Skip to main content
Log in

Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Risperidone and its active metabolite 9-OH-risperidone were compared to reference antipsychotic drugs (haloperidol, pipamperone, fluspirilene, clozapine, zotepine) and compounds under development (olanzapine, seroquel, sertindole, ORG-5222, ziprasidone) for in vitro binding to neurotransmitter receptors in brain tissue and on membranes of recombinant cells expressing cloned human receptors and for in vivo occupancy of neurotransmitter receptors in rat and guinea-pig brain following acute treatment (2 h., s.c.). An ex vivo autoradiography technique was applied to determine the receptor occupancy by the drugs administered in vivo. Of particular interest are the central 5HT2A receptors and D2-type receptors. Predominant 5HT2A receptor antagonism is supposed to add to an atypical profile of the antipsychotics (treatment of the negative symptoms, low incidence of extrapyramidal side effects). D2 antagonism is required for the treatment of positive symptoms. A contribution of the new dopamine receptor subtypes D3 and in particular D4 receptors has been proposed.

In vitro, all compounds, except the ‘typical’ antipsychotics haloperidol and fluspirilene, showed higher affinity for 5HT2A than for D2 receptors. Subnanomolar affinity for human 5HT2A receptors was observed for ORG-5222, sertindole, resperidone, 9-OH-risperidone and ziprasidone. Fluspirilene, ORG-5222, haloperidol, ziprasidone, risperidone, 9-OH-risperidone and zotepine displayed nanomolar affinity for human D2 receptors. Sertindole and olanzapine were slightly less potent. Pipamperone, clozapine and seroquel showed 2 orders of magnitude lower D2 affinity in vitro. Clozapine, but even more so pipamperone, displayed higher affinity for D4 than for D2 receptors. For most other compounds, D4 affinity was only slightly lower than their D2 affinity. Seroquel was totally devoid of D4 affinity. None of the compounds had nanomolar affinity for D1 receptors; their affinity for D3 receptors was usually slightly lower than for D2 receptors.

In vivo, ORG-5222, risperidone, pipamperone, 9-OH-risperidone, sertindole, olanzapine, zotepine and clozapine maintained a higher potency for occupying 5HT2A than D2 receptors. Risperidone and ORG-5222 had 5HT2A versus D2 potency ratio of about 20. Highest potency for 5HT2A receptor occupancy was observed for ORG-5222 followed by risperidone and olanzapine. Ziprasidone exclusively occupied 5HT2A receptors. ORG-5222, haloperidol, fluspirilene and olanzapine showed the highest potency for occupying D2 receptors. No regional selectivity for D2 receptor occupancy in mesolimbic versus nigrostriatal areas was detected for any of the test compounds. Risperidone was conspicuous because of its more gradual occupancy of D2 receptors; none of the other compounds showed this property. The various compounds also displayed high to moderate occupancy of adrenergic α1 receptors, except fluspirilene and ziprasidone. Clozapine, zotepine, ORG-5222 and sertindole occupied even more α1 than D2 receptors. Clozapine showed predominant occupancy of H1 receptors and occupied cholinergic receptors with equivalent potency to D2 receptors. A stronger predominance of 5HT2A versus D2 receptor occupancy combined with a more gradual occupancy of D2 receptors differentiates risperidone and its 9-OH-metabolite from the other antipsychotic compounds in this study. The predominant 5HT2A receptor occupancy probably plays a role in the beneficial action of risperidone on the negative symptoms of schizophrenia, whereas maintenance of a moderate occupancy of D2 receptors seems adequate for treating the positive symptoms of schizophrenia. A combined 5HT2A and D2 occupancy and the avoidance of D2 receptor overblockade are believed to reduce the risk for extrapyramidal symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson JL, Marcus M, Nomikos GG, Svensson TH (1994) Prazosin modulates the changes in firing pattern and transmitter release induced by raclopride in the mesolimbic, but not in the nigrostriatal dopaminergic system. Naunyn-Schmiedeberg's Arch Pharmacol 349: 236–243

    Google Scholar 

  • Andersson JL, Nomikos GG, Marcus M, Hertel P, Mathé JM, Svensson TH (1995) Ritanserin potentiates the stimulatory effects of raclopride on neuronal activity and dopamine release selectively in the mesolimbic dopaminergic system. Naunyn-Schmiedeberg's Arch Pharmacol (in press)

  • Andrews G, Hall W, Goldstein G, Lapsey H, Bartels R, Silove D (1985) The economic costs of schizophrenia: implication for public policy. Arch Gen Psychiatry 42: 537–543

    Google Scholar 

  • Ansoms C, De Backer-Dierick G, Verveecken JLTM (1977) Sleep disorders in patients with severe mental depression: double-blind placebo-controlled evaluation of the value of pipamperone (Dipiperon). Acta Psychiatr Scand 55: 116–122

    Google Scholar 

  • Balsara JJ, Jadhav JH, Chandorkar AG (1979) Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 62: 67–69

    Google Scholar 

  • Baron BM, Siegel BW (1990)p-[125I] Iodoclonidine, a novel radiolabelled agonist for studying central α2-adrenergic receptors. Mol Pharmacol 38: 348–356

    Google Scholar 

  • Berman KF, Weinberger DR (1990) Prefrontal dopamine and defect symptoms in schizophrenia. In: Greden JF, Tandon R (eds) Negative schizophrenic symptoms: pathophysiology and clinical implications. Progress in Psychiatry Series, volume 28. American Psychiatric Press, Washington DC, London, England, pp 81–95

    Google Scholar 

  • Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N (1990) 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double blind with orphenadrine and placebo. Clin Neuropharmacol 13: 500–506

    Google Scholar 

  • Borison RL, Pathiraya AP, Diamond BI, Meibach RC (1992) Risperidone clinical safety and efficacy in schizophrenia. Psychopharmacol Bull 281: 213–218

    Google Scholar 

  • Borison RL, Pathiraya AP, Diamond BI (1994) Clinical efficacy of sigma antagonists in schizophrenia. In: Meltzer HY (ed) Novel antipsychotic drugs. Raven Press, New York, pp 189–202

    Google Scholar 

  • Bouthenet ML, Martres MP, Salès N, Schwartz JCh (1987) A detailed mapping of dopamine D2 receptors in rat central nervous system by autoradiography with [125]iodosulpride. Neuroscience 20: 117–155

    Google Scholar 

  • Chang RL, Tran VT, Snyder SH (1978) Histamine-H1 receptors in brain labeled with3H-mepyramine. Eur J Pharmacol 48: 463–464

    Google Scholar 

  • Chang RSL, Lotti VJ (1986) Biochemical and pharmacological characterization of an extremely potent and selective non-peptide cholecystokinin antagonist. Proc Natl Acad Sci USA 83: 4923–4926

    Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108

    Google Scholar 

  • Chouinard G, Jones B, Remington G, Bloom D, Addington D, MacEwan GA, Labelle A, Beauclair L, Arnott W (1993) A Canadian multicentre placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of schizophrenic patients. J Clin Pharmacol 13: 25–40

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192: 481–483

    Google Scholar 

  • Crow TJ (1980) Molecular pathology of schizophrenia. BMJ 260: 66–68

    Google Scholar 

  • Davies LM, Drummond MF (1994) Economics and schizophrenia: the real cost. Br J Psychiatry 165 [suppl 25]: 18–21

    Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine and schizophrenia: a review and reconceptualization. Am J Psychiatry 148: 1474–1486

    Google Scholar 

  • Dawson TM, Gehlert DR, McCabe RT, Barnett A, Wamsley JK (1986) D-1 Dopamine receptors in the rat brain: a quantitative autoradiography analysis. J Neurosci 6: 2352–2365

    Google Scholar 

  • De Backer M, Gommeren W, Moereels H, Nobels G, Van Gompel P, Leysen JE and Luyten WHML (1993) Genomic cloning, heterologous expression and pharmacological characterization of a human histamine H1 receptor. Biochem Biophys Res Commun 197: 1601–1608

    Google Scholar 

  • Ellenbroek BA (1993) Treatment of schizophrenia: a clinical and preclinical evaluation of neuroleptic drugs. Pharmacol Ther 57: 1–78

    Google Scholar 

  • Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG (1989) Effector coupling mechanism of the cloned 5-HT1A receptor. J Biol Chem 264: 14848–14852

    Google Scholar 

  • Gelders YG, Heylen SLE, Vanden Bussche G, Reyntjens AJM, Janssen PAJ (1990) Pilot clinical investigation of risperidone in the treatment of psychotic patients. Pharmacopsychiatry 23: 206–211

    Google Scholar 

  • Gillan MGC, Kosterlitz HW, Paterson SJ (1980) Comparison of the binding characteristics of tritiated opiates and opioid peptides. Br J Pharmacol 70: 481–490

    Google Scholar 

  • Goedert M, Pittaway K, Williams BJ, Emson PC (1984) Specific binding of tritiated neurotensin to rat brain membranes: characterization and regional distribution. Brain Res 304: 71–81

    Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand:3H-PAT. Nature 305: 140–142

    Google Scholar 

  • Greenberg DA, U'Prichard DC, Snyder SH (1976) Alpha-noradrenergic receptor binding in mammalian brain: differential labelling of agonist and antagonist states. Life Sci 19: 69–76

    Google Scholar 

  • Grenhoff J, Tung CS, Ugedo L, Svensson TH (1990) Effects of amperozide, a putative antipsychotic drug, on rat brain dopamine neurons recorded in vivo. Pharmacol Toxicol 66 [Suppl 1:] 29–33

    Google Scholar 

  • Grohmann R, Rüther E, Sassim N, Schmidt LG (1989) Adverse effects of clozapine. Psychopharmacology 99: S101-S104

    Google Scholar 

  • Häfner H (1993) What is schizophrenia? Neurol Psychiatr Brain Res 2: 36–52

    Google Scholar 

  • Halushka PV, Kochel PJ, Mais DE (1987) Binding of thromboxane A2/prostaglandin H2 agonists to human platelets. Brit J Pharmacol 91: 223–227

    Google Scholar 

  • Hicks PB (1990) The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sci 47: 1609–1615

    Google Scholar 

  • Hoyer D, Neijt HC (1988) Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG 108-15 neuroblastoma-glioma cells. Eur J Pharmacol 143: 291–292

    Google Scholar 

  • Hwang SB, Lam MH (1986) Species difference in the specific receptors of platelet activating factor. Biochem Pharmacol 35: 4511–4518

    Google Scholar 

  • Ingvar DH (1987) Evidence for frontal/prefontal cortical dysfunction in chronic schizophrenia: the phenomenon of hypofrontality reconsidered. In: Helmchen H, Henn FA (eds) Biological perspectives of schizophrenia. Wiley New York, pp 201–211

  • Janssen PAJ, Niemegeers CJE, Awouters F, Schellekens KHL, Megens AAHP, Meert TF (1988) Pharmacology of risperidone (R 64766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244: 685–693

    Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45: 789–796

    Google Scholar 

  • Karliner JS, Barnes P, Hamilton CA, Dollery CT (1979) Alpha1-adrenergic receptors in guinea-pig myocardium: identification by binding of a new radioligand, [3H]prazosin. Biochem Biophys Res Commun 90: 142–149

    Google Scholar 

  • Laduron PM, Verwimp M, Leysen JE (1979) Stereospecific in vitro binding of [3H]-dexetimide to brain muscarinic receptor. J Neurochem 32: 421–427

    Google Scholar 

  • Laduron PM, Janssen PFM, Gommeren W, Leysen JE (1982) In vitro and in vivo binding characteristics of a new long-acting histamine H1 antagonist, astemizole. Mol Pharmacol 21: 294–300

    Google Scholar 

  • Lahti RA, Mickelson MM, McCall JM, Vonvoigtlander PF (1985) [3H]U-69593; a highly selective ligand for the opioid κ receptor. Eur J Pharmacol 109: 281–284

    Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1984) Psychotomimetic opiate receptors labelled and visualized with (+)[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. Proc Natl Acad Sci USA 81: 4983–4987

    Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres M-P, Giros B, Souil E, Schott D, Morgat J-L, Schwartz J-Ch, Sokoloff P (1992) Identification, characterization and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-amino-tetralin: Proc Natl Acad Sci USA 89: 8155–8159

    Google Scholar 

  • Leysen JE, Gommeren W, Laduron PM (1978) Spiperone: a ligand of choice for neuroleptic receptors. Biochem Pharmacol 27: 307–316

    Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468), a selective3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21: 301–304

    Google Scholar 

  • Leysen JE, Gommeren W, Niemegeers CJE (1983) [3H]Sufentanil, a superior ligand for μ-opiate receptors: binding properties and regional distribution in rat brain and spinal cord. Eur J Pharmacol 87: 209–225

    Google Scholar 

  • Leysen JE, Marullo S, Pauwels PJ, Strosberg AD (1990) Comparative study of the binding properties of cloned human β1- and β2-adrenergic receptors expressed inE. coli. Arch Int Physiol Biochim 98: P51

  • Leysen JE, Janssen PFM, Gommeren W, Wynants J, Pauwels PP, Janssen PAJ (1992) In vitro and in vivo receptor binding and effects on monoamine turnover in rat brain regions of the novel antipsychotics risperidone and ocaperidone. Mol Pharmacol 41: 494–508

    Google Scholar 

  • Leysen JE, Schotte A, Janssen PFM, Gommeren W, Van Gompel P, Lesage AS, De Backer MD, Luyten WHML, Amlaiky N, Megens AAHP (1995) Interaction of new antipsychotics with neurotransmitter receptors in vitro and in vivo: pharmacological to therapeutic evidence. In: Fog R, Gerlach J, Hemmingsen R (eds) Schizophrenia, an integrated view. Alfred Benson Symposium 38, Munskgaard, Copenhagen, pp 344–360

    Google Scholar 

  • Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA (1989) Cocaine receptors labeled by [3H]2β-carbomethoxy-3β-(4-fluorophenyl)tropane. Mol Pharmacol 36: 518–524

    Google Scholar 

  • Maj T, Mogilnicka E, Przewlocka B (1975) Antagonistic effect of cyproheptadine on neuroleptic-induced catalepsy. Pharmacol Biochem Behav 3: 25–27

    Google Scholar 

  • Megens AAHP, Niemegeers CJE, Awouters FHL (1992) Behavioral disinhibition and depression of amphetaminized rats: a comparison of risperidone, ocaperidone and haloperidol. J Pharmacol Exp Ther 260: 160–167

    Google Scholar 

  • Mellerup ET, Plegne P, Engelstoft M (1983) High affinity binding of [3H]paroxetine and [3H]imipramine to human platelet membranes. Eur J Pharmacol 96: 303–309

    Google Scholar 

  • Meltzer HY, Matsubara S, Lee J-C (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251: 238–246

    Google Scholar 

  • Mertens J, Terriere D, Sipido V, Gommeren W, Janssen PFM, Leysen JE (1994) Radiosynthesis of a new radioiodinated ligand for serotonin-5HT2 receptors, a promising tracer for γ-emission tomography. J Labelled Compounds 34: 795–806

    Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens and striatum of the rat: an in vivo microdialysis study. J Neurochem 54: 1755–1760

    Google Scholar 

  • Mong S, Wu HL, Scott MO, Lewis MA, Clark MA, Weichman BM, Kinzig ChM, Gleason JG, Crooke ST (1985) Molecular heterogeneity of leukotriene receptors: correlation of smooth muscle contraction and radioligand binding in guinea-pig lung. J Pharmacol Ther 234: 316–325

    Google Scholar 

  • Murphy KMM, Snyder SH (1982) Calcium antagonist receptor binding sites labeled with [3H]nitrendipine. Eur J Pharmacol 77: 201–202

    Google Scholar 

  • Nomikos GG, Iurlo M, Andersson JL, Kimura K, Svensson TH (1994) Systemic administration of amperozide, a new atypical antipsychotic drug, preferentially increases dopamine release in rat medial prefrontal cortex. Psychopharmacology 115: 147–156

    Google Scholar 

  • Oestreicher EG, Pinto GF (1987) A microcomputer program for fitting enzyme inhibition rat equations. Comput Biol Med 17: 317–321

    Google Scholar 

  • Palacios JM, Hoyer D, Cortés R (1987) α1-Adrenoceptors in the mammalian brain: similar pharmacology but different distribution in rodents and primates. Brain Res 419: 65–75

    Google Scholar 

  • Palacios JM, Wamsley JK, Kuhar MJ (1981) GABA, benzodiazepine and histamine-H1 receptors in the guinea-pig cerebellum: effects of kianic acid injections studied by autoradiographic methods. Brain Res 214: 155–162

    Google Scholar 

  • Pauwels PJ, Leysen JE, Laduron PM (1986) [3H]Batrachotoxinin A 20-α-benzoate binding to sodium channels in rat brain: characterization and pharmacological significance. Eur J Pharmacol 124: 291–298

    Google Scholar 

  • Paxinos G, Watson CH (1986) The rat brain in stereotaxic coördinates, 2nd edn. Academic Press Sydney

    Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346: 205–230

    Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985a) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346: 231–249

    Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1985b) The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106: 539–546

    Google Scholar 

  • Plassat JL, Amlaiky N, Hen R (1993) Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol Pharmacol 44: 229–236

    Google Scholar 

  • Rainbow TC, Bleisch WV, Biegon A, McEwen BS (1982) Quantitative densitometry of neurotransmitter receptors. J Neurosci Methods 5: 127–138

    Google Scholar 

  • Ramm P (1994) Advanced image analysis systems in cell, molecular and neurobiology applications. J Neurosci Methods 54: 131–149

    Google Scholar 

  • Reyntjens A, Gelders YG, Hoppenbrouwers M-LJA, vanden Bussche G (1986) Thymostenic effects of ritanserin (R55667), a centrally acting serotonin-S2 receptor blocker. Drug Dev Res 8: 205–211

    Google Scholar 

  • Roth BL, Craigo SC, Choudhary MS, Uluer A, Monsma FJ Jr, Shen Y, Meltzer HY, Sibley DS (1994) Binding of atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J Pharmacol Exp Ther 268: 1403–1410

    Google Scholar 

  • Saller CF, Czupryna MJ, Salama AI (1990) 5-HT2 receptor blockade by ICI 169,369 and other 5-HT2 antagonists modulates the effects of D-2 dopamine receptor blockade. J Pharmacol Exp Ther 253: 1162–1170

    Google Scholar 

  • Schotte A, Leysen JE, Laduron PM (1986) Evidence for a displaceable non-specific [3H]neurotensin binding site in rat brain. Naunyn-Schmiedeberg's Arch Pharmacol 333: 400–405

    Google Scholar 

  • Schotte A, Leysen JE (1989) Identification of 5-HT2 receptors, α1-adrenoceptors and amine release sites in rat brain by autoradiography with [125I]7-amino-8-iodo-ketanserin. Eur J Pharmacol [Mol Pharmacol Sec] 172: 99–106

    Google Scholar 

  • Schotte A, Janssen PFM, Gommeren W, Luyten WHML, Leysen JE (1992) Autoradiographic evidence for the occlusion of rat brain dopamine D3 receptors in vivo. Eur J Pharmacol [Mol Pharmacol Sec] 218: 373–375

    Google Scholar 

  • Schotte A, Janssen PFM, Megens AAHP, Leysen JE (1993) Occupancy of central neurotransmitter receptors by risperidone, clozapine and haloperidol, measured ex vivo by quantitative autoradiography. Brain Res 631: 191–202

    Google Scholar 

  • Schulz DW, Wyrick SD, Mailman RB (1984) [3H]SCH23390 has the characteristics of a dopamine receptor ligand in the rat central nervous system. Eur J Pharmacol 106: 211–212

    Google Scholar 

  • Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    Google Scholar 

  • Seeman P (1992) Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 7: 261–284

    Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261: 717–719

    Google Scholar 

  • Seeman P, Guan H-C, Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365: 441–445

    Google Scholar 

  • Snider RM, Constantine JW, Lowe III JA, Longo KP, Lebel WS, Wood HA, Drozda SE, Desai MC, Vinick FJ, Spencer RW, Hess H-J (1991) A potent nonpeptide antagonist of the substance P (NK1) receptor. Science 251: 435–439

    Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JCh (1990) Molecular cloning and characterisation of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–150

    Google Scholar 

  • Speth RC, Wastek GJ, Johnson PC, Yamamura HI (1978) Benzodiazepine binding in human brain: characterization using [3H]flunitrazepam. Life Sci 22: 859–866

    Google Scholar 

  • Stevens JR (1973) An anatomy of schizophrenia? Arch Gen Psychiatry 29: 177–189

    Google Scholar 

  • Stratford A, Tan GL, Hamblin MW, Ciaranello RD (1988) Differential inactivation and G protein reconstitution of subtypes of [3H]5-hydroxytryptamine binding sites in rat brain. Mol Pharmacol 34: 527–536

    Google Scholar 

  • Svensson TH, Tung CS (1989) Local cooling of prefrontal cortex induces pacemaker-like firing of dopamine neurons in rat ventral tegmental area in vivo. Acta Physiol Scand 136: 135–136

    Google Scholar 

  • Svensson TH, Nomikos GG, Andersson JL (1993) Modulation of dopaminergic neurotransmission by 5-HT2 antagonism. In: Vanhoute PM, Saxena PR, Paoletti R, Brunello N, Jackson AS (eds) Serotonin, from cell biology to pharmacology and therapeutics. Kluwer, Dordrecht, The Netherlands, pp 263–270

    Google Scholar 

  • Svensson TH, Mathé JM, Andersson JL, Nomikos GG, Hildebrand BE, Marcus M (1995) Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of the 5-HT2 and α1-receptor antagonism. J Clin Psychopharmacol (in press)

  • Tejani-Butt SM (1991) [3H]Nisoxetine: A radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Therap 260: 427–436

    Google Scholar 

  • Ugedo L, Grenhoff J, Svensson TH (1989) Ritanserin, a 5-HT2 antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology 98: 45–50

    Google Scholar 

  • Van Rossum JM (1966) The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160: 492–494

    Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan H-C, Sunahara RK, Seeman P, Niznik HB, Civelli O (1990) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614

    Google Scholar 

  • Zorn SH, Jones SB, Ward KM, Liston DN (1994) Clozapine is a potent and selective muscarinic M4 agonist. Eur J Pharmacol [Mol Pharmacol Sect] 269: R1-R2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schotte, A., Janssen, P.F.M., Gommeren, W. et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124, 57–73 (1996). https://doi.org/10.1007/BF02245606

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245606

Key words

Navigation