the α-subunit by pertussis toxin. Biochem Biophys Res Commun 167: 1235–1241, 1990

    PubMed  Google Scholar 

  54. Lim LK, Sekura RD, Kaslow HR: Adenine nucleotides directly stimulate pertussis toxin. J Biol Chem 260: 2585–2588, 1985

    PubMed  Google Scholar 

  55. Hausman SZ, Manclark CR, Burns DL: Binding of ATP by pertussis toxin and isolated toxin subunits. Biochemistry 29: 6128–6131, 1990

    PubMed  Google Scholar 

  56. Burns DL, Manclark CR: Adenine nucleotides promote dissociation of pertussis toxin subunits. J Biol Chem 261: 4324–4327, 1985

    Google Scholar 

  57. Longabaugh JP, Vatner DE, Graham RM, Homcy CJ: NADP improves the efficiency of cholera toxin catalyzed ADP-ribosylation in liver and heart membranes. Biochem Biophys Res Commun 137: 328–333, 1986

    PubMed  Google Scholar 

  58. Watanabe Y, Imaizumi T, Misaki N, Iwankura K, Yoshiba H: Effects of phosphorylation of inhibitory GTP-binding protein by cyclic AMP-dependent protein kinase on its ADP-ribosylation by pertussis toxin, islet activating protein. FEBS Lett 236(2): 372–374, 1988

    PubMed  Google Scholar 

  59. Tanuma S, Kawashima K, Endo H: Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Giα protein. J Biol Chem 263: 5485–5489, 1988

    PubMed  Google Scholar 

  60. Hara-Yokoyama M, Furuyama S: Endogenous inhibitor of the ADP-ribosylation of (a) G-protein(s) as catalyzed by pertussis toxin is present in rat liver. FEBS Lett 234: 27–30, 1988

    PubMed  Google Scholar 

  61. Tanuma S, Endo H: Identification in human erythrocytes of mono(ADP-ribosyl)protein hydrolase that cleaves a mono (ADP-ribosyl) Gi linkage. FEBS Lett 261: 381–384, 1990

    PubMed  Google Scholar 

  62. Linder ME, Pang IH, Duronio RJ, Gordon JI, Sternweiss PC, Gilman AG: Lipid modifications of G protein subunits. Myristolation of Goα increases its affinity for βγ. J. Biol Chem 266: 4654–4659, 1991

    PubMed  Google Scholar 

  63. Böhm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, Schmitz W, Schnabel P, Scholz H, Steinfath M, Erdmann E: Radioimmunochemical quantification of Giα in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 26: 133–149, 1994

    PubMed  Google Scholar 

  64. Feldman AM, Jackson DG, Bristow MR, Van Dop C: Immunologic quantification of G proteins in failing and nonfailing human heart. Circulation 80(Suppl): II-293, 1989

    Google Scholar 

  65. Böhm M, Larisch K, Erdmann E, Camps M, Jakobs KH, Gierschik P: Failure of (32P)-ADP-ribosylation by pertussis toxin to determine Giα content in membranes from various human tissues. Improved radioimmunological quantification using the125I-labeled C-terminal decapeptide of retinal transducin. Biochem J 277: 223–229, 1991

    PubMed  Google Scholar 

  66. Goldsmith P, Gierschik P, Milligan G, Unson CG, Vinitsky R, Malech HL, Spiegel AM: Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophils and brain. J Biol Chem 262: 14683–14688, 1987

    PubMed  Google Scholar 

  67. Pines M, Gierschik P, Milligan G, Klee W, Spiegel AM: Antibodies against the carboxyl-terminal 5-kDa peptide of the α-subunit of transducin crossreact with the 40 kDa but not the 39-kDa guanine nucleotide binding protein from brain. Proc Natl Acad Sci USA 82: 4095–4099, 1985

    PubMed  Google Scholar 

  68. Brown LA, Harding SE: The effect of pertussis toxin on β-adrenoceptor responses in isolated cardiac myocytes from noreadrenaline-treated guinea-pigs and patients with cardiac failure. Br J Pharmacol 106: 115–122, 1992

    PubMed  Google Scholar 

  69. Eschenhagen T, Mende U, Diederich M, Nose M, Schmitz W, Scholz H, Schulte am Esch J, Warnholtz A, Schäfer H: Long-term β-adrenoceptor-mediated up-regulation of Giα and Goα mRNA levels and pertussis toxin-sensitive guanine nucleotide binding proteins in rat heart. Mol Pharm 42: 773–783, 1992

    PubMed  Google Scholar 

  70. Reithmann C, Gierschik P, Müller U, Werdan K, Jakobs KH: Pseudomonas exotoxin A prevents β-adrenoceptor-induced up-regulation of Gi protein α-subunits and adenylyl cyclase desensitization in rat heart muscle cells. Mol Pharm 37: 631–638

  71. Reithmann C, Gierschik P, Jalobs KH, Werdan K: Regulation of adenylyl cyclase by noradrenaline and tumor necrosis factor α in rat cardiomyocytes. Eur Heart J 12: (Suppl F): 139–142, 1991

    Google Scholar 

  72. Müller FU, Boheler KR, Eschenhagen T, Schmitz W, Scholz H: Isoprenaline stimulates gene transcription of the inhibitory G protein alpha-subunit Gi alpha-2 in rat heart. Circ Res 72: 696–700, 1993

    PubMed  Google Scholar 

  73. Weinstein LA, Spiegel AM, Carter AD: Cloning and characterization of the human gene for the α-subunit of Gi2, a GTP-binding signal transducin protein. FEBS Lett 232: 333–340, 1988

    PubMed  Google Scholar 

  74. Imagawa M, Chiu R, Karin M: Transcription factor AP-2 mediates induction of two different signal-transduction pathways: protein kinase C and cAMP. Cell 51: 251–260, 1987

    PubMed  Google Scholar 

  75. Clark RB, Kunkel MW, Friedman J, Goka TJ, Johnson JA: Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylyl cyclase in S49 wild-type lymphoma cells. Proc Natl Acad Sci USA 85: 1442–1446, 1988

    PubMed  Google Scholar 

  76. Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Haverich A, Hirt S, Döring V, Kalmar P, Höppner W, Seitz HJ: Increased messenger RNA level of the inhibitory G-protein α-subunits Giα2 in human end-stage heart failure. Circ Res 70: 688–696, 1992

    PubMed  Google Scholar 

  77. Böhm M, Ungerer M, Erdmann E: Adenosine receptors in the human heart: pharmacological characterization in nondiseased and cardiomyopathic tissue. Drug Development Research 28: 268–276, 1993

    Google Scholar 

  78. Freissmuth M, Schütz W, Linder ME: Interactions of the bovine brain A1-adenosine receptor with recombinant G protein α-subunits. J Biol Chem 266: 17778–17783, 1991

    PubMed  Google Scholar 

  79. Colucci WS, Leatherman GF, Ludmer PL, Gauthier DF: β-Adrenergic inotropic responsiveness of patients with heart failure: studies with intracoronary dobutamine infusion. Circ Res 61 (Suppl 1): 82–86, 1987

    Google Scholar 

  80. Gage J, Rutman H, Lucido D, Le Jemtel TH: Additive effects of dobutamine and amrinone on myocardial contractility and ventricular performance in patients with severe heart failure. Circulation 74: 367–373, 1986

    PubMed  Google Scholar 

  81. Unverferth DV, Blanford M, Kates RE, Leier CV: Tolerance to dobutamine after a 72 h continuous infusion. Am J Med 69: 262–268, 1980

    PubMed  Google Scholar 

  82. Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsburg R, Fowler MG: Increased β-receptor density and improved hemodynamic response to catecholamine stimulation during long-term meoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 79: 483–490, 1989

    PubMed  Google Scholar 

  83. Waagstein F, Caidahl K, Wallentin I, Bergh CH, Hjalmarson A: Long-term β-blockade in dilated cardiomyopathy: effects of short- and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 80: 551–563, 1989

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M. Alterations of β-adrenoceptor-G-protein-regulated adenylyl cyclase in heart failure. Mol Cell Biochem 147, 147–160 (1995). https://doi.org/10.1007/BF00944795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00944795

Key words

Navigation