Skip to main content
Log in

Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles

  • Proceedings of the Fifth International Workshop on Developmental Renal Physiology (Part II) August 26–28, 1992 Tremezzo, Italy
  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Angiotensin converting enzyme (ACE) has multiple effects both as the enzyme which cleaves angiotensin II from angiotensin I and as that which breaks down bradykinin. The present study examines ACE mRNA and protein expression in the rat kidney during development. Changes in distribution and expression during development are consistent with suggestions that the renin angiotensin system is important in growth modulation, vascular development and regulation, and protein reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lynch KR, Simnad VI, Ben-Ari ET, Garrison JC (1986) Localization of preangiotensinogen mRNA sequences in the rat brain. Hypertension 8: 540–543

    PubMed  Google Scholar 

  2. Gomez RA, Chevalier RV, Carey RM, Peach MJ (1990) Molecular biology of the renin-angiotensin system. Kidney Int 38 [Suppl 30]: S18-S23

    Google Scholar 

  3. Lilly LS, Pratt RE, Alexander RW, Larson DM, Ellison KE, Gimbrone MA, Dzau VJ (1985) Renin expression by vascular endothelial cells in culture. Circ Res 57: 312–318

    PubMed  Google Scholar 

  4. Dzau VJ, Kreisberg J (1986) Cultured glomerular mesangial cells contain renin: influence of calcium and isoproterenol. J Cardiovasc Pharmacol 8 [Suppl 8]: S6-S10

    PubMed  Google Scholar 

  5. Levens NR, Peach MJ, Carey RM (1981) Role of the intrarenal renin-angiotensin system in the control of renal function. Circ Res 4: 157–167

    Google Scholar 

  6. Navar LG, Rosivall L (1984) Contribution of the renin-angiotensin system to the control of intrarenal hemodynamics. Kidney Int 25: 857–868

    PubMed  Google Scholar 

  7. Dzau VJ (1989) Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses J Hypertens 7: 933–936

    PubMed  Google Scholar 

  8. Ehlers MRW, Riordan JF (1989) Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry 28: 5311–5318

    PubMed  Google Scholar 

  9. Ehlers MRW, Riordan JF (1990) Angiotensin converting enzyme: biochemistry and molecular biology. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management. Raven, New York, pp 1217–1231

    Google Scholar 

  10. Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, De Gouyon B, Julier C, Takahasi S, Vincent M, Ganten D, Georges M, Lathrop GM (1991) Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353: 521–529

    PubMed  Google Scholar 

  11. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao Y-P, Dzau VJ, Lander E (1991)Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67: 213–224

    PubMed  Google Scholar 

  12. Krieger JE, Mukoyama M, Koike G, Jacob H, Yee G, Lander E, Lawn R, Pratt RE, Dzau VJ (1992) Evidence for mutation in the promotor region of the ACE gene of SHR-SP vs WKY rats (abstract). Hypertension 20: 450

    Google Scholar 

  13. Gomez RA, Lynch KR, Sturgill BC, Elwood JP, Chevalier RL, Carey RM, Peach MJ (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257: F850-F858

    PubMed  Google Scholar 

  14. Herrmann HC, Dzau VJ (1983) Feedback regulation of angiotensinogen production by components of the renin-angiotensinogen system. Circ Res 52: 328–334

    PubMed  Google Scholar 

  15. Haber E, Koerner T, Page LB, Kliman B, Purnode A (1969) Application of radioimmunoassay for angiotensin I to the physiologic measurement of plasma renin activity in the normal human subject. J Clin Endocrinol Metab 29: 1349–1355

    PubMed  Google Scholar 

  16. Cushman DW, Cheung HS (1971) Concentration of angiotensin converting enzyme in tissues of the rat. Biochim Biophys Acta 250: 261–265

    PubMed  Google Scholar 

  17. Cushman DW, Wang FL, Fung WC, Harfey CM, DeForrest JM (1989) Differentiation of angiotensin-converting enzyme (ACE) inhibitors by their selective inhibition of ACE in physiologically important target organs. Am J Hypertens 2: 294–306

    PubMed  Google Scholar 

  18. Avreamas S (1969) Enzyme markers: their linkage with proteins and use in immunohistochemistry. Histochem J 4: 321–330

    Google Scholar 

  19. Conroy J, Hoffman H, Kirk ES, Hirzl HO, Sonnenblick EH, Soffer RL (1976) Pulmonary angiotensin-converting enzyme: interspecies homology and inhibition by heterologous antibody in vivo. J Biol Chem 251: 4828–4832

    PubMed  Google Scholar 

  20. Ingelfinger JR, Zuo WM, Fon TE, Ellison KE, Dzau VJ (1990) In situ hybridization localization of the intrarenal angiotensinogen: an hypothesis for the intrarenal renin angiotensin system. J Clin Invest 85: 417–422

    PubMed  Google Scholar 

  21. Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, Corvol P (1988) Two putative active centers in human angiotensin I converting enzyme revealed by molecular cloning. Proc Natl Acad Sci USA 85: 9386–9390

    PubMed  Google Scholar 

  22. Glisin V, Crkvenjakov R, Byus C (1974) Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13: 2633–2637

    PubMed  Google Scholar 

  23. Thomas PD (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose Proc Natl Acad Sci USA 77: 5201–5205

    PubMed  Google Scholar 

  24. Mounier F, Hinglais N, Sich M, Gros F, Lacoste M, Deris Y, Alhenc-Gelas F, Gubler M-C (1987) Ontogenesis of angiotensin-I converting enzyme in human kidney. Kidney Int 32: 684–690

    PubMed  Google Scholar 

  25. Wallace KB, Bailie MD, Hook JB (1978) Angiotensin-converting enzyme in developing lung and kidney. Am J Physiol 234: R141-R145

    PubMed  Google Scholar 

  26. Wigger HJ, Stalcup SA (1978) Distribution and development of angiotensin converting enzyme in the fetal and newborn rabbit. An immunofluorescence study. Lab Invest 38: 581–585

    PubMed  Google Scholar 

  27. Taugner R, Hackenthal F, Rix E, Nobiling R, Paulsen K (1982) Immunohistochemistry of the renin-angiotensin system. Kidney Int 22 [Suppl 12]: S33-S43

    Google Scholar 

  28. Richoux JP, Cordonnier JL, Bouhnik J, Clauser E, Corvol P, Menard J, Grignon G (1983) Immunochemical localization of angiotensinogen in rat liver and kidney. Cell Tissue Res 233: 439–451

    PubMed  Google Scholar 

  29. Caldwell PR, Seegal BC, Hsu KC, Das M, Soffer RL (1976) Angiotensin-converting enzyme: vascular endothelial localization. Science 191: 1050–1051

    PubMed  Google Scholar 

  30. Bruneval P, Hinglais N, Alhenc-Gelas F, Tricottet V, Corvol P, Menard J, Camilleri JP, Bariety J (1986) Angiotensin I converting enzyme in human intestine and kidney: ultrastructural immunohistochemical localization. Histochemistry 85: 73–80

    PubMed  Google Scholar 

  31. Fukatsu A, Yuzawa Y, Niesen N, Matsuo S, Caldwell PRB, Brentjens JRB, Andres G (1988) Local formation of immune deposits in rabbit proximal tubules. Kidney Int 34: 611–619

    PubMed  Google Scholar 

  32. Yanagawa N, Capparelli AW, Jo OD, Briedal A, Barrett JD, Eggena P (1991) Production of angiotensinogen and renin-like activith by rabbit proximal tubular cells in culture. Kidney Int 39: 938–941

    PubMed  Google Scholar 

  33. Ujiie K, Moe OW, Miller RT, Alpern RJ, Henrich WL, Star RA (1992) Regulated expression of renin mRNA in rat proximal tubules (abstract). J Am Soc Nephrol 3: 448

    Google Scholar 

  34. Deschepper CF, Mellon SH, Cumin F, Baxter JD, Ganong WF (1986) Analysis by immunohistochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci USA 83: 7552–7556

    PubMed  Google Scholar 

  35. Leyssac PP (1986) Changes in single nephron renin release are mediated by tubular flow rate. Kidney Int 30: 332–339

    PubMed  Google Scholar 

  36. Douglas JG (1988) Angiotensin effects on phospholipase A2 in proximal tubular epithelium are mediated by a GTP binding protein. Kidney Int 33: 154A

    Google Scholar 

  37. Douglas JG, Romero M, Hopfer U (1990) Signaling mechanisms coupled to the angiotensin receptor of proximal tubular epithelium. Kidney Int 38 [Suppl 30]: S43-S47

    Google Scholar 

  38. Grady EF, Sechi LA, Griffen CA, Schambelan M, Kalinyak JE (1991) Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88: 921–933

    PubMed  Google Scholar 

  39. Seikaly MG, Arant BS Jr, Seney FD Jr (1990) Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest 86: 1352–1357

    PubMed  Google Scholar 

  40. Liu F-Y, Cogan MG (1987) Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule J Clin Invest 30: 272–275

    Google Scholar 

  41. Liu F-Y, Cogan MG (1988) Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest 82: 601–607

    PubMed  Google Scholar 

  42. Schuster VL, Kokko JP, Jacobson HF (1984) Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest 73: 507–515

    PubMed  Google Scholar 

  43. Harris PJ, Navar LG (1985) Tubular transport responses to angiotensin. Am J Physiol 284: F621-F630

    Google Scholar 

  44. Harris PJ, Young JA (1977) Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch 367: 295–297

    PubMed  Google Scholar 

  45. Fine L, Badie-Dezfooly B, Chaudhari A (1985) Angiotensin II induces hypertrophy of renal proximal tubular cells. Clin Res 33: 584A

    Google Scholar 

  46. Wolf G, Neilson EG (1990) Angiotensin II induces cellular hypertrophy in a murine proximal tubular cell line Am J Physiol 259: F768-F777

    PubMed  Google Scholar 

  47. Norman J, Badie-Dezfooly B, Nord EP, Kurtz I, Schlosser J, Chaudhari A, Fine LG (1987) EGF-induced mitogenesis in proximal tubular cells; potentiation by angiotensin II. Am J Physiol 253: F299-F309

    PubMed  Google Scholar 

  48. Wolf G, Neilson EG (1992) Effects of angiotensin II on proximal tubular cells stably transfected with the c-mas oncogene. Am J Physiol 163: F931-F938

    Google Scholar 

  49. Defendini R, Zimmerman EA, Weare JA, Alhenc-Gelas F, Erdos EG (1983) Angiotensin-converting enzyme in epithelial and neuroepithelial cells. Neuroendocrinology 37: 32–40

    PubMed  Google Scholar 

  50. Stewart TA, Weare JA, Erdos EG (1981) Purification and characterization of human converting enzyme (kininase II). Peptides 2: 145–152

    PubMed  Google Scholar 

  51. Skidgel RA, Engelbrecht S, Johnson AR, Erdos EG (1984) Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptidase. Peptides 5: 769–776

    PubMed  Google Scholar 

  52. Carone FA, Peterson DR, Flouret G (1982) Renal tubular processing of small peptide hormones. J Lab Clin Med 100: 1–14

    PubMed  Google Scholar 

  53. Duggan KA, Mendelsohn FAO, Levens N (1989) Angiotensin receptors and angiotensin I-converting enzyme in rat intensine. Am J Physiol 253: G781-G786

    Google Scholar 

  54. Yoshioka M, Erickson RH, Woodley JF, Gulli R, Guan D, Kim YS (1987) Role of rat intestinal brush border membrane angiotensin converting enzyme in dietary protein digestion. Am J Physiol 253: G781-G786

    PubMed  Google Scholar 

  55. Ingelfinger JR, Anderson S, Hirsch A, Bouyounes B, Brenner BM (1990) Renal angiotensin converting enzyme (ACE) activity is related to degree of proteinuria in active puromycin nephrosis (PAN). Pediatr Res 27: 330A

    Google Scholar 

  56. Arevalo AE, Ibarro-Rubio ME, Cruz C, Pedraza-Chaverri J, Pena JC (1990) Angiotensin converting enzyme (ACE) in serum, urine and tissues from nephrotic rats (abstract). J Am Soc Nephrol 1: 606

    Google Scholar 

  57. Bruneval P, Hinglais J, Camilleri JP, Bariety J (1986) Angiotensin I converting enzyme in human small intestine and kidney. Characterization by immunofluorescence and ultra structural immunohistochemistry. Histochemistry 85: 73–80

    PubMed  Google Scholar 

  58. Takada Y, Hiwada K, Unno M, Kokubo T (1982) Immunocytochemical localization of angiotensin converting enzyme at the ultrastructural level in the human lung and kidney. Biomed Res 3: 169–174

    Google Scholar 

  59. Takada Y, Unno M, Hiwada K, Kokubu T (1981) Immunological and immunofluorescent studies of human angiotensin-converting enzyme. Clin Sci 61 [Suppl 7]: 253S-256S

    PubMed  Google Scholar 

  60. Caldwell PR, Seegal BC, Hsu KC, Das M, Soffer RL (1976) Angiotensin-converting enzyme: vascular endothelial localization: Science 191: 1050–1051

    PubMed  Google Scholar 

  61. Hall ER, Kato J, Erdos ECT, Robinson CJG, Oshima G (1976) Angiotensin I-converting enzyme in the nephron. Life Sci 18: 1299–1304

    PubMed  Google Scholar 

  62. Danilov SM, Faerman AI, Printseva OY, Martynov AV, Sakharov IY, Trakht IN (1987) Immunohistochemical study of angiotensin converting enzyme in human tissues using monoclonal antibodies. Histochemistry 87: 487–490

    PubMed  Google Scholar 

  63. Hunt MK, Ramos SP, Geary KM, Norling LL, Peach MJ, Gomez RA, Carey RM (1992) Colocalization and release of angiotensin and renin in renal cortical cells. Am J Physiol 263: F363-F373

    PubMed  Google Scholar 

  64. Deschepper CF, Mellon SH, Cumin F, Baxter JD, Ganong WF (1986). Analysis by immunohistochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc Natl Acad Sci USA 83: 7552–7556

    PubMed  Google Scholar 

  65. Dzau VJ, Kreisberg J (1986) Cultured glomerular cells contain renin: influence of calcium and isoproterenol. J Cardiovasc Pharmacol 8 [Suppl 8]: S6-S10

    PubMed  Google Scholar 

  66. Inagami T, Kawamura M, Naruse K, Okamura T (1986) Localization of components of the renin-angiotensin system within the kidney. Fed Proc 45: 1414–1419

    PubMed  Google Scholar 

  67. Tufro-McReddie AS, Harrison JR, Everett AD, Gomez RA (1993) Ontogeny of type 1 angiotensin II receptor gene expression in the rat. J Clin Invest 91: 530–537

    PubMed  Google Scholar 

  68. Haley DP, Sarrafian M, Bulger RE, Dobyan DC, Eknoyan G (1987) Structural and functional correlates of effects of angiotensin-induced changes in rat glomerulus. Am J Physiol 253: F111-F119

    PubMed  Google Scholar 

  69. Kastner PR, Hall JE, Guyton AC (1984) Control of glomerular filtration rate: role of intrarenally formed angiotensin II. Am J Physiol 146: F897-F906

    Google Scholar 

  70. Andrews PM (1981) Investigations of cytoplasmic contractile and cytoskeletal elements in the kidney glomerulus. Kidney Int 20: 549–562

    PubMed  Google Scholar 

  71. Ausiello DA, Kreisberg JI, Roy C, Karnovsky JM (1980) Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin and arginine-vasopressin. J Clin Invest 65: 754–760

    PubMed  Google Scholar 

  72. Foidart J, Sraer J, Delarue F, Mahieu P, Ardaillou R (1980) Evidence for mesangial glomerular receptors for angiotensin II linked to mesangial cell contractility. FEBS Lett 121: 333–336

    PubMed  Google Scholar 

  73. Osborne MJ, Droz B, Meyer P, Morel F (1975) Angiotensin II: renal localization in glomerular mesangial cells by autoradiography. Kidney Int 8: 245–254

    PubMed  Google Scholar 

  74. Gibbons GH, Pratt RE, Dzau VJ (1992) Vascular smooth muscle cell hypertrophy vs. hyperplasia. J Clin Invest 90: 456–461

    PubMed  Google Scholar 

  75. Itoh H, Pratt RE, Dzau VJ (1990) Antisense oligonucleotides complementary to PDGF mRNA attenuate angiotensin II-induced hypertrophy (abstract). Hypertension 16: 325

    Google Scholar 

  76. Gibbons GH, Pratt RE, Dzau VJ (1989) Angiotensin II is a bifunctional vascular smooth muscle cell growth factor. Hypertension 14: 358a

    Google Scholar 

  77. Owens GK, Geisterfer AAT, Yang W-H, Komoriya A (1988) Transforming growth factor beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 107: 771–780

    PubMed  Google Scholar 

  78. Faubert PF, Chou SY, Porush JG (1987) Regulation of papillary plasma flow by angiotersin II. Kidney Int 32: 472–478

    PubMed  Google Scholar 

  79. Chou SY, Faubert PF, Porush JF (1986) Contribution of angiotensin to the control of medullary hemodynamics. Fed Proc 45: 1438–1443

    PubMed  Google Scholar 

  80. Mendelsohn FAO, Dunbar M, Allen A, Chou ST, Millan MA, Aguilera G, Catt KJ (1986) Angiotensin II receptors in the kidney. Fed Proc 45: 1420–1425

    PubMed  Google Scholar 

  81. Robillard JE, Gomez RA, VanOrden D, Smith FG (1982) Comparison of the adrenal and renal responses to angiotensin II in fetal lambs and adult sheep. Circ Res 50: 140

    PubMed  Google Scholar 

  82. Drukker A, Goldsmith DI, Spitzer A, Edelmann CM, Blaufox MD (1980) The renin angiotensin system in newborn dogs: developmental patterns and response to acute saline loading. Pediatr Res 14: 304–307

    PubMed  Google Scholar 

  83. Bailie MD, Osborn JL, Hook JB (1973) Effect of inhibition of prostaglandin synthetase and angiotensin II on renal function in the newborn piglet. In: Spitzer A (ed) The kidney during development: morphology and function. Masson, New York, pp 173–181

    Google Scholar 

  84. Robillard JE (1970) Changes in renal vascular reactivity to angiotensin II during development in fetal, newborn and adult sheep: role of A-II vascular receptors occupancy. Pediatr Res 17: 355A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, F.F., Bouyounes, B., Barrio, R. et al. Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7, 834–840 (1993). https://doi.org/10.1007/BF01213370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01213370

Key words

Navigation