Skip to main content
Log in

Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

To establish possible functional differences between the dopamine D2 and D3 receptor we investigated the relation between the ability, for a set of nine mixed dopamine D2 and D3 receptor antagonists, to displace N, N-dipropyl-2-amino-5,6-dihydroxy tetralin (DP-5,6-ADTN) from striatal binding sites and the subsequent behavioural consequences in vivo. Dopamine D2 receptor preferring antagonists are powerful displacers of DP-5,6-ADTN from the striatum. Maximal displacement is followed by strong hypomotility. Displacement of the agonist by the D3 preferring antagonist U99194A is only partial and results in synergistic increases in locomotor activity. Superimposing haloperidol upon GBR12909 leads to a synergistic increase in striatal dialysate dopamine concentrations. This effect is absent when combining GBR12909 with the putative D3 antagonist U99194A. These data give support for the hypothesis that the dopamine D3 receptor is functionally relevant at the postsynaptic level. Here, in contrast to the D2 receptor, it is proposed to exert an inhibitory influence on psychomotor functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Björklund A, Lindvall O (1986) Catecholaminergic brain stem regulatory systems. In: Field J (ed) Handbook of physiology. The nervous system IV. Am Physiol Soc, Washington DC, pp 155–235

    Google Scholar 

  • Boundy VA, Luedtke RR, Gallitano AL, Smith JE, Filtz TM, Kallen RG, Molinoff PB (1993) Expression, and characterization of the rat D3 dopamine receptor: pharmacologic properties and development of antibodies. J Pharmacol Exp Ther 264: 1002–1011

    PubMed  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry comparison with dopamine D2 receptor mRNA. Brain Res 564: 203–219

    PubMed  Google Scholar 

  • Carlsson A (1975) Receptor-mediated control of dopamine metabolism. In: Usdin E, Bunney Jr WE (ed) Pre- and postsynaptic receptors. Marcel Dekker, New York, pp 49–65

    Google Scholar 

  • Carlsson A (1978) Mechanism of action of neuroleptic drugs. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 1057–1070

    Google Scholar 

  • Carlsson A, Löfberg L (1985) In vivo displacement by 3-PPP enantiomers of N,N-Dipropyl-5,6-ADTN from dopamine receptor-binding sites in rat striatum. J Neural Transm 64: 173–185

    PubMed  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, Zhou Q-Y, Van Tol HHM (1991) Molecular biology of the dopamine receptors. Eur J Pharmacol 207: 277–286

    PubMed  Google Scholar 

  • Cools AR, Van Rossum JM (1976) Excitation-mediating and inhibition-mediating dopamine-receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia (Berl) 45: 243–254

    Google Scholar 

  • Cools AR, van Rossum JM (1980) Multiple receptors for brain dopamine in behavior regulation: concept of dopamine-E and dopamine-I receptors. Life Sci 27: 1237–1253

    PubMed  Google Scholar 

  • Damsma G, Bottema T, Westerink BHC, Tepper PG, Dijkstra D, Pugsley TA, MacKenzie RG, Heffner TG, Wikström H (1993) Pharmacological aspects of R-(+)-7-OH-DPAT, a putative dopamine D3 receptor ligand. Eur J Pharmacol 249: R9-R10

    PubMed  Google Scholar 

  • Di Chiara G, Porceddu ML, Spano PF, Gessa GL (1977) Haloperidol increases and apomorphine decreases striatal dopamine metabolism after destruction of striatal dopamine-sensitive adenylate cyclase by kainic acid. Brain Res 130: 374–382

    PubMed  Google Scholar 

  • Farde L, Nordström A-L, Wiesel F-A, Pauli S, Halldin C, Sedvall G (1992) Positron emission tomographic analysis of central d1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49: 538–544

    PubMed  Google Scholar 

  • Feenstra M, Rollema H, Mulder T, Westerink BHC, Horn AS (1983 a) In vivo dopamine receptor binding with a non-radioactively labeled agonist, dipropyl-5,6-ADTN. Life Sci 32: 1313–1323

    PubMed  Google Scholar 

  • Feenstra MGP, Rollema H, Mulder TBA, De Vries JB, Horn AS (1983 b) In vivo dopamine receptor agonist binding in rat brain: relation with pharmacological effects. Eur J Pharmacol 90: 433–436

    PubMed  Google Scholar 

  • Gehlert DR, Gackenheimer SL, Seeman P, Schaus J (1992) Autoradiographic localization of [3H]quinpirole binding to dopamine D2 and D3 receptors in rat brain. Eur J Pharmacol 211: 189–194

    PubMed  Google Scholar 

  • Hajos M, Hjorth S, Svensson K, Carlsson A (1988) In vivo dopamine (DA) receptor binding and behavioural effects of putative DA autoreceptor antagonists (+)-AJ76 and (+)-UH232 in rats with a unilateral nigral 6-OH-DA lesion. Exp Brain Res 70: 577–584

    PubMed  Google Scholar 

  • Hjorth S, Carlsson A (1988) In vivo receptor binding, neurochemical and functional studies with the dopamine D-1 receptor antagonist SCH 23390. J Neural Transm 72: 83–97

    PubMed  Google Scholar 

  • Johansson AM, Nilsson JLG, Karlén A, Hacksell U, Sanchez D, Svensson K, Hjorth S, Carlsson A, Sundell S, Kenne L (1987) Cl- and C3-Methyl-substituted derivatives of 7-hydroxy-2-(di-n-propylamino)tetralin: activities at central dopamine receptors. J Med Chem 30: 1827–1837

    PubMed  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    PubMed  Google Scholar 

  • Landwehrmeyer B, Mengod G, Palacios JM (1993 a) Dopamine D3 receptor mRNA and binding sites in human brain. Mol Brain Res 18: 187–192

    PubMed  Google Scholar 

  • Landwehrmeyer B, Mengod G, Palacios JM (1993 b) Differential visualization of Dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur J Neurosci 5: 145–153

    PubMed  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres M-P, Giros B, Souil E, Schott D, Morgat J-L, Schwartz J-C, Sokoloff P (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci USA 89: 8155–8159

    PubMed  Google Scholar 

  • Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacology 56: 239–247

    PubMed  Google Scholar 

  • Meller E, Bohmaker K, Goldstein M, Bashman DA (1993) Evidence that striatal synthesisinhibiting autoreceptors are dopamine D3 receptors. Eur J Pharmacol 249: R5-R6

    PubMed  Google Scholar 

  • Moghaddam B, Bunney BS (1989) Ionic composition of microdialysis perfusing solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J Neurochem 53: 652–654

    PubMed  Google Scholar 

  • Rubinstein M, Gershanik O, Stefano FJE (1988) Postsynaptic bimodal effect of sulpiride on locomotor activity induced by pergolide in catecholamine-depleted mice. Naunyn Schmiedebergs Arch Pharmacol 337: 115–117

    PubMed  Google Scholar 

  • Scheel-Krüger J (1986) The syndrome of sedation and yawning behaviour in the rat is dependent on postsynaptic dopamine D-2 receptors. Psychopharmacology S32

  • Schotte A, Janssen PFM, Gommeren W, Luyten WHLM, Leysen JE (1992) Autoradiographic evidence for the occlusion of rat brain dopamine D3 receptors in vivo. Eur J Pharmacol 218: 373–375

    PubMed  Google Scholar 

  • Schwartz J-C, Levesque D, Martres MP, Sokoloff P (1993) Dopamine D3 receptor: basic and clinical aspects. Clin Neuropharmacol 16: 295–314

    PubMed  Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    PubMed  Google Scholar 

  • Sibley DR, Monsma Jr. FJ (1992) Molecular biology of dopamine receptors. TiPS 13: 61–69

    PubMed  Google Scholar 

  • Snyder SH (1990) The dopamine connection. Nature 347: 121–122

    PubMed  Google Scholar 

  • Sokoloff P, Andrieux M, Besançon R, Pilon C, Martres M-P, Giros B, Schwartz J-C (1992) Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 225: 331–337

    PubMed  Google Scholar 

  • Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151

    PubMed  Google Scholar 

  • Sonesson C, Waters N, Svensson K, Carlsson A, Smith M-W, Piercey M-F, Mayor E, Wikström H (1993) Substituted 3-phenyl piperidines: new centrally acting dopamine autoreceptor antagonists. J Med Chem 36: 3188–3196

    PubMed  Google Scholar 

  • Strange PG (1991) Interesting times for dopamine receptors. TINS 14: 43–45

    PubMed  Google Scholar 

  • Ståhle L (1992) Do autoreceptors mediate dopamine agonist-induced yawning and suppression of exploration? A critical review. Psychopharmacology 106: 1–13

    PubMed  Google Scholar 

  • Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Sci 89: 10178–10182

    Google Scholar 

  • Surmeier DJ, Reiner A, Levine MS, Ariano MA (1993) Are neostriatal dopamine receptors co-localized? TiNS 16: 299–305

    PubMed  Google Scholar 

  • Svensson K, Carlsson A, Johansson AM, Arvidsson L-E, Nilsson JLG (1986) A homologous series of N-alkylated Cis-(+)-(lS,2R)-5-Methoxy-l-methyl-2-aminotetralins: central dopamine receptor antagonists showing profiles ranging from classical antagonism to selectivity for autoreceptors. J Neural Transm 65: 29–38

    PubMed  Google Scholar 

  • Svensson K, Carlsson A, Waters N (1994) Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J Neural Transm [Gen Sect] 95: 71–74

    Google Scholar 

  • Svensson K, Johansson AM, Magnusson T, Carlsson A (1986) (+)-AJ76 and (+)-UH232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 334: 234–245

    PubMed  Google Scholar 

  • Waters N, Lagerkvist S, Löfberg L, Piercey M, Carlsson A (1993 a) The dopamine D3 receptor and autoreceptor preferring antagonists (+)-AJ76 and (+)-UH232; a micro-dialysis study. Eur J Pharmacol 242: 151–163

    PubMed  Google Scholar 

  • Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A (1993 b) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transm [GenSect] 94: 11–19

    Google Scholar 

  • Westerink BHC, Damsma G, De Vries JB, Koning H (1987) Dopamine re-uptake inhibitors show inconsistent effects on the in vivo release of dopamine as measured by intracerebral dialysis in the rat. Eur J Pharmacol 135: 123–128

    PubMed  Google Scholar 

  • Westerink BHC, Damsma G, Rollema H, De Vries JB, Horn AS (1987) Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotrans-mitter systems. Life Sci 41: 1763–1776

    PubMed  Google Scholar 

  • Zetterström T, Sharp T, Marsden CA, Ungerstedt U (1983) In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem 41: 1769–1773

    PubMed  Google Scholar 

  • Zigmond MJ, Abercrombie ED, Berger TW, Grace AA, Stricker EM (1990) Compensations after lesion of central dopaminergic neurons: some clinical and basic implications. TiNS 13: 290–296

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, N., Löfberg, L., Haadsma-Svensson, S. et al. Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour. J. Neural Transmission 98, 39–55 (1994). https://doi.org/10.1007/BF01277593

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277593

Keywords

Navigation