Skip to main content
Log in

Neuronal control of brain microvessel function

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Cerebral capillary endothelium forms a barrier limiting and controlling the movement of ions and solutes between blood and brain. Recent anatomical, physiological and biochemical studies have suggested the possibility that capillary function may be directly controlled by neuronal structures. Alterations in neuronal systems involved in the regulation of microcirculation may account for microvascular dysfunctions which occur in different pathologic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi, M., Rosenblum, W.I., and Feigin, I., Hypertensive disease and cerebral edema. J. Neurol. Neurosurg. Psychiat.29 (1966) 451–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alborch, E., Martin, G., and Baguena, P., Influence of cholinergic receptors on cerebral blood flow of the goat. Acta neurol. scand.56, suppl. 64 (1977) 298–299.

    Google Scholar 

  3. Ando, K., A histochemical study on the innervation of cerebral blood vessels in cats. Cell Tissue Res.217 (1981) 55–64.

    Article  CAS  PubMed  Google Scholar 

  4. Baca, G.M., and Palmer, G.C., Presence of hormonally-sensitive adenylate cyclase receptors in capillary-enriched fractions from rat cerebral cortex. Blood Vess.15 (1978) 286–298.

    CAS  Google Scholar 

  5. Bar, T., Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: changes during development and aging. Adv. Neurol.20 (1978) 1–9.

    CAS  PubMed  Google Scholar 

  6. Bates, D., Weinshilboum, R.M., Campbell, R.J., and Sundt, M.T. Jr, The effect of lesions of the locus coeruleus on the physiological responses of the cerebral blood vessels in cats. Brain Res.136 (1977) 431–443.

    Article  CAS  PubMed  Google Scholar 

  7. Bertler, A., Falk, B., Owman, C.H., and Rosengren, E., The localization of monoaminergic blood-brain barrier mechanisms. Pharmac. Rev.18 (1966) 369–385.

    CAS  Google Scholar 

  8. Betz, A.L., and Goldstein, G.W., Polarity of the blood-brain barrier: neutral aminoacid transport into isolated brain capillaries. Science202 (1978) 225–227.

    Article  CAS  PubMed  Google Scholar 

  9. Betz, A.L., Firth, J.A., and Goldstein, G.W., Polarity of the blood-brain barrier. Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res.192 (1980) 17–28.

    Article  CAS  PubMed  Google Scholar 

  10. Brendel, K., Meezan, E., and Carlson, E.C., Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science185 (1974) 953–955.

    Article  CAS  PubMed  Google Scholar 

  11. Broun, L.D., Cornford, E.M., and Oldendorf, W.H., New-born rabbit blood-brain barrier is selectively permeable and differs substantially from the adult. J. Neurochem.34 (1980) 147–152.

    Article  Google Scholar 

  12. Burns, E.M., Kruckeberg, T.W., Comerford, L.E., and Buschman, M.B.T., Thinning of capillary wall and declining number of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrine. J. Geront.34 (1979) 642–650.

    Article  CAS  PubMed  Google Scholar 

  13. Chan-Palay, V., Innervation of cerebral blood vessels by norepinephrine, indoleamine, substance P and neurotensin fibers and the leptomeningeal indoleamine axons: their roles in vasomotor activity and local alterations of brain blood composition, in: Neurogenic control of brain circulation, pp. 39–53. Eds C. Owman and L. Edvinsson. Pergamon Press, Oxford 1977.

    Google Scholar 

  14. Cuello, A.C., and Iversen, L.L., Interactions of dopamine with other neurotransmitters in the rat substantia nigra: a possible functional role of dendritic dopamine, in: Interactions between putative neurotransmitters in the brain, pp. 127–149. Eds S. Garattini, J.F. Pujol and R. Samanin. Raven Press, New York 1978.

    Google Scholar 

  15. D'Alecy, L.G., and Rose, C.T., Parasympathetic cholinergic control of cerebral blood flow in dogs. Circulation Res.41 (1977) 324–331.

    Article  CAS  PubMed  Google Scholar 

  16. Davson, H., The blood-brain barrier. J. Physiol.255 (1976) 1–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dermietzel, R., Junctions in the central nervous system of the cat. IV. Interendothelial junctions of cerebral blood vessels from selected areas of the brain. Cell Tissue Res.164 (1976) 45–62.

    Google Scholar 

  18. Di Carlo, V., Histochemical evidence for a serotoninergic innervation of the microcirculation in the brain stem, in: Neurogenic control of the brain circulation, pp. 55–58. Eds C. Owman and L. Edvinsson, Pergamon Press, Oxford 1977.

    Google Scholar 

  19. Duckles, S.P., Evidence for a functional cholinergic innervation of cerebral arteries. J. Pharmac. exp. Ther.217 (1981) 544–548.

    CAS  Google Scholar 

  20. Edvinsson, L., Sympathetic control of cerebral circulation. Trends Neurosci.5 (1982) 425–429.

    Article  Google Scholar 

  21. Edvinsson, L., Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors and their effects on cerebral blood flow. Acta physiol. scand.,suppl.427 (1975) 1–35.

    Google Scholar 

  22. Edvinsson, L., and MacKenzie, E.T., Amine mechanisms in the cerebral circulation. Pharmac. Rev.28 (1977) 275–348.

    Google Scholar 

  23. Edvinsson, L., and Uddman, R., Immunohistochemical localization and dilatory effect of substance P on human cerebral vessels. Brain Res.232 (1982) 466–471.

    Article  CAS  PubMed  Google Scholar 

  24. Edvinsson, L., Lindvall, M., Nielsen, K.C., and Owman, Ch., Are brain vessels innervated also by central (non-sympathetic) adrenergic neurons. Brain Res.63 (1973) 496–499.

    Article  CAS  PubMed  Google Scholar 

  25. Edvinsson, L., Aubineau, P., Owman, C.H., Sercombe, R., and Seylaz, J., Sympathetic innervation of cerebral arteries: prejunctional supersensitivity to norepinephrine after sympathectomy or cocaine treatment. Stroke6 (1975) 525–530.

    Article  CAS  PubMed  Google Scholar 

  26. Edvinsson, L., Nielsen, K.C., Owman, C., and Sporrong, B., Cholinergic mechanisms in pial vessels. Histochemistry, election microscopy and pharmacology. Zellforschung143 (1972) 311–325.

    Article  Google Scholar 

  27. Edvinsson, L., Deguerce, A., Duverger, D., MacKenzie, E.T., and Scatton, B., Central serotoninergic nerves project to the pial vessels of the brain. Nature306 (1983) 55–57.

    Article  CAS  PubMed  Google Scholar 

  28. Ekstrom-Jadal, B., Elfverson, J., and Von Essen, C., Cerebral blood flow, cerebrovascular resistance and cerebral metabolic rate of oxygen in severe arterial hypoxia in dogs. Acta neurol. scand.60 (1979) 26–35.

    Article  Google Scholar 

  29. Embree, L.J.G., Kackson, D.W., Ordway, F., and Roubein, I.F., Aging effect on the noradrenaline content of rat brain microvessels. Soc. Neurosci.6 (1980) 282; abstr.

    Google Scholar 

  30. Enoch, P.E., Kontos, H.A., and Said, S.I., Mechanism of action of vasoactive intestinal polypeptide on cerebral arterioles. Am. J. Physiol.39 (1980) 765–768.

    Google Scholar 

  31. Estrada, C., and Krause, D.N., Muscarinic cholinergic receptor sites in cerebral blood vessels. J. Pharmac. exp. Ther.221 (1982) 85–90.

    CAS  Google Scholar 

  32. Garcia, J.H., Ben-David, E., Conger, K.A., Geer, J.L., and Hollander, W., Arterial hypertension injures brain capillaries. Stroke12 (1981) 410–414.

    Article  CAS  PubMed  Google Scholar 

  33. Giacomelli, F., Wiener, J., and Spara, D., The cellular pathology of experimental hypertension. Am. J. Path.59 (1970) 133–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldstein, G.W., Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J. Physiol.286 (1979) 185–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goldstein, G.W., Wolinsky, J.S., Csejtey, J., and Diamond, I., Isolation of metabolically active capillaries from rat brain. J. Neurochem.25 (1975) 715–717.

    Article  CAS  PubMed  Google Scholar 

  36. Goldstein, G.W., Pathogenesis of brain edema and hemorrhage: role of brain capillary. Pediatrics69 (1979) 357–360.

    Article  Google Scholar 

  37. Griffith, S.G., Lincoln, J., and Burnstock, G., Serotonin as a neurotransmitter in cerebral arteries. Brain Res.247 (1982) 388–392.

    Article  CAS  PubMed  Google Scholar 

  38. Hartman, B.K., The innervation of cerebral blood vessels by central adrenergic neurons, in: Frontiers in Catecholamine Research, pp. 91–96. Eds E. Usdin and S. Snyder. Pergamon Press, New York 1973.

    Chapter  Google Scholar 

  39. Hartman, B.K., Zide, D., and Udenfriend, S., The use of dopamine β-hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc. natn. Acad. Sci. USA69 (1972) 2722–2726.

    Article  CAS  Google Scholar 

  40. Healton, E.B., Brust, J.C., Feinfeld, D.F., and Thomson, G.E., Hypertensive encephalopathy and the neurologic manifestations of malignant hypertension. Neurology32 (1982) 127.

    Article  CAS  PubMed  Google Scholar 

  41. Heistad, D.D., Marcus, M.L., Said, S.I., and Gross, P.M., Effect of acetylcholine and vasoactive intestinal peptide on cerebral blood flow. Am. J. Physiol.239 (1980) H73-H80.

    CAS  PubMed  Google Scholar 

  42. Heistad, D.D., and Marcus, M.C., Effect of sympathetic stimulation on permeability of the blood-brain barrier to albumin during acute hypertension in cats. Circulation Res.45 (1979) 331–338.

    Article  CAS  PubMed  Google Scholar 

  43. Hendry, S.H.C., Jones, E.G., and Beinfeld, M.C., Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels. Proc. natn. Acad. Sci.80 (1983) 2400–2404.

    Article  CAS  Google Scholar 

  44. Herbst, T.J., Raichle, M.E., and Ferrendelli, J.A., β-Adrenergic regulation of adenosine 3′,5′-monophosphate concentration in brain microvessels. Science204 (1979) 330–332.

    Article  CAS  PubMed  Google Scholar 

  45. Hernandez, M.J., Brennan, R.W., and Bowman, G.S., Autoregulation of cerebral blood flow in the newborn dog. Brain Res.184 (1980) 199–202.

    Article  CAS  PubMed  Google Scholar 

  46. Huang, M., and Rorstad, O.P., Effects of vasoactive intestinal polypeptide, monoamines, prostaglandins and 2-chloroadenosine on adenylate cyclase in rat cerebral microvessels. J. Neurochem.40 (1983) 719–725.

    Article  CAS  PubMed  Google Scholar 

  47. Hunziker, O., Abdel'as, S., and Schulz, V., The aging human cerebral cortex: a stereological characterization of changes in the capillary net. J. Geront.34 (1979) 345–350.

    Article  CAS  PubMed  Google Scholar 

  48. Iijima, T., A histochemical study of the innervation of cerebral blood vessels in the turtle. J. comp. Neurol.176 (1977) 307–314.

    Article  CAS  PubMed  Google Scholar 

  49. Iijima, T., and Wasamo, T., A histochemical and ultrastructural study of serotonin-containing nerves in cerebral blood vessels of the lamprey. Anat. Rev.198 (1980) 671–680.

    Article  CAS  Google Scholar 

  50. Harrot, B., Hjelle, J.T., and Spector, S., Association of histamine with cerebral microvessels in regions of bovine brain. Brain Res.168 (1979) 323–330.

    Article  Google Scholar 

  51. Johansson, C.E., Permeability and vascularity of the developing brain. Brain Res.190 (1980) 3–16.

    Article  Google Scholar 

  52. Johansson, B., Li, C.L., Olsson, Y., and Klatzo, I., The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta neuropath.16 (1970) 117–127.

    Article  CAS  PubMed  Google Scholar 

  53. Johansson, B., and Linder, L.E., Reversibility of the blood-brain barrier dysfunction induced by acute hypertension. Acta neurol. scand.57 (1978) 345–348.

    Article  CAS  PubMed  Google Scholar 

  54. Joo, F., and Karnushina, I., A procedure for isolation of capillaries from rat brain. Cytobios8 (1973) 41–48.

    CAS  PubMed  Google Scholar 

  55. Karcsu, S., Toth, L., Kiraly, E., and Jancso, G., Evidence for the neuronal origin of brain capillary acetylcholinoesterase activity. Brain Res.206 (1981) 203–207.

    Article  CAS  PubMed  Google Scholar 

  56. Karnushina, K., Palacios, J.M., Barbin, G., Dux, E., Joo, F., and Schwartz, J.C., Studies on a capillary-rich fraction isolated from brain: histaminergic components and characterization of the histamine receptors linked to adenylate cyclase. J. Neurochem.34 (1980) 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi, H., Memo, M., Spano, P.F., and Trabucchi, M., Identification of beta-adrenergic receptor binding sites in rat brain microvessels using125I-iodohydroxybenzylpindolol. J. Neurochem.36 (1981) 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  58. Kobayashi, H., Frattola, L., Ferrarese, C., Spano, P.F., and Trabucchi, M., Characterization of β-adrenergic receptors on human cerebral microvessels. Neurology32 (1982) 1384–1387.

    Article  CAS  PubMed  Google Scholar 

  59. Kobayashi, H., Maoret, T., Ferrante, M., Spano, P.F., and Trabucchi, M., Subtypes of beta-adrenergic receptors in rat cerebral microvessels. Brain Res.220 (1981) 194–197.

    Article  CAS  PubMed  Google Scholar 

  60. Kobayashi, H., Cazzaniga, A., Spano, P.F., and Trabucchi, M., Ontogenesis of alpha and beta-receptors located on cerebral microvessels. Brain Res.242 (1982) 358–360.

    Article  CAS  PubMed  Google Scholar 

  61. Kobayashi, H., Wada, A., Izumi, F., Magnoni, M.S., and Trabucchi, M., Alpha adrenergic receptor function in brain microvessels of spontaneously hypertensive rats. Circulation Res., in press.

  62. Kobayashi, H., Maoret, T., Spano, P.F., and Trabucchi, M., Effect of age on beta-adrenergic receptors on cerebral microvessels. Brain Res.244 (1982) 374–377.

    Article  CAS  PubMed  Google Scholar 

  63. Kogure, K., Scheinberg, P., Matsumoto, P.A., Busto, P., and Reinmuth, O.M., Catecholamines in experimental brain ischemia. Archs Neurol.32 (1975) 21–28.

    Article  CAS  Google Scholar 

  64. Kuschinsky, W., and Wahl, M., Local chemical and neurogenic regulation of cerebral vascular resistance. Physiol. Rev.58 (1978) 656–689.

    Article  CAS  PubMed  Google Scholar 

  65. Lai, F.M., Udenfriend, S., and Spector, S., Presence of norepinephrine and related enzymes in isolated brain microvessels. Proc. natn. Acad. Sci. USA72 (1975) 4622–4625.

    Article  CAS  Google Scholar 

  66. Larsson, L.I., Edvinsson, L.E., Fahrenkrug, J., Hakanson, R., Owman, C.H., Schaffalitzky de Muckadell, O., and Sundler, F., Immunohistochemical localization of a dilatory polypeptide (VIP) in cerebrovascular nerves. Brain Res.113 (1976) 400–404.

    Article  CAS  PubMed  Google Scholar 

  67. Le Beux, Y.T., and Willamot, J., Actin- and myosin-like filaments in rat brain pericytes. J. exp. Neurol.58 (1978) 446–454.

    Article  Google Scholar 

  68. Lindvall, M., in: Blood flow and metabolism in the brain, pp. 17–24. Eds A.M. Harger, W.B. Jennet, J.D. Miller and J.O. Roman. Churchill Livingstone, Edinburg 1975.

    Google Scholar 

  69. MacKenzie, E.T., McCulloch, J., and O'Keane, M., Influence of endogenous norepinephrine on cerebral blood flow and metabolism. Am. J. Physiol.231 (1976) 489–495.

    Article  CAS  PubMed  Google Scholar 

  70. MacKenzie, E.T., and Edvinsson, L., in: Cerebral circulation and Neurotransmitters, pp. 163–171. Eds A. Bes and G. Gerand. Excerpta Medica, Amsterdam 1980.

    Google Scholar 

  71. MacKenzie, E.T., Strandgaard, S., and Graham, D.I., Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow and the blood-brain barrier. Circulation Res.39 (1976) 33–41.

    Article  CAS  PubMed  Google Scholar 

  72. Magnoni, M.S., Govoni, S., and Trabucchi, M., effect of cerebral ischemia on microvessel adrenergic receptor function, in: Cerebral ischemia, pp. 75–80. Eds A. Bes, P. Braquet, R. Paoletti and B.K. Siejo, Elsevier North Holland, Amsterdam 1984.

    Google Scholar 

  73. Magnoni, M.S., Govoni, S., Pasinetti, G., Kobayashi, H., and Trabucchi, M., Asymmetry in microvessel nuerochemical changes induced by ischemia is partially reversed by corpus callosum section, in: Clinical Neuropharmacology, vol. 7, suppl. 1. pp. 510–511. Eds G. Racagni, R. Paoletti and P. Kielholz. Raven Press, New York 1984.

    Google Scholar 

  74. Magnoni, M.S., Kobayashi, H., Cazzaniga, A., Izumi, F., Spano, P.F., and Trabucchi, M., Hypertension reduces the number of beta-adrenergic receptors in rat brain microvessels. Circulation Res.67 (1983) 610–613.

    Article  CAS  Google Scholar 

  75. Magnoni, M.S., Kobayashi, H., Trezzi, E., Catapano, A., Spano, P.F., and Trabucchi, M., Beta-adrenergic receptors in brain microvessels of diabetic rats. Life Sci.34 (1984) 1095–1100.

    Article  CAS  PubMed  Google Scholar 

  76. Materossi, C., Maoret, T., Rozzini, R., Spano, P.F., and Trabucchi, M., Effect of right middle cerebral artery occlusion on striatal dopaminergic function. J. neuronal Transmission53 (1982) 257–264.

    Article  CAS  Google Scholar 

  77. Mc Culloch, J., and Edvinsson, L., The effects of vasoactive intestinal polypeptide upon pial arteriolar calibre, cerebral blood flow, cerebral oxygen consumption and the elecroencephalogram. Am. J. Physiol.238 (1980) 449–456.

    Google Scholar 

  78. Meier-Ruge, W., Hunziker, O., Schulz, U., Tobler, H.J., and Schweizer, A., Stereological changes in the capillary network and nerve cells of the aging human brain. Mech. Ageing Dev.14 (1980) 233–243.

    Article  CAS  PubMed  Google Scholar 

  79. Meyer, J.S., Shinohara, Y., Kanda, T., Fukunchi, Y., Ericsson, A.D., and Kok, N., Diaschisis resulting from acute unilateral cerebral infarction. Archs Neurol.23 (1970) 241–247.

    Article  CAS  Google Scholar 

  80. Nathanson, J.A., and Glaser, G.H., Identification of beta-adrenergic sensitive adenylate cyclase in intracranial blood vessels. Nature278 (1979) 567–569.

    Article  CAS  PubMed  Google Scholar 

  81. Nathanson, J.A., Cerebral microvessels contain a β2-adrenergic receptor. Life Sci.26 (1980) 1793–1799.

    Article  CAS  PubMed  Google Scholar 

  82. Nell, J.H., and Welch, M.A., Cerebral microvessel 2-deoxy-D-glucose uptake during ischemia-induced seizures. Ann. Neurol.7 (1980) 457–461.

    Article  CAS  PubMed  Google Scholar 

  83. Nielsen, K.C., and Owman, C.H., Adrenergic innervation of pial arteries related to the circle of Willis in the cat. Brain Res.6 (1967) 773–776.

    Article  CAS  PubMed  Google Scholar 

  84. Nielsen, K.C., and Owman, C., Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat. Brain Res.27 (1971) 33–43.

    Article  CAS  PubMed  Google Scholar 

  85. Ohata, M., Sundaram, U., Frederic, W.R., and London, E.D., Rapport, S., Regional cerebral blood flow during development and aging. Brain Res.104 (1981) 319–332.

    CAS  Google Scholar 

  86. Onoyama, K., and Omae, T., Leakage of serum proteins in brain tissues in experimentally induced renal hypertension. Acta neurol. scand.49 (1973) 339–344.

    Article  CAS  PubMed  Google Scholar 

  87. Ordy, J.M., Kaack, B., and Brizzee, K.R., Life span neurochemical changes in the human and non human primate brain, in: Aging vol. 1, pp. 133–191. Eds H. Brody, D. Hartman and J.M. Ordy. Raven Press, New York 1975.

    Google Scholar 

  88. Owman, C., Edvinsson, L., and Hardebo, J.E., Immunohistochemical demonstration of actin and myosin in brain capillaries. Acta neurol. scand. suppl.56 (1977) 384–385.

    Google Scholar 

  89. Owman, C., Edvinsson, L., and Hardebo, J.E., Immunohistochemical demonstration of actin and myosin in brain capillaries. Adv. Neurol.20 (1978) 35–37.

    CAS  PubMed  Google Scholar 

  90. Palmer, G.C., and Palmer, S.J., 5′-Guanylyl-imidodiphosphate actions im homogenates of rat cerebral cortex plus neuronal and capillary fractions. Life Sci.23 (1978) 207–215.

    Article  CAS  PubMed  Google Scholar 

  91. Palmer, G.C., Beta-adrenergic receptors mediate adenyate cyclase responses in rat cerebral capillaries. Neuropharmacology19 (1980) 17–23.

    Article  CAS  PubMed  Google Scholar 

  92. Palmer, G.C., Diminished adenyate cyclase responses in frontal cortex and cerebral capillaries of spontaneously hypertensive rats. Biochem. Pharmac.28 (1978) 2847–2848.

    Article  Google Scholar 

  93. Palmer, G.C., Wilson, G.L., Palmer, S.J., and Chronister, B., Streptozotocin-induced diabetes influences receptor activation of adenylate cyclase in rat retina, microvessels, cerebrum and pia arachnoid. Fedn Proc.41 (1982) 1227.

    Google Scholar 

  94. Pardridge, W.M., and Mietus, L.J., Kinetic of neutral aminoacids transport through the blood-brain barrier of the new-born rabbits. J. Neurochem.38 (1982) 955–962.

    Article  CAS  PubMed  Google Scholar 

  95. Peroutka, S.J., Moskowitz, M.A., Peinhard, J.F., Jr, and Snyder, S.H., Neurotransmitter receptor binding in bovine cerebral microvessels. Science208 (1980) 610–612.

    Article  CAS  PubMed  Google Scholar 

  96. Pittman, R.N., Minneman, K.P., and Molinoff, P.B., Ontogeny of β1- and β2-adrenergic receptors in rat cerebellum and cerebral cortex. Brain Res.188 (1980) 357–368.

    Article  CAS  PubMed  Google Scholar 

  97. Preskorn, S.H., Hartman, B.K., Raichll, M.E., and Clark, H.B., The effect of dibenzazepines (tricyclic antidepressants) on cerebral capillary permeability in the rat in vivo. J. Pharmac. exp. Ther.213 (1980) 313–320.

    CAS  Google Scholar 

  98. Preskorn, S.H., Irwin, G.H., Simpson, S., Friesen, D., Rinne, J., and Jerkovich, G., Medical therapies for mood disorders alter the blood-brain barrier. Science213 (1981) 469–471.

    Article  CAS  PubMed  Google Scholar 

  99. Raichle, M.E., Hartman, B.K., Eichling, J.O., and Sharpe, L.G., Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc. natn. Acad. Sci. USA72 (1975) 3726–3730.

    Article  CAS  Google Scholar 

  100. Raichle, M.E., Eichling, J.O., Grubb, R.L. Jr, and Hartman, B.K., Central noradrenergic regulation of brain microcirculation, in: Dynamics of brain Edema, pp. 11–17. Eds H.M. Pappins and W.M. Feindel. Springer-Verlag, Berlin 1976.

    Chapter  Google Scholar 

  101. Reese, T.S., and Karnovsky, M.J., Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol.34 (1967) 207–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Reinhard, J.F., Liebman, J.E., Schlosberg, A.J., and Moskowitz, M.A., Serotonin neurons project to small blood vessels in the brain. Science206 (1979) 85–87.

    Article  CAS  PubMed  Google Scholar 

  103. Rennels, M.L., and Nelson, E., Capillary innervation in the mamalian central nervous system. An electron microscopic demonstration. Am. J. Anat.144 (1975) 233–241.

    Article  CAS  PubMed  Google Scholar 

  104. Rennels, M.L., and Forbers, M.S., Anders, J.J., and Nelson, E., Innervation of the microcirculation in the central nervous system and other tissues, in: Neurogenic control of the brain circulation, pp. 91–104. Eds C. Owman and L. Edvinsson. Pergamon Press, Oxford 1977.

    Google Scholar 

  105. Robinson, R.G., Bloom, F.E., and Battemberg, E.L.F., A fluorescent histochemical study of changes in noradrenergic neurons following experimental cerebral infarction in the rat. Brain Res.132 (1977) 259–272.

    Article  CAS  PubMed  Google Scholar 

  106. Robinson, R.G., Shoemaker, W.J., Schlumpf, M., Valk, T., and Bloom, F., Effect of experimental cerebral infarction in rat brain on catecholamines and behavior. Nature255 (1975) 332–334.

    Article  CAS  PubMed  Google Scholar 

  107. Rosenblum, W.I., Neurogenic control of cerebral circulation. Stroke2 (1971) 429–439.

    Article  CAS  PubMed  Google Scholar 

  108. Saunders, N.R., Ontogeny of the blood-brain barrier. Exp. Eye Res. suppl. (1977) 523–550.

    Article  Google Scholar 

  109. Schivers, R.R., Effect of hyperglicemia on brain capillary permeability in the lizard anolis carolinensis. Brain Res.170 (1979) 509–522.

    Article  Google Scholar 

  110. Schivers, R.R., Blood-brain barrier of a reptile, anolis carolinensis. Freeze fracture study. Brain Res.169 (1979) 221–230.

    Article  Google Scholar 

  111. Slater, R., Reivich, M., Goldberg, H., Banka, R., and Greenberg, J., Diaschisis with cerebral infarctions. Stroke8 (1977) 684–690.

    Article  CAS  PubMed  Google Scholar 

  112. Spatz, M., Mrsulja, B.B., Micic, D., Mrsulja, B.J., and Klatzo, I., Ischemic and post-ischemic effects on 2-deoxy-D-glucose uptake in cerebral capillaries. Brain Res.120 (1977) 141–145.

    Article  CAS  PubMed  Google Scholar 

  113. Stauber, W.T., Ong, S.H., and McCuskey, R.S., Selective extravascular escape of albumin into the cerebral cortex of the diabetic rat. Diabetes30 (1981) 500–503.

    Article  CAS  PubMed  Google Scholar 

  114. Swanson, L.W., Connelly, M.A., and Hartman, B.K., Ultrastructural evidence for central monoaminergic innervation of blood vessels in the paraventricular nucleus of the hypothalamus. Brain Res.136 (1977) 166–173.

    Article  CAS  PubMed  Google Scholar 

  115. Welch, K.M.A., Chabi, E., Buckingham, J., Bergin, B., Achar, V.S., and Meyer, J.S., Catecholamine and 5-hydroxytryptamine levels in ischemic brain. Stroke8 (1977) 341–346.

    Article  CAS  PubMed  Google Scholar 

  116. White, F.P., Dutton, G.R., and Norenberg, M.D., Microvessels isolated from rat brain: localization of astrocyte processes by immunohistochemicla techniques. J. Neurochem.36 (1981) 328–332.

    Article  CAS  PubMed  Google Scholar 

  117. Wilson, D.A., O'Neill, T., Said, S.I., and Traystman, R.J., Vasoactive intestinal polypeptide and the canine cerebral circulation. Circulation Res.48 (1981) 138–148.

    Article  CAS  PubMed  Google Scholar 

  118. Wurtman, R.J., and Zervas, N.T., Monoamine neurotransmitters and pathophysiology of stroke and central nervous trauma. J. Neurosurg.40 (1974) 34–36.

    Article  CAS  PubMed  Google Scholar 

  119. Zaren, H.A., Weinstein, J.D., and Langfitt, T.W., Experimental ischemic brain swelling. J. Neurosurg.32 (1970) 227–235.

    Article  CAS  PubMed  Google Scholar 

  120. Zervas, N.T., Hori, H., Negora, M., Wurtman, R.J., Larin F., and Lavyne, M.H., Reducation in brain dopamine following experimental cerebral ischemia. Nature247 (1974) 283–284.

    Article  CAS  PubMed  Google Scholar 

  121. Zervas, N.T., Lavyne, M.H., and Negoro, M., Neurotransmitters and the normal and ischemic cerebral circulation. New Engl. J. Med.293 (1975) 812–816.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, H., Magnoni, M.S., Govoni, S. et al. Neuronal control of brain microvessel function. Experientia 41, 427–434 (1985). https://doi.org/10.1007/BF01966140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01966140

Key words

Navigation