Skip to main content
Log in

Review of the pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA or “Ecstasy”)

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

3,4-Methylenedioxymethamphetamine (MDMA or “Ecstasy”) was first synthesised 80 years ago, but has recently received prominence as an illegally synthesised recreational drug of abuse. There is a widely held belief among misusers that it is safe. In the last 2–3 years there have been a number of reports of the drug producing severe acute toxicity and death and there are concerns that it may cause long term toxic damage to 5-hydroxytryptamine (5-HT) nerve terminals. There is a considerable literature on the acute pharmacological effects of MDMA in experimental animals, and this is reviewed. The drug produces both hyperthermia and the “serotonin syndrome”, a series of behavioural changes which result from increased 5-HT function. Acute clinical toxicity problems following MDMA ingestion also include hyperthermia and the appearance of the serotonin syndrome. The hyperthermia appears to precipitate other severe clinical problems and the outcome can be fatal. In agreement with others, we suggest that the recent increase in the number of reports of MDMA toxicity probably results from the widespread use of the drug at all night dance parties or “raves”. The phenomenon of amphetamine aggregation toxicity in mice was reported 40 years ago. If applicable to MDMA-induced toxicity in humans, all the conditions necessary to induce or enhance toxicity are present at raves: crowded conditions (aggregation), high ambient temperature, loud noise and dehydrated subjects. Administration of MDMA to rodents and non-human primates results in a long term neurotoxic decrease in 5-HT content in several brain regions and there is clear biochemical and histological evidence that this reflects neurodegeneration of 5-HT terminals. Unequivocal data demonstrating that similar changes occur in human brain do not exist, but limited and indirect clinical evidence gives grounds for concern. There are also data suggesting that long term psychiatric changes can occur, although there are problems of interpretation and these are reviewed. Suggestions for the rational treatment of the acute toxicity are made on the basis of both pharmacological studies in animals and current clinical practice. Cases presenting clinically are usually emergencies and unlikely to allow carefully controlled studies. Proposals include decreasing body temperature (possibly with ice), the use of dantrolene and anticonvulsant and sedative medication, particularly benzodiazepines. The use of neuroleptics requires care because of the theoretical risk of producing the neuroleptic malignant syndrome and the possibility of precipitating seizures. In rats, chlormethiazole antagonises the hyperthermia produced by MDMA and has been shown clinically to block MDMA-induced convulsive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali SF, Newport GD, Scallet AC, Binienda Z, Ferguson SA, Bailey JR, Paule MG, Slikker W (1993) Oral administration of 3,4-methylenedioxymethamphetamine (MDMA) produces selective serotonergic depletion in the non-human primate. Neurotoxicol Teratol 15:91–96

    Article  PubMed  Google Scholar 

  • Allen RP, McCann UD, Ricaurte GA (1993) Persistant effects of (+)-3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on human sleep. Sleep 16:560–564

    PubMed  Google Scholar 

  • Ames D, Wirshing WC (1993) Ecstasy, the serotonin syndrome and neuroleptic malignant syndrome - a possible link? JAMA 269:869

    Article  PubMed  Google Scholar 

  • Askew BM (1961) Amphetamine toxicity in aggregated mice. J Pharm Pharmacol 13:701–703

    PubMed  Google Scholar 

  • Barnes DM (1989) Neurotoxicity creates regulatory dilemma. Science 243:29–30

    PubMed  Google Scholar 

  • Barrett PJ (1992) Ecstasy and dantrolene. BMJ 305:1225

    Google Scholar 

  • Battaglia G, Yeh SY, O'Hearn E, Molliver ME, Kuhar MJ, De Souza EB (1987) 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain:quantification of neurodegeneration by measurement of [3H]-paroxetine-labelled serotonin uptake sites. J Pharmacol Exp Ther 242:911–916

    PubMed  Google Scholar 

  • Battaglia G, Yeh SY, De Souza EB (1988a) MDMA-induced neurotoxicity parameters of degeneration and recovery of brain serotonin systems. Pharmacol Biochem Behav 29:269–274

    Article  PubMed  Google Scholar 

  • Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB (1988b) Pharmacologic profile of MDMA (3,4-methylenedioxy-methamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163

    Article  PubMed  Google Scholar 

  • Bedford-Russell AR, Schwartz RH, Dawling S (1992) Accidental ingestion of “ecstasy” (3,4-methylenedioxymethamphetamine). Arch Dis Child 67:1114–1115

    PubMed  Google Scholar 

  • Benazzi F, Mazzoli M (1991) Psychiatric illness associated with “ecstasy”. Lancet 338:1520

    Article  Google Scholar 

  • Boyce S, Kelly E, Reavill C, Jenner P, Marsden CD (1984) Repeated administration of N-methyl-4-phenyl 1,2,5,6 tetrahydropyridine to rats is not toxic to striatal dopamine neurons. Biochem Pharmacol 33:1747–1752

    Article  PubMed  Google Scholar 

  • Brown C, Osterloh J (1987) Multiple severe complications from recreational ingestion of MDMA (“Ecstasy”). J Am Med Assoc 258:780–781

    Article  Google Scholar 

  • Burns RS, Chieuh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983). A primate model of Parkinsonism: selective destruction of dopaminergic neurones in the pars compacta of the substantia nigra by 1-methyl-4-phenyl 1,2,3,6-tetra hydropyridine. Proc Nat Acad Sci USA 80:4546–4550

    PubMed  Google Scholar 

  • Callaway CW, Rempel N, Peng RY, Geyer MA (1992) Serotonin 5-HT1like receptors mediate hyperactivity in rats induced by 3,4-methylenedioxymethamphetamine. Neuropsychopharmacology 7:113–127

    PubMed  Google Scholar 

  • Campkin NTA, Davies UM (1992) Another death from ecstasy. J Roy Soc Med 85:61

    Google Scholar 

  • Chadwick IS, Linsley A, Freemont AJ, Doran B, Curry PD (1991) Ecstasy, 3,4-methylenedioxymethamphetamine (MDMA), a fatality associated with coagulopathy and hyperthermia. J Royal Soc Med 84:371

    Google Scholar 

  • Chance MRA (1946) Aggregation as a factor influencing the toxicity of sympathomimetic amines in mice. J Pharmacol Exp Ther 87:214–219

    Google Scholar 

  • Chance MRA (1947) Factors influencing the toxicity of sympathomimetic amines to solitary mice. J Pharmacol Exp Ther 89:289–296

    Google Scholar 

  • Chieuh CC, Markey SP, Burns RS, Johannessen JN, Pert A, Kopin IJ (1984) Neurochemical and behavioural effects of systemic and intranigral administration ofN-methyl-4-phenyl 1,2,3,6-tetrahydropyridine in the rat. Eur J Pharmacol 100:189–194

    Article  PubMed  Google Scholar 

  • Colado MI, Green AR (1994) A study of the mechanism of MDMA (“Ecstasy”)-induced neurotoxicity of 5-HT neurones using chlormethiazole, dizocilpine and other protective compounds. Br J Pharmacol 111:131–136

    PubMed  Google Scholar 

  • Colado MI, Murray, TK, Green AR (1993) 5-HT loss in rat brain following 3,4-methylenedioxymethamphetamine (MDMA),p-chloroamphetamine and fenfluramine administration and effects of chlormethiazole and dizocilpine. Br J Pharmacol 108:583–589

    PubMed  Google Scholar 

  • Commins DL, Axt KJ, Vosmer G, Seiden LS (1987a) 5,6-Dihydroxytryptamine, a serotonergic neurotoxin is formed endogenously in rat brain. Brain Res 403:7–14

    Google Scholar 

  • Commins DL, Vosmer G, Virus RM, Woolverton WL, Schuster CR, Seiden LS (1987b) Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 241:338–345

    PubMed  Google Scholar 

  • Craig AL, Kupferberg HJ (1972) Hyperthermia andd-amphetamine toxicity in aggregated mice of different strains. J Pharmacol Exp Ther 180:616–624

    PubMed  Google Scholar 

  • Creighton FJ, Black DL, Hyde CE (1991) “Ecstasy” psychosis and flashbacks. Br J Psychiat 159:713–715

    Google Scholar 

  • Cursham M, Dickson E, Kelly B, Kelly PAT, Neilson PP, Piper R. Reidy MJ, Ritchie IM, Sangra M, Stevens MC (1994) Focal hyperaemia in rat cortex following acute exposure to methylenedioxymethamphetamine (“Ecstasy”). Scot Med J 39:60

    Google Scholar 

  • Dafters RI (1994) Effects of ambient temperature on hyperthermia and hyperkinesis induced by 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) in rats. Psychopharmacology 114:505–508

    Article  PubMed  Google Scholar 

  • Dowling GP, McDonough ET, Bost RO (1987) Eve and Ecstasy, a report of five deaths associated with the use of MDEA and MDMA. JAMA 257:1615–1617

    Article  PubMed  Google Scholar 

  • Downing J (1986) The psychological and physiological effects of MDMA on normal volunteers. J Psychoact Drugs 18:335–340

    Google Scholar 

  • Dray A (1979) The striatum and substantia nigra:a commentary on their relationship. Neuroscience 4:1407–1439

    Article  PubMed  Google Scholar 

  • Fahal IH, Sallomi DF, Yaqoob M, Bell GM (1992) Acute renal failure after ecstasy. BMJ 305:29

    Google Scholar 

  • Finnegan KT, Skratt JJ, Irwin I, Langston JW (1990) The N-methyl-d-aspartate (NMDA) receptor antagonist dextromethorphan prevents the neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats. Neurosci Lett 105:300–306

    Article  Google Scholar 

  • Friedman R (1993) Ecstasy, the serotonin syndrome and neuroleptic malignant syndrome — a possible link? JAMA 269:869–870

    Article  PubMed  Google Scholar 

  • Fuller RW, Perry KW, Molloy BB (1975) Reversible and irreversible phase of serotonin depletion by 4-chloroamphetamine. Eur J Pharmacol 33:119–124

    Article  PubMed  Google Scholar 

  • Gazzara RA, Takeda H, Cho AK, Howard SG (1989) Inhibition of dopamine release by methylenedioxymethamphetamine is mediated by serotonin. Eur J Pharmacol 168:209–217

    Article  PubMed  Google Scholar 

  • Gibb JW, Johnson M, Stone D, Hanson GR (1990) MDMA: historical perspectives. Ann NY Acad Sci 600:601–611

    PubMed  Google Scholar 

  • Ginsberg MD, Herzman M, Schmidt-Nowara W (1970) Amphetamine intoxication with coagulopathy, hyperthermia and reversible renal failure. Ann Int Med 73:81–85

    PubMed  Google Scholar 

  • Gledhill JA, Moore DF, Bell D, Henry JA (1993) Subarachnoid haemorrhage associated with MDMA abuse. J Neurol Neurosurg Psychiatry 56:1036–1037

    PubMed  Google Scholar 

  • Goodwin GM, Green AR (1985) A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 84:743–753

    PubMed  Google Scholar 

  • Goodwin GM, De Souza, RJ, Green AR, Heal DJ (1987) The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Psychopharmacology 91:5-6–5-11

    Google Scholar 

  • Gorard DA, Davies SE, Clark ML (1992) Misuse of ecstasy. BMJ 305:309

    Google Scholar 

  • Gordon CJ, Wilkinson WP, O'Callaghan JP, Miller DB (1991) Effect of 3,4-methylenedioxymethamphetamine on autonomic thermoregulatory responses of the rat. Pharmacol Biochem Behav 38:339–344

    Article  PubMed  Google Scholar 

  • Grahame-Smith DG (1971a) Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor andl-tryptophan. J Neurochem 18:1053–1066

    PubMed  Google Scholar 

  • Grahame-Smith DG (1971b) Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced byl-tryptophan or 5-methoxy-N,N,dimethyl tryptamine in rats treated with a monoamine oxidase inhibitor. Br J Pharmacol 43:856–864

    PubMed  Google Scholar 

  • Green AR, Goodwin GM (1987) The pharmacology of the hypothermic response of rodents to 8-OH-DPAT administration and the effects of psychotropic drug administration on this response. In: Dourish CT, Ahlenius S, Hutson PH (eds) Brain 5-HT1A Receptors. Ellis Horwood, Chichester, pp 161–176

    Google Scholar 

  • Green AR, Grahame-Smith DG (1976) Effects of drugs on the processes regulating the functional activity of brain 5-hydroxytryptamine. Nature 260:487–491

    Article  PubMed  Google Scholar 

  • Green AR, Heal DJ (1985) The effects of drugs on serotonin-mediated behavioural models In: Green AR (ed) Neuropharmacology of serotonin. Oxford University Press, Oxford, pp 326–365

    Google Scholar 

  • Green AR, Kelly PH (1976) Evidence concerning the involvement of 5-hydroxytryptamine in locomotor activity produced by amphetamine or tranylcypromine plusl-dopa. Br J Pharmacol 57:141–147

    PubMed  Google Scholar 

  • Green AR, Hall JE, Rees AR (1981) A behavioural and biochemical study in rats of 5-hydroxytryptamine agonists and antagonists, with observations on structure-activity requirements for the agonists. Br J Pharmacol 73:703–719

    PubMed  Google Scholar 

  • Green AR, De Souza RJ, Williams JL, Murray TK, Cross AJ (1992) The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole. Neuropharmacology 31:315–321

    Article  PubMed  Google Scholar 

  • Greer G, Tolbert R (1986) Subjective reports of the effects of MDMA in a clinical setting. J Psychoact Drugs 18:319–327

    Google Scholar 

  • Grinspoon L, Bakalar JB (1986) Can drugs be used to enhance the psychotherapeutic process? Am J Psychother 40:393–404

    PubMed  Google Scholar 

  • Grob C, Bravo G, Walsh R (1990) Second thoughts on 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. Arch Gen Psychiatry 47:288–289

    PubMed  Google Scholar 

  • Gunn JA, Gurd MR (1940) The action of some amines related to adrenaline. Cyclohexylalkylamines. J Physiol 97:453–470

    Google Scholar 

  • Habert E, Graham D, Tahaoui L, Claustre Y, Langer SZ (1985) Characterisation of [3H]-paroxetine binding to rat cortical membranes. Eur J Pharmacol 118:107–114

    Article  PubMed  Google Scholar 

  • Hardman HF, Haavik CO, Seevers MH (1973) Relationship of the structure of mescaline and seven analogs to toxicity and behaviour in five species of laboratory animals. Toxicol Appl Pharmacol 25:299–309

    Article  PubMed  Google Scholar 

  • Harries DP, De Silva R (1992) Ecstasy and intracerebral haemorrhage. Scot Med J 37:150–152

    PubMed  Google Scholar 

  • Harvey JA, McMaster SE (1975) Fenfluramine:evidence for a neurotoxic action in midbrain and a long term depletion of serotonin. Pharmacol Commun 1:217–228

    Google Scholar 

  • Heal DJ, Green AR, Boullin DJ, Grahame-Smith DG (1976) Single and repeated administration of neuroleptic drugs to rats:effects on striatal dopamine-sensitive adenylate cyclase and locomotor activity produced by tranylcypromine andl-tryptophan orl-dopa. Psychopharmacology 49:287–300

    Article  PubMed  Google Scholar 

  • Hekmatpanah CR, Peroutka SK (1990) 5-Hydroxytryptamine uptake blockers attenuate the 5-hydroxytryptamine releasing effect of 3,4-methylenedioxymethamphetamine and related agents. Eur J Pharmacol 177:95–98

    Article  PubMed  Google Scholar 

  • Henderson MG, Hemrick-Luecke S, Fuller RW (1992) MK801 protects against amphetamine-induced striatal dopamine depletion in iprindole-treated rats, but not against brain serotonin depletion afterp-chloroamphetamine administration. Ann NY Acad Sci 648:286–288

    PubMed  Google Scholar 

  • Henry JA (1992) Ecstasy and the dance of death. BMJ 305:5–6.

    PubMed  Google Scholar 

  • Henry JA, Jeffreys KJ, Dawling S (1992) Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet 340:384–387

    Article  PubMed  Google Scholar 

  • Hewitt KE, Green AR (1994) Chlormethiazole, dizocilpine and haloperidol prevent the degeneration of serotonergic nerve terminals induced by administration of MDMA (“Ecstasy”). Neuropharmacology 33:1589–1595

    Article  PubMed  Google Scholar 

  • Hiramatsu M, Kumagai Y, Unger SE, Cho AK (1990) Metabolism of methylenedioxymethamphetamine: formation of dihydroxymethamphetamine and a quinone identified as its glutathione adduct. J Pharmacol Exp Ther 254:521–527

    PubMed  Google Scholar 

  • Hjörth S, Carlsson A, Lindberg P, Sanchez D, Wikstrom H, Arvidsson LE, Hacksell U, Nilsson JLG (1982) 8-Hydroxy-2-(di-n-prolylamino)tetralin, 8-OH-DPAT, a potent and selective simplified ergot congener with central 5-HT-receptor stimulating activity. J Neural Transm 55:169–188

    Article  Google Scholar 

  • Hotchkiss A, Gibb JW (1980) Long term effects of multiple doses of methamphetamine on tryptophan hydroxylase and tyrosine hydroxylase in rat brain. J Pharmacol Exp Ther 214:257–262.

    PubMed  Google Scholar 

  • Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14:233–236

    Article  PubMed  Google Scholar 

  • Insel TR, Battaglia G, Johanssen J, Marra S, De Souza EB (1989) 3,4-Methylenedioxymethamphetamine (“Ecstasy”) selectively destroys brain serotonin nerve terminals in rhesus monkeys. J Pharmacol Exp Ther 249:713–720

    PubMed  Google Scholar 

  • Johnson MP, Hoffman AJ, Nichols, DE (1986) Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol 132:269–276

    Article  PubMed  Google Scholar 

  • Johnson MP, Hanson GR, Gibb JW (1989) Effect of MK801 on the decrease in tryptophan hydroxylase induced by methamphetamine and its methylenedioxy analog. Eur J Pharmacol 165:315–318

    Article  PubMed  Google Scholar 

  • Johnson MP, Huang X, Nichols DE (1991) Serotonin neurotoxicity in rats after combined treatment with a dopaminergic agent followed by a non-neurotoxic 3,4-methylenedioxymethamphetamine (MDMA) analogue. Pharmacol Biochem Behav 40:915–922

    Article  PubMed  Google Scholar 

  • Johnson MP, Elayan I, Hanson GR, Foltz RL, Gibb JW, Lim HK (1992) Effects of 3,4-dihydroxymethamphetamine and 2,4,5-trihydroxymethamphetamine, two metabolites of 3,4-methylenedioxymethamphetamine, on central serotonergic and doopaminergic systems. J Pharmacol Exp Ther 261:447–453

    PubMed  Google Scholar 

  • Kaufmann CA, Wyatt RJ, Meltzer Hy (ed) Neuroleptic malignant syndrome. In: Psychopharmacology; the third generation of progress. In: Raven Press, New York pp 1421–1430

  • Kay RW (1992) Prevalence and incidence of schizophrenia in Afro-Caribbeans. Br J Psychiatry 160:421

    PubMed  Google Scholar 

  • Kazahara Y, Akimoto K, Otsuki S (1989) Subchronic methamphetamine treatment enhances methamphetamine or cocaine induced dopamine efflux in vivo. Biol Psychiatry 25:903–912

    Article  PubMed  Google Scholar 

  • Kendrick WC, Hull AR, Krockel JP (1977) Rhabdomyolysis and shock after intravenous amphetamine administration. Ann Int Med 86:381–387

    PubMed  Google Scholar 

  • Kleven MS, Woolverton WL, Seiden LS (1989) Evidence that both intragastric and subcutaneously administered MDMA produce 5-HT neurotoxicity in rhesus monkeys. Brain Res 448:121–125

    Article  Google Scholar 

  • Koda LY, Gibb JW (1973) Adrenal and striatal tyrosine hydroxylase activity after methamphetamine. J Pharmacol Exp Ther 185:42–48

    PubMed  Google Scholar 

  • Kumagai Y, Lin LY, Hiratsuka A, Narimatsu S, Suzuki T, Yamada H, Oguri K, Yoshimura H, Cho AK (1994) Participation of cytochrome P450-2B and -2D isozymes in the demethylenation of methylenedioxymeth-amphetamine enantiomers by rats. Mol Pharmacol 45:359–365

    PubMed  Google Scholar 

  • Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidone-analog synthesis. Science (Wash) 219:979–980

    Google Scholar 

  • Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) in the squirrel monkey. Brain Res 292:390–394

    Article  PubMed  Google Scholar 

  • Laverty R, Logan BJ (1990) Protection by MK 801 and other drugs of methylenedioxymethamphetamine (MDMA) neurotoxicity in rats and mice. Eur J Pharmacol 183:451–452

    Article  Google Scholar 

  • Lim HK, Folz RL (1991) Ion trap mass spectrometric evidence for the metabolism of 3,4-(methylenedioxy)methamphetamine to the potent neurotoxins 2,4,5-trihydroxymethamphetamine and 2,4,5-trihydroxyamphetamine. Chem Res Toxicol 4:626–632

    Article  PubMed  Google Scholar 

  • Logan BJ, Laverty R, Sanderson WD, Yee YB (1988) Differences between rats and mice in MDMA (methylenedioxymethamphetamine) neurotoxicity. Eur J Pharmacol 152:227–234

    Article  PubMed  Google Scholar 

  • Lyon RA, Glennon RA, Titeler M (1986) 3,4-methylenemethoxymethamphetamine (MDMA):stereoselective interactions at 5-HT1 and 5-HT2 receptors. Psychopharmacology 88:525–526

    Article  PubMed  Google Scholar 

  • McCann UD, Ricaurte GA (1991) Lasting neuropsychiatric sequelae of (+)-methylenedioxymethamphetamine (“Ecstasy”) in recreational users. J Clin Psychopharmacol 11:302–305

    PubMed  Google Scholar 

  • McCann UD, Ricaurte GA (1993) Reinforcing subjective effects of (+)-3,4-methylenedioxymethamphetamine (“ecstasy”) may be separable for its neurotoxic actions:clinical evidence. J Clin Psychopharmacol 13:214–217

    PubMed  Google Scholar 

  • McGuire P, Fahy T (1991) Chronic paranoid psychosis after misuse of MDMA (“Ecstasy”). BMJ 302:697

    PubMed  Google Scholar 

  • McGuire P, Jones P, Murray R (1993) Psychiatric symptoms in cannabis users. Br J Psychiatry 163:698

    Google Scholar 

  • McGuire PK, Cope H, Fahy TA (1994) Diversity of psychopathology associated with use of 3,4-methylenedioxymethamphetamine (“Ecstasy”). Br J Psychiatry 165:391–395

    PubMed  Google Scholar 

  • McKenna DJ, Peroutka SJ (1990) Neurochemistry and neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”). J Neurochem 54:14–22

    PubMed  Google Scholar 

  • Miller DB, O'Callaghan JP (1993) The interactions of MK801 with the amphetamine analoguesd-methamphetamine (d-METH), 3,4-methylenedioxymethamphetamine (d-MDMA) ord-fenfluramine (d-FEN); neural damage and neural protection. Ann NY Acad Sci 679:321–324

    PubMed  Google Scholar 

  • Miller DB, O'Callaghan JP (1994) Environment and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:752–760

    PubMed  Google Scholar 

  • Mokler DJ, Robinson SE, Rosecrans JA (1987) (+)-3,4-Methylenedioxymethamphetamine produces long-term reductions in brain 5-hydroxytryptamine in rats. Eur J Pharmacol 138:265–268

    Article  PubMed  Google Scholar 

  • Molliver ME, O'Hearn E, Battaglia G, De Souza EB (1986) Direct intracerebral administrations of MDA and MDMA does not produce serotonin neurotoxicity. Soc Neurosci Abst 12:1234

    Google Scholar 

  • Molliver ME, Berger UV, Mamounas LA, Molliver DL, O'Hearn E, Wilson MA (1990) Neurotoxicity of MDMA and related compounds:anatomic studies. Ann NY Acad Sci 600:640–661

    Google Scholar 

  • Nash JF, Meltzer HY, Gudelsky GA (1988) Elevation of serum prolactin and corticosterone concentrations after administration of 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 245:873–879

    PubMed  Google Scholar 

  • Nash JF, Arora RC, Schreiber MA, Meltzer HY (1991) Effect of 3,4-methylenedioxymethamphetamine on [3H]-paroxetine binding in the frontal cortex and blood platelets of rats. Biochem Pharmacol 41:79–84

    Article  PubMed  Google Scholar 

  • Neckers NM, Bertilsson L, Costa E (1976) The action of fenfluramine andp-chloroamphetamine on serotonergic mechanisms: a comparable study in rat brain nuclei. Neurochem Res 1:29–35

    Article  Google Scholar 

  • O'Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylene-dioxymethamphetamine (MDMA) cause ablation of serotonergic axon terminals in forebrain:immunocytochemical evidence. J Neurosci 8:2788–2803

    PubMed  Google Scholar 

  • Paris JM, Cunningham KA (1992) Lack of serotonin neurotoxicity after intraraphe microinjection of (+)-3,4-methylenedioxymethamphetamine. Brain Res Bull 28:115–119

    Article  PubMed  Google Scholar 

  • Peroutka SJ (1987) Incidence of recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) on an undergraduate campus. N Engl J Med 317:1542–1543

    Google Scholar 

  • Peroutka SJ, Newman H, Harris H (1988) Subjective effects of 3,4-methylenedioxymethamphetamine in recreational users. Neuropsychopharmacology 1:273–278

    PubMed  Google Scholar 

  • Price LP, Ricaurte GA, Krystal JH, Heninger GR (1989) Neuroendocrine and mood response tol-tryptophan in 3,4-methylenedioxymethamphetamine (MDMA) users. Arch Gen Psychiat 46:20–22

    PubMed  Google Scholar 

  • Randall J (1992a) Ecstasy-fueled “rave” parties become dances of death for English youths. JAMA 268:1505–1506

    Article  PubMed  Google Scholar 

  • Randall T (1992b) Rave scene, ecstasy use, leap Atlantic. JAMA 268:1506

    Article  PubMed  Google Scholar 

  • Rattray M (1991) Ecstasy:towards an understanding of the biochemical basis of the actions of MDMA. Essays Biochem 26:77–87

    PubMed  Google Scholar 

  • Ricaurte G, Bryan G, Strauss L, Seiden L, Schuster C (1985) Hallucinogenic amphetamine selectively destroys brain serotonin terminals. Science 229:986–988

    PubMed  Google Scholar 

  • Ricaurte GA, De Lanney LE, Wiener SG, Irwin I, Langston JW (1988a) 5-Hydroxyindoleacetic acid in cerebrospinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates. Brain Res 474:359–363

    Article  PubMed  Google Scholar 

  • Ricaurte GA, Forno LS, Wilson MA, De Lanney LE, Irwin I, Molliver ME, Langston JW (1988b) MDMA selectively damages central serotonergic neurons in the primate. JAMA 260:51–55

    Article  PubMed  Google Scholar 

  • Ricaurte GA, Delanney LE, Irwin I, Langston JW (1988c) Toxic effects of MDMA on central serotonergic neurons in the primate:importance of route and frequency of drug administration. Brain Res 446:165–168

    Article  PubMed  Google Scholar 

  • Ricaurte GA, Finnegan KT, Irwin I, Langston JW (1990) Aminergic metabolites in cerebrospinal fluid of humans previously exposed to MDMA:preliminary observations. Ann NY Acad Sci 600:699–710

    PubMed  Google Scholar 

  • Ricaurte GA, Martello AL, Katz JL, Martello MB (1992) Lasting effects of (±)-3,4-methylenedioxymethamphetamine (MDMA) on central serotonergic neurons in non human primates:neurochemical observations. J Pharmacol Exp Ther 261:616–621

    PubMed  Google Scholar 

  • Rolfe M, Tange CM, Sabally S, Todd JE, Sam EB, Hatib Njie AB (1993) Psychosis and cannabis abuse in the Gambia. A case-control study. Br J Psychiatry 163:798–801

    PubMed  Google Scholar 

  • Sabol KE, Richards JB, Seiden LS (1992) The NMDA receptor antagonist MK801 does not protect against serotonin depletions caused by high does ofDl-fenfluramine. Brain Res 582:129–133

    Article  PubMed  Google Scholar 

  • Sanders-Bush E, Bushing JA, Sulser F (1972) Long term effect ofp-chloroamphetamine on tryptophan hydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindole acetic acid in brain. Eur J Pharmacol 20:385–388

    Article  PubMed  Google Scholar 

  • Sawyer J, Stephens WP (1992) Misuse of ecstasy. BMJ 305:310

    Google Scholar 

  • Scanzello CR (1993) Hatzidimitriou G, Martello AL, Katz JL, Ricuarte GA (1993) Serotonergic recovery after (+)-3,4-(methylene-dioxy)methamphetamine injury:observations in rats. J Pharmacol Exp Ther 264:1484–1491

    PubMed  Google Scholar 

  • Schifano F (1991) Chronic atypical psychosis associated with MDMA (“Ecstasy”) abuse. Lancet 338:1335

    Article  Google Scholar 

  • Schmidt CJ (1987) Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 240:1–7

    PubMed  Google Scholar 

  • Schmidt CJ, Kehne JH (1990) Neurotoxicity of MDMA:neurochemical effects. Ann NY Acad Sci 1990; 600:665–681

    Google Scholar 

  • Schmidt CJ, Taylor VL (1987) Depression of rat brain tryptophan hydroxylase following the acute administration of methylenedioxymethamphetamine. Biochem Pharmacol 36:4095–4102

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Wu L, Lovenberg W (1986) Methylenedioxymethamphetamine: a potentially neurotoxic amphetamine analogue. Eur J Pharmacol 124:175–178

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Levin JA, Lovenberg W (1987) In vitro and in vivo neurochemical effects of methylenedioxymethamphetamine on striatal monoaminergic systems in the rat brain. Biochem Pharmacol 1987; 36:747–755

    Article  Google Scholar 

  • Schmidt CJ, Abbate GM, Black CK, Taylor VL (1990a) Selective 5-HT2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 255:478–483

    PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Abbate GM, Taylor VL (1990b) MDMA-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2receptors. Brain Res 529:85–90

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1990c) Antagonism of the neurotoxicity due to a single administration of methylenedioxymethamphetamine. Eur J Pharmacol 181:59–70

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL (1991a) L-Dopa potentiation of serotonergic deficits due to a single administration of 3,4-methylenedioxy-methamphetamine,p-chloroamphetamine or methamphetamine to rats. Eur J Pharmacol 203:41–49

    Article  PubMed  Google Scholar 

  • Schmidt CJ, Taylor VL, Abbate GM, Nieduzak TR (1991b) 5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine by blocking the acute stimulation of dopamine synthesis: reversal byl-Dopa. J Pharmacol Exp Ther 256:230–235

    PubMed  Google Scholar 

  • Screaton GR, Singer M, Cairns HS, Thrasher A, Sarner M, Cohen SL (1992) Hyperpyrexia and rhabdomyolysis after MDMA (“Ecstasy”) abuse. Lancet 339:677–678

    Article  Google Scholar 

  • Seiden LS (1990) MDMA and related compounds:session summary. Ann NY Acad Sci 600:711–715

    Google Scholar 

  • Sharkey J, McBean DE, Kelly PAT (1991) Alterations in hippocampal function following repeated exposure to the amphetamine derivative methylenedioxy-amphetamine (“Ecstasy”). Psychopharmacology 105:113–118

    PubMed  Google Scholar 

  • Shearman JD, Satsangi J, Chapman RWG, Ryley NG, Weatherhead S (1992) Misuse of ecstasy. BMJ 305:309

    Google Scholar 

  • Simpson DL, Rumack BH (1981) Methylenedioxyamphetamine, clinical description of overdose, death and review of pharmacology. Arch Int Med 141:1507–1509

    Article  Google Scholar 

  • Singarajah C, Lavies NG (1992) An overdose of ecstasy:a role for dantrolene. Anaesthesia 47:686–687

    PubMed  Google Scholar 

  • Slikker W Jr, Holson RR, Ali SF, Kolta MG, Paule MG, Scallet AC, McMillan DE, Bailey JR, Hong JS, Scalzo FM (1989) Behavioural and neurochemical effects of orally administered MDMA in the rodent and nonhuman primate. Neurotoxicology 10:529–542

    PubMed  Google Scholar 

  • Smilkstein MJ, Smolinske SC, Rumack BH (1987) A case of MAO inhibitor/MDMA interaction:agony after ecstasy. J Toxicol Clin Toxicol 25:149–159

    PubMed  Google Scholar 

  • Snape MF, Colado MI, Green AR (1994) Chlormethiazole and dizocilpine block the behavioural but not the neurotoxic effects of 5,7-dihydroxytryptamine in mice. Pharmacol Toxicol 14:40–42

    Google Scholar 

  • Sonsalla PK, Nicklas WJ, Keikkila RE (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science, Wash 243:398–400

    Google Scholar 

  • Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(+)-MDMA] on locomotion and serotonin syndrome behaviour in the rat. Pharmacol Biochem Behav 32:835–840

    Article  PubMed  Google Scholar 

  • Steele TD, Nichols DE, Yim GKW (1987) Stereochemical effects of 3,4-methylenedioxymethamphetamine (MDMA) and related amphetamine derivatives on inhibition of uptake of [3H]-monoamines into synaptosomes for different regions of rat brain. Biochem Pharmacol 36:2297–2303

    Article  PubMed  Google Scholar 

  • Sternbach H (1991) The serotonin syndrome. Am J Psychiat 148:705–713

    PubMed  Google Scholar 

  • Stone DM, Stahl DC, Hanson GR, Gibb JW (1986) The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 128:41–48

    Article  PubMed  Google Scholar 

  • Stone DM, Merchant KM, Hanson GR, Gibb JW (1987) Immediate and long term effects of 3,4-methylenedioxymethamphetamine on serotonin pathways in brain of rat. Neuropharmacology 26:1677–1683

    Article  PubMed  Google Scholar 

  • Stone DM, Johnson M, Hanson GR, Gibb JW (1988) Role of endogenous dopamine in the central serotonergic deficits induced by 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 247:79–87

    PubMed  Google Scholar 

  • Stone DM, Johnson M, Hansson GR, Gibb JW (1989) Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulphydryl sites. Eur J Pharmacol 172:93–97

    Article  PubMed  Google Scholar 

  • Sugarman PA, Craufurd D (1994) Schizophrenia in the Afro-Caribbean community. Br J Psychiat 164:474–480

    Google Scholar 

  • Tehan B (1993) Ecstasy and dantrolene. BMJ 306:146

    Google Scholar 

  • Tricklebank MD, Forler C, Fozard JR (1984) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106:271–282

    Article  PubMed  Google Scholar 

  • Trulson ME, Jacobs BL (1976) Behavioural evidence for the rapid release of CNS serotonin by PCA and fenfluramine. Eur J Pharmacol 36:149–154

    Article  PubMed  Google Scholar 

  • Tucker GT, Lennard MS, Ellis SW, Woods HF, Cho AK, Lin LY, Hiratsuka A, Schmitz DA, Chu TY (1994) The demethylenation of methylenedioxymethamphetamine (“Ecstasy”) by debrisoquine hydroxylase (CYP2D6). Biochem Pharmacol 47:1151–1156

    Article  PubMed  Google Scholar 

  • Verebey K, Alrazi J, Jeffe JH (1988) The complications of ecstasy (MDMA). JAMA 259:1649–1650

    Article  PubMed  Google Scholar 

  • Wang SS, Ricuarte GA, Peroutka SJ (1987) [3H]-3,4-Methylenedioxy-methamphetamine (MDMA) interactions with brain membranes and glass fiber filter paper. Eur J Pharmacol 138:439–443

    Article  PubMed  Google Scholar 

  • Whitaker-Azmitia PM, Aronson TA (1989) “Ecstasy” (MDMA)-induced panic. Am J Psychiatry 146:119

    Google Scholar 

  • Wilson MA, Ricaurte GA, Molliver ME (1989) Distinct morphologic classes of serotonergic axons in primates exhibit differential vulnerability to the psychotropic drug 3,4-methylenedioxymethamphetamine. Neuroscience 28:121–137

    Article  PubMed  Google Scholar 

  • Winstock AR (1991) Chronic paranoid psychosis after misuse of 3,4-methylenedioxymethamphetamine. BMJ 302:1150–1151

    Google Scholar 

  • Wolf HH, Bunce ME (1973) Hyperthermia and the amphetamine aggregation phenomenon:absence of a causal relation. J Pharm Pharmacol 25:425–427

    PubMed  Google Scholar 

  • Woods JD, Henry JA (1992) Hyperpyrexia induced by 3,4-methylenedioxyamphetamine (“Eve”). Lancet 340:305

    Article  Google Scholar 

  • Wrona MZ, Dryhurst G (1991) Interactions of 5-hydroxytryptamine with oxidative enzymes. Biochem Pharmacol 41:1145–1162

    Article  PubMed  Google Scholar 

  • Ziporyn T (1986) A growing industry and menace: Makeshrift laboratory's designer drugs. JAMA 256:3061–3063

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, A.R., Cross, A.J. & Goodwin, G.M. Review of the pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA or “Ecstasy”). Psychopharmacology 119, 247–260 (1995). https://doi.org/10.1007/BF02246288

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246288

Key words

Navigation