Skip to main content
Log in

Urinary MHPG sulfate as a marker of central norepinephrine metabolism: a commentary

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Measurement of total (free + conjugated) 3 methoxy-4-hydroxyphenylglycol (MHPG) in urine has long been used to assess the metabolism of central norepinephrine (NE). However, available data indicate that total MHPG is not a sensitive marker because the portion of urinary MHPG which derives from brain NE is less than was previously assumed.

Several arguments support the view that central MHPG excretion is best represented by the urinary MHPG sulfate fraction. Accordingly, a new strategy has been introduced in last years, involving the separate determination of sulfate and glucuronide conjugates of MHPG as respective markers of central and peripheral NE metabolism. Various biochemical and pharmacological data obtained in healthy subjects and in patients with mental diseases support this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baillie T, Boobis AS, Jones DH, Murray S, Reid JL (1977) Studies on the metabolic fate of MHPG in man. Brit J Pharmacol 60: 280

    Google Scholar 

  • Blombery P, Kopin IJ, Gordon EK, Markey SP, Ebert MH (1979) Metabolism and turnover of MHPG in the monkey. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines — basic and clinical frontiers, vol 2. Pergamon Press, pp 1875–1877

  • Blombery A, Kopin IJ, Gordon EK, Markey SP, Ebert MH (1980) Conversion of MHPG to vanillymandelic acid. Application for the importance of urinary MHPG. Arch Gen Psychiatry 37: 1095–1098

    Google Scholar 

  • Bond PA (1972) The determination of MHPG in urine and CSF using gas chromatography. Biochem Med 6: 36–45

    Google Scholar 

  • Bond PA, Dimitrakoudi M, Howlett DR, Jenner FA (1975) Urinary excretion of the sulfate and glucuronide of 3-methoxy-4-hydroxyphenylethyleneglycol in a manic depressive patient. Psychol Med 5: 279–285

    Google Scholar 

  • Bond PA, Howlett DR, Jenner FA (1979) Urinary excretion of the sulfate and glucuronide of 3-methoxy-4-hydroxyphenylglycol in urine. Biochem Med 10: 219–228

    Google Scholar 

  • Bond PA, Jenner FA, Sampson G (1972) Daily variations of the urine content of 3-methoxy-4-hydroxyphenylglycol in two manic depressive patients. Psychol Med 12: 81–85

    Google Scholar 

  • Boobis AR, Murray S, Jones H, Reid JL, Davies JL (1979) Conjugates of 3-methoxy-4-hydroxyphenylglycol in man. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines — basic and clinical frontiers, vol 1. Pergamon Press, pp 213–215

  • Boudet C, Peyrin L, Tavitian E, Claustre J, Favre R (1984) Studies on the central or peripheral origin of free and sulfated 3,4-dihydroxyphenylacetic acid in rat plasma. Eur J Pharmacol 103: 295–301

    Google Scholar 

  • Buu NT (1985) Relationship between catechol-O-methyltransferase and phenolsulfotransferase in the metabolism of dopamine in the rat brain. J Neurochem 45: 1612–1619

    Google Scholar 

  • Chase TN, Gordon EK, Ng LKY (1973) Norepinephrine metabolism in the central nervous system of man: studies using 3-methoxy-4-hydroxyphenylglycol levels in cerebrospinal fluid. J Neurochem 21: 581–587

    Google Scholar 

  • Dekirminjian H, Maas J (1974) 3-methoxy-4-hydroxyphenethyleneglycol in plasma. Clin Chem 52: 203–210

    Google Scholar 

  • De Met EM, Angelos AE, Gwirtsman HE, Reno RM (1985) Diurnal rythm of MHPG: relationship betweeen plasma and urinary levels. Life Sci 37: 1731–1741

    Google Scholar 

  • Elsworth JD, Roth RH, Redmond DE (1983) Relative importance of 3-methoxy-4-hydroxyphenylglycol and 3,4-dihydroxyphenylglycol as norepinephrine metabolites in rat, monkey and humans. J Neurochem 41: 786–793

    Google Scholar 

  • Filser JG, Muller WE, Beckmann H (1986) Should plasma or urinary MHPG be measured in psychiatric research? A critical comment. Br J Psychiatry 148: 95–97

    Google Scholar 

  • Filser JG, Spira FJ, Gabel A, Beckman H, Muller WE (1988) The evaluation of 4-hydroxy-3-methoxyphenylglycol sulfate as a possible marker of central norepinephrine turnover. Studies in healthy volunteers and depressed patients. J Psychiatr Res 22: 171–182

    Google Scholar 

  • Filser JG, Spira FJ, Gabel A, Beckmann H, Muller WE (1986) Comparative determination of 3-methoxy-4-hydroxyphenylglycol and its conjugate derivatives in the urine of depressed patients and healthy controls. Pharmacopsychiatry 19: 194–195

    Google Scholar 

  • Foldes A, Meek JL (1974) Occurence and localization of brain phenolsulfotransferase. J Neurochem 23: 303–307

    Google Scholar 

  • Gordon EK, Oliver J, Goodwin FK, Chase TN, Post RM (1973) Effect of probenecid on free 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) and its sulfate in human cerebrospinal fluid. Neuropharmacology 12: 391–396

    Google Scholar 

  • Halaris AE, Demet EM, Halari ME (1977) Determination of plasma 3-methoxy-4-hydroxyphenylglycol by pulsed electron capture gas chromatography. Clin Chim Acta 78: 285–294

    Google Scholar 

  • Hjemdahl P, Sjoquist B, Daleskog M, Eliasson K (1982) A comparison of noradrenaline, MHPG and VMA in plasma as indicators of sympathetic nerve activity in man. Acta Physiol Scand 115: 507–509

    Google Scholar 

  • Jimerson DC, Ballenger JC, Lake CR, Post RM, Goodwin FK, Kopin IJ (1981) Plasma and CSF MHPG in normals. Psychopharmacol Bull 17: 87–89

    Google Scholar 

  • Joseph MH, Baker HF, Johnstone EC, Crow TJ (1976) Determination of 3-methoxy-4-hydroxyphenylglycol conjugates in urine. Application to the study of central noradrenaline metabolism in unmedicated chronic schizophrenic patients. Psychopharmacology 51: 47–51

    Google Scholar 

  • Karege F (1984) Method for total 3-methoxy-4-hydroxyphenylglycol extraction from urine, plasma, and brain tissue using bonded-phase materials: comparison with the ethylacetate extraction method. J Chromatogr 311: 361–388

    Google Scholar 

  • Karoum F, Lefevre H, Bigelow LB, Costa E (1973) Urinary excretion of 4-hydroxy-3-methoxyphenylglycol and 4-hydroxy-3-methoxyphenylethanol in man and rat. Clin Chim Acta 43: 127

    Google Scholar 

  • Karoum F, Schwing JM, Potkin SG, Wyatt RJ (1977) Presence of free, sulfate and glucuronide conjugated 3-methoxy-4-hydroxyphenylglycol (MHPG) in human brain, cerebrospinal fluid and plasma. Brain Res 125: 33–339

    Google Scholar 

  • Kleinmann JE, Bridge P, Karoum F, Speciale S, Staub R, Zalcman S, Gillin JC, Wyatt EJ (1979) Catecholamines and metabolites in the brain of psychotics and normals: post-mortem studies. In: Usdin E, Kopin IJ, Barchas J (eds) Catecholamines — basic and clinical frontiers, vol 2. Pergamon Press, pp 1845–1847

  • Kohno Y, Tanaka M, Nakagawa R, Toshima N, Nagasaki N (1981) Regional distribution and production rate of 3-methoxy-4-hydroxyphenylglycol (MHPG-SO4) in rat brain. J Neurochem 36: 286–289

    Google Scholar 

  • Kopin IJ (1985) Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 37: 33–364

    Google Scholar 

  • Kopin IJ, Jimerson DC, Markey SP, Ebert MH, Polinsky RJ (1984) Disposition and metabolism of MHPG in humans: application to studies in depression. Pharmacopsychiatry 17: 3–8

    Google Scholar 

  • Kraemer GW, Breese GR, Prange AJ, Moran EC, Lewis JK, Kemnitz JW, Bushnell PJ, Howard JL, Kinney WT (1981) Use of 6-hydroxydopamine to deplete brain catecholamines in the rhesus monkey: effects on urinary catecholamine metabolites and behavior. Psychopharmacology 73: 1–11

    Google Scholar 

  • Krstulovic AM, Bertani-Dziedzic L, Dziedzic SW, Gitlow SE (1981) Quantitative determination of 3-methoxy-4-hydroxyphenylethyleneglycol and its sulfate conjugate in human lumbar cerebrospinal fluid using liquid chromatography with amperometric detection. J Chromatogr 223: 305–314

    Google Scholar 

  • Leckmann JF, Maas JW, Heninger GR (1981) Covariance of plasma free 3-methoxy-4-hydroxyphenethyleneglycol and diastolic blood pressure. Eur J Pharmacol 70: 11–120

    Google Scholar 

  • Maas JW, Davis J, Hanin I, Kocsis JH, Redmond DE, Bowden C, Robins E (1982) Pretreatment neurotransmitter metabolites in response to imipramine and amitryptiline treatment. Psychol Med 12: 37–43

    Google Scholar 

  • Maas JW, Dekirmenjean H, Garver D, Landis DH (1972) Catecholamine metabolite excretion following intraventricular injection of 6-hydroxy-dopamine. Brain Res 41: 507–511

    Google Scholar 

  • Maas JW, Hattox SE, Grene NM, Landis DH (1979) 3-methoxy-4-hydroxyphenylethyleneglycol production by human brain in vivo. Science 205: 1025–1027

    Google Scholar 

  • Maas JW, Hattox SE, Landis DH, Roth RH (1976a) The determination of a brain arterioveinous difference for 3-methoxy-4-hydroxyphenethyleneglycol (MHPG). Brain Res 118: 167–173

    Google Scholar 

  • Maas JW, Landis DH, Dekirmenjean H (1976b) The occurrence of free vs, conjugated MHPG in non-human and human primate brain. Psychopharmacology 2: 403–410

    Google Scholar 

  • Maas JW, Leckmann JF (1983) Relationship between CNS noradrenergic function and plasma and urinary MHPG and other norepinephrine metabolites. In: Maas JW (ed) MHPG: Basic mechanisms and psychopathology. Academic Press, New York, pp 33–43

    Google Scholar 

  • MÄrdh G (1983) Further studies on MHPG oxidation in man. Effect of pool expansion and stereochemistry. J Neurochem 41: 299–301

    Google Scholar 

  • MÄrdh G, Sjoquist B, Anggard E (1981) Norepinephrine metabolism in man using deuterium labelling: the conversion of 4-hydroxyphenylglycol to 4-hydroxy-3-methoxy mandelic acid. J Neurochem 36: 1181–1185

    Google Scholar 

  • McGauch JL (1985) Peripheral and central adrenergic influences on brain systems involved in the modulation of memory storage. Ann NY Acad Sci 444: 150–161

    Google Scholar 

  • Markianos E, Beckmann H (1976) Diurnal changes in dopamine Β-hydroxylase, homovanillic acid and 3-methoxy-4-hydroxyphenylglycol in serum in man. J Neural Transm 39: 79–93

    Google Scholar 

  • Mulder GJ, Dawson JR, Pang KS (1984) Competition between sulphation and glucuronidation in the rat in vivo: enzyme kinetics and pharmocokinetics of conjugation. Biochem Soc Trans 12: 1719

    Google Scholar 

  • Murray S, Baillie TA, Davies DS (1977) A non-enzymic procedure for the quantitative analysis of 3-methoxy-4-sulfoxyphenethyleneglycol (MHPG sulfate) in human urine stable isotope dilution and gas chromatography maas spectrometry. J Chromatogr 143: 541–551

    Google Scholar 

  • O'Keefe Brooksbank BWL (1973) Determination of MHPG, a noradrenaline metabolite, in cerebrospinal fluid and urine. Clin Chem 19: 1031–1035

    Google Scholar 

  • Peyrin L, Favre R, Broussolle E, Brudon F, Chazot G, Trouillas P (1986) Apport du dosage sélectif du MHPG sulfate urinaire à l'étude du mécanisme de l'action noradrénergique de la métapramine chez le déprimé. Colloque National des Neurosciences, Bordeaux

  • Peyrin L, Pequignot JM (1983) Free and conjugated 3-methoxy-4-hydroxyphenylglycol in human urine: peripheral origin of glucuronide. Psychopharmacology 79: 16–20

    Google Scholar 

  • Peyrin L, Pequignot JM, Chauplannaz G, Laurent B, Aimard G (1985) Sulfate and glucuronide conjugates of MHPG in urine of depressed patients: central and peripheral influences. J Neural Transm 63: 255–269

    Google Scholar 

  • Peyrin L, Pequignot JM, Lacour JR, Fourcade J (1987) Relationships between catecholamine or 3-methoxy-4-hydroxyphenylglycol changes and the mental performance under submaximal exercise in man. Psychopharmacology 93: 188–192

    Google Scholar 

  • Polinsky RJ, Jimerson DC, Kopin IJ (1984) Chronic autonomic failure: CSF and plasma 3-methoxy-4-hydroxyphenylglycol. Neurology 34: 979–983

    Google Scholar 

  • Rein G, Glover V, Sandler M (1981) Phenosulfotransferase in human tissue: evidence for multiple forms. In: Usdin E, Sandler M (eds) Phenosulfotransferase in mental health research. Macmillan, New York, pp 98–126

    Google Scholar 

  • Rein G, Glover V, Sandler M (1982) Multiple forms of PST in human tissues, selective inhibition by dichlore dinitrophenol. Biochem Pharmacol 31: 1893–1898

    Google Scholar 

  • Rein G, Glover V, Sandler M (1984) Characterization of human brain phenosulfotransferase. J Neurochem 42: 80–85

    Google Scholar 

  • Reiter C, Mwaluko G, Dunnette J, Van Loon J, Weinshilboum R (1983) Thermolabile and thermostable human platelet phenosulfotransferase-substrate specificity and physical separation. Naunyn Schmiedebergs Arch Pharmacol 324: 140–147

    Google Scholar 

  • Renskers KJ, Foer KD, Roth JA (1980) Sulfation of dopamine and other biogenic amines by human brain phenolsulfotransferase. J Neurochem 34: 1362–1368

    Google Scholar 

  • Riederer P, Birkmayer W, Seedmann D, Wuketich ST (1977) Brain noradrenaline and 3-methoxy-4-hydroxyphenylglycol in Parkinson syndrome. J Neural Transm 41: 241–252

    Google Scholar 

  • Rivett AJ, Francis A, Whittemore R, Roth JA (1984) Sulfate conjugation of dopamine in rat brain: regional distribution of activity and evidence for neuronal localization. J Neurochem 42: 1444–1449

    Google Scholar 

  • Robinson-White A, Costa JL, Launay JM, Fay DD (1988) Presence of phenolsulfotransferase activity in microvascular enodethelial cells; formation of 5-HT-O-sulfate in intact cells. Microvasc Res 35: 363–367

    Google Scholar 

  • Shanberg SM, Schildkraut JJ, Breese GR, Kopin IJ (1968) Metabolisms of normetanephrine H3 in rat brain. Identification of conjugated 3-methoxy-4-hydroxyphenylglycol as the major metabolite. Biochem Pharmacol 247–254

  • Scharpless N, Halbreich U, Feldfogel (1986) Determination of total 3-methoxy-4-hydroxyphenylglycol in plasma using reversed-phase liquid chromatography with electrochemical detection. J Chromatogr 377: 101–109

    Google Scholar 

  • Sjöquist B, Lindström B, AnggÄrd E (1975) Mass fragmentographic of 4-hydroxy-3-methoxyphenylglycol (MHPG) in urine, cerebrospinal fluid, plasma and tissues using a deuterium-labelled internal standard. J Chromatogr 105: 309–316

    Google Scholar 

  • Shimizu H, Labrosse H (1969) Metabolism of catecholamines: identification and quantification of 3-methoxy-4-hydroxyphenylglycol glucuronide in human urine. Biochem Pharmacol 18: 1643–1654

    Google Scholar 

  • Swahn CG, Wiesel FA (1976) Determination of conjugated monoamine metabolites in brain tissue O. J Neural Transm 39: 281–290

    Google Scholar 

  • Van Kempen GMJ, Wolters WL, Van Elk R (1975) Distribution of 3-methoxy-4-hydroxyphenylethyleneglycol sulfotransferase in brain fractions. J Neurochem 24: 825–827

    Google Scholar 

  • Wolfson LI, Escriva A (1976) Clearance of 3-methoxy-4-hydroxyphenylglycol from the cerebrospinal fluid. Neurology 26: 781–784

    Google Scholar 

  • Wong KP (1976) Species differences in the conjugation of 4-hydroxy-3-methoxyphenylethanol with glucuronic acid and sulfuric acid. Biochem J 158: 33–37

    Google Scholar 

  • Young WF, Okazaki M, Laws ER, Weinshilboum RM (1984) Human brain phenolsulfotransferase: biochemical properties and regional localization. J Neurochem 43: 706–715

    Google Scholar 

  • Yu PH, Rozdilsky B, Boulton AA (1985) Sulfate conjugation of monoamines in human brain: purification and some properties of an arylamine sulfotransferase from cerebral cortex. J Neurochem 45: 836–843

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyrin, L. Urinary MHPG sulfate as a marker of central norepinephrine metabolism: a commentary. J. Neural Transmission 80, 51–65 (1990). https://doi.org/10.1007/BF01245022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245022

Keywords

Navigation