Skip to main content
Log in

Comparative pharmacokinetics of benzodiazepines in dog and man

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The pharmacokinetic parameters disposition half-life, metabolic clearance, volume of distribution, intrinsic clearance of unbound drug, and (distributive tissue volume/unbound fraction in tissue) were compared for 12 benzodiazepines in dog and man. With the exception of volume of distribution, statistically significant correlations were obtained when parameters were plotted on a double logarithmic grid. In general, benzodiazepines were metabolized more rapidly and exhibited greater tissue distribution in dog than in man. The variability in parameters was such, however, as to make extrapolations from one species to another subject to considerable error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. B. Brodie and R. P. Maickel. Comparative biochemistry of drug metabolism. In B. B. Brodie and E. G. Erdös (eds.),Metabolic Factors Controlling Duration of Drug Action, Vol. 6, Proc. 1st International Pharmacology Meeting. Pergamon Press, Elmsford, N.Y., 1962, pp. 299–324.

    Google Scholar 

  2. J. J. Burns. Species differences and individual variations in drug metabolism. In B. B. Brodie and E. G. Erdös (eds.),Metabolic Factors Controlling Duration of Drug Action, Vol. 6, Proc. 1st International Pharmacology Meeting. Pergamon Press, Elmsford, N.Y., 1962, pp. 277–288.

    Google Scholar 

  3. B. B. Brodie. Difficulties in extrapolating data on metabolism of drugs from animal to man. Part VI.Clin. Pharmacol. Ther. 3:374–380 (1962).

    CAS  PubMed  Google Scholar 

  4. J. N. Smith. Comparative biochemistry of detoxification. In M. Florkin and H. S. Mason (eds.),Comparative Biochemistry, A Comprehensive Treatise, Vol. VI, Cells and Organisms, Academic Press, New York, 1964, Chap. 8, pp. 403–457.

    Google Scholar 

  5. B. B. Brodie. Of mice, microsomes and man.Pharmacologist 6:12–26 (1964).

    Google Scholar 

  6. R. T. Williams. Comparative patterns of drug metabolism.Fed. Proc. 26:1029–1039 (1967).

    CAS  PubMed  Google Scholar 

  7. L. B. Mellett. Comparative drug metabolism.Progr. Drug Res. 13:136–169 (1969).

    CAS  Google Scholar 

  8. H. B. Hucker. Species differences in drug metabolism.Annu. Rev. Pharmacol. 10:99–118 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. R. L. Dedrick, K. B. Bischoff, and D. S. Zaharko. Interspecies correlation of plasma concentration history of methotrexate.Cancer Chemother. Rep. Part 1 54:95–101 (1970).

    CAS  Google Scholar 

  10. R. H. Adamson and D. S. Davies. Comparative aspects of absorption, distribution, metabolism and excretion of drugs. In M. J. Michelson (section ed.),International Encyclopedia of Pharmacology and Therapeutics, Sec. 85,Comparative Pharmacology. Pergamon Press, Oxford, 1973, Chap. 9, pp. 851–911.

    Google Scholar 

  11. R. L. Dedrick. Animal scale-up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  12. G. P. Quinn, M. J. Hurwic, and J. H. Perel. Interspecies differences in drug metabolism. In E. Usdin and I. S. Forrest (eds.),Psychotherapeutic Drugs, Part 1, Principles, Marcel Dekker, New York, 1976, Chap. III-12, pp. 605–623.

    Google Scholar 

  13. B. Testa and P. Jenner.Drug Metabolism: Chemical and Biochemical Aspects, Marcel Dekker, New York, 1976, Chap. 2.3, pp. 361–417.

    Google Scholar 

  14. J. R. Gillette. Application of pharmacokinetic principles in the extrapolation of animal data to humans.Clin. Toxicol. 9:709–722 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. U. Klotz, K.-H. Antonin, and P. R. Bieck. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig, and rat.J. Pharmacol. Exp. Ther. 199:67–73 (1976).

    CAS  PubMed  Google Scholar 

  16. M. Weiss, W. Sziegoleit, and W. Förster. Dependence of pharmacokinetic parameters on the body weight.Int. J. Clin. Pharmacol. 15:572–575 (1977).

    CAS  Google Scholar 

  17. C. H. Walker. Species differences in microsomal monoxygenase activity and their relationship to biological half-lives.Drug Metab. Rev. 7:295–323 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. J. R. Gillette. Extrapolations from microsomes to mice and men.Drug Metab. Dispos. 7:121–123 (1979).

    Google Scholar 

  19. C. H. Walker. Species variations in some hepatic microsomal enzymes that metabolize xenobiotics. In J. W. Bridges and L. F. Chasseaud (eds.),Progress in Drug Metabolism, Vol. 5. John Wiley & Sons, London, 1980, Chap. 2, pp. 113–164.

    Google Scholar 

  20. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin.J. Pharmacokin Biopharm. 8:165–176 (1980).

    Article  CAS  Google Scholar 

  21. S. L. Lindstedt and W. A. Calder III. Body size, physiological time, and longevity of homeothermic animals.Q. Rev. Biol. 56:1–16 (1981).

    Article  Google Scholar 

  22. H. Boxenbaum. Interspecies scaling, allometry, physiological time and the ground plan of pharmacokinetics.J. Pharmacokin. Biopharm. 10:201–227 (1982).

    Article  CAS  Google Scholar 

  23. R. R. Scheline. Metabolism of foreign compounds by gastrointestinal microorganisms.Pharmacol. Rev. 25:451–532 (1973).

    CAS  PubMed  Google Scholar 

  24. W. A. Colburn, I. Bekersky, B. H. Min, B. J. Hodshon, and W. A. Garland. Contribution of gut contents, intestinal wall and liver to the first-pass metabolism of clorazepam in the rat.Res. Commun. Chem. Pathol. Pharmacol. 27:73–90 (1980).

    CAS  PubMed  Google Scholar 

  25. Data on file. Hoffmann-LaRoche, Nutley, N.J.

  26. S. A. Kaplan, J. A. F. de Silva, M. L. Jack, K. Alexander, N. Strojny, R. E. Weinfeld, C. V. Puglisi, and L. Weissman. Blood level profile in man following chronic oral administration of fiurazepam hydrochloride.J. Pharm. Sci. 62:1932–1935 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. W. A. Mahon, T. Inaba, and R. M. Stone. Metabolism of flurazepam by the small intestine.Clin. Pharmacol. Ther. 22:228–233 (1977).

    CAS  PubMed  Google Scholar 

  28. J. Rieder. Plasma levels and derived pharmacokinetic characteristics of unchanged nitrazepam in man.Arzn.-Forsch. 23:212–218 (1973).

    CAS  Google Scholar 

  29. J. Rieder and G. Wendt. Pharmacokinetics and metabolism of the hypnotic nitrazepam. In S. Garattini, E. Mussini, and L. O. Randall (eds.),The Benzodiazepines. Raven Press, New York, pp. 99–127.

  30. C. M. Metzler, G. L. Elfring, and A. J. McEwen.A User's Manual for NONLIN and Associated Programs, Upjohn Co., Kalamazoo, Mich., April 20, 1974.

    Google Scholar 

  31. H. G. Boxenbaum, S. Riegelman, and R. M. Elashoff. Statistical estimations in pharmacokinetics.J. Pharmacokin. Biopharm. 2:123–148 (1974).

    Article  CAS  Google Scholar 

  32. S. Riegelman, J. Loo, and M. Rowland. Concept of a volume of distribution and possible errors in evaluation of this parameter.J. Pharm. Sci. 57:128–133 (1968).

    Article  CAS  PubMed  Google Scholar 

  33. M. Rowland. Influence of route of administration on drug availability.J. Pharm. Sci. 61:70–74 (1972).

    Article  CAS  PubMed  Google Scholar 

  34. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  35. M. Rowland, T. F. Blaschke, P. J. Meffin, and R. L. Williams. Pharmacokinetics in disease states modifying hepatic and metabolic function. In L. Z. Benet (ed.),The Effect of Disease States on Drug Pharmacokinetics. Am. Pharm. Assoc., Acad. Pharm. Sci., Washington, D.C., 1976, Chap. 4, pp. 53–75.

    Google Scholar 

  36. M. Rowland and G. Tucker. Symbols in pharmacokinetics.J. Pharmacokin. Biopharm. 8:497–507 (1980).

    Article  CAS  Google Scholar 

  37. P. L. Altman and D. S. Dittmer.Biology Data Book., Fed. Am. Soc. Exp. Biol., Washington, D.C., 1964, pp. 263–264.

    Google Scholar 

  38. J. W. Prothero. Scaling of blood parameters in mammals.Comp. Biochem. Physiol. 67A:649–657 (1980).

    Article  Google Scholar 

  39. W. R. Stahl. Organ weights in primates and other mammals.Science 150:1039–1042 (1965).

    Article  CAS  PubMed  Google Scholar 

  40. S. A. Kaplan, M. L. Jack, R. E. Weinfeld, W. Glover, L. Weissman, and S. Cotler. Biopharmaceutic and clinical profile of bromazepam.J. Pharmacokin. Biopharm. 4:1–16 (1976).

    Article  CAS  Google Scholar 

  41. J. Raaflaub and J. Speiser-Courvoisier. Zur pharmakokinetik von bromazepam beim menschen.Arzn.-Forsch. 24:1841–1844 (1974).

    CAS  Google Scholar 

  42. H. G. Boxenbaum, K. A. Geitner, M. L. Jack, W. R. Dixon, H. E. Spiegal, J. Symington, R. Christian, J. D. Moore, L. Weissman, and S. A. Kaplan. Pharmacokinetic and biopharmaceutic profile of chlordiazepoxide HCl in healthy subjects: single-dose studies by the intravenous, intramuscular and oral routes.J. Pharmacokin. Biopharm 5:3–23 (1977).

    Article  CAS  Google Scholar 

  43. A. Berlin and H. Dahlström. Pharmacokinetics of the anticonvulsant drug clorazepam evaluated from single oral and intravenous doses and by repeated oral administration.Eur. J. Clin. Pharmacol. 9:155–159 (1975).

    Article  CAS  PubMed  Google Scholar 

  44. I. Bekersky, A. C. Massio, V. Mattaliano, H. G. Boxenbaum, E. D. Maynard, P. D. Cohn, and S. A. Kaplan. Influence of phenobarbital on the disposition of clonazepam and antipyrine in the dog.J. Pharmacokin. Biopharm. 5:507–512 (1977).

    Article  CAS  Google Scholar 

  45. M. A. Schwartz, E. Postma, and Z. Gaut. Biological half-life of chlordiazepoxide and its metabolite, demoxypam, in man.J. Pharm. Sci. 60:1500–1503 (1971).

    Article  CAS  PubMed  Google Scholar 

  46. M. Rowland. Influence of route of administration on drug availability.J. Pharm. Sci. 61:70–74 (1972).

    Article  CAS  PubMed  Google Scholar 

  47. D. J. Greenblatt, M. D. Allen, J. S. Harmatz, and R. I. Shader. Diazepam disposition determinants.Clin. Pharmacol. Ther. 27:301–312 (1980).

    Article  CAS  PubMed  Google Scholar 

  48. H. G. Boxenbaum, H. N. Posmanter, T. Macasieb, K. A. Geitner, R. E. Weinfeld, J. D. Moore, A. Darragh, D. A. O'Kelley, L. Weissman, and S. A. Kaplan. Pharmacokinetics of flunitrazepam following single and multiple dose oral administration to healthy human subjects.J. Pharmacokin. Biopharm. 6:283–293 (1978).

    Article  CAS  Google Scholar 

  49. M. Divoll and D. J. Greenblatt. Effect of age and sex on lorazepam protein binding.J. Pharm. Pharmacol. (in press).

  50. D. M. Hailey and E. S. Baird. Plasma concentration of medazepam and its metabolites offer oral administration.Br. J. Anaesthesiol. 51:493–496 (1979).

    Article  CAS  Google Scholar 

  51. U. Klotz, K. H. Antonin, H. Brügel, and P. R. Bieck. Disposition of diazepam and its major metabolite demethyl diazepam in patients with liver disease.Clin. Pharmacol. Ther. 21:430–436 (1977).

    CAS  PubMed  Google Scholar 

  52. H. J. Shull, G. R. Wilkinson, R. Johnson, and S. Schenker. Normal disposition of oxazepam in acute viral hepatitis and cirrhosis.Ann. Int. Med. 84:420–425 (1976).

    Article  CAS  PubMed  Google Scholar 

  53. D. J. Greenblatt, M. Divoll, J. S. Harmat, and R. I. Shader. Oxazepam kinetics: effects of age and sex.J. Pharmacol. Exp. Ther. 215:86–91 (1980).

    CAS  PubMed  Google Scholar 

  54. G. Alván, M. Jönsson, A. Sundwall, and J. Vessman. First pass conjugation and enterohepatic recycling of oxazepam in dogs; intravenous tolerance of oxazepam in propylene glycol.Acta Pharmacol. Toxicol. (Suppl. 1)40:16–27 (1977).

    Google Scholar 

  55. F. S. Eberts, Y. Philopoulos, L. M. Reineke, and R. W. Vliek. Triazolam disposition.Clin. Pharmacol. Ther. 29:81–93 (1981).

    Article  CAS  PubMed  Google Scholar 

  56. F. S. Eberts, Jr. Disposition of triazolam, 8-chloro-6-(0-chlorophenyl)-1-methyl-4H-Striazolo{4,3-a}{1,4}benzodiazepine in the dog.Drug Metab. Dispos. 5:547–555 (1977).

    CAS  PubMed  Google Scholar 

  57. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–654 (1977).

    Article  CAS  Google Scholar 

  58. K. S. Pang. Hepatic clearances of drugs and metabolites.Trends Pharmacol. Sci. (June, 1980), pp. 247–251.

  59. K. S. Pang, personal communication.

  60. S. A. Kaplan, unpublished observation.

  61. W. A. Garland, Hoffmann-La Roche, Inc., personal communication.

  62. R. W. Lucek and C. B. Coutinho. The role of substituents in the hydrophobic binding of the 1,4-benzodiazepines by human plasma proteins.Mol. Pharmacol. 12:612–619 (1976).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boxenbaum, H. Comparative pharmacokinetics of benzodiazepines in dog and man. Journal of Pharmacokinetics and Biopharmaceutics 10, 411–426 (1982). https://doi.org/10.1007/BF01065172

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01065172

Key words

Navigation