Skip to main content
Log in

Behavioural effects in the rat of the putative dopamine D3 receptor agonist 7-OH-DPAT: comparison with quinpirole and apomorphine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

This study assessed the effects of IP injections of (±) 7-hydroxy-2(N,N-di-n-propylamino)tetralin (7-OH-DPAT), a dopamine agonist that has been reported to have preferential affinity for the dopamine D3 subtype of receptor, on four behavioural procedures in the rat: 1) spontaneous locomotion, 2) electrical self-stimulation of the ventral tegmental area (VTA), using the curve-shift procedure 3) operant responding for food under a progressive-ratio (PR) schedule and 4) induction of stereotypies. The effects of (±) 7-OH-DPAT were compared to the effects of apomorphine, a non-specific DA agonist, and quinpirole, a selective D2/D3 agonist. All three dopamine agonists decreased locomotor activity at low doses (0.01–0.3 mg/kg), and only apomorphine had clear locomotor stimulant effects at the highest dose tested (3 mg/kg). The three drugs dose-dependently depressed VTA self-stimulation in a similar way, with low doses inducing a fairly parallel rightward shift of the frequency/rate curves and higher doses flattening the curves. In contrast, responding for food under the PR schedule appeared to be differentially affected by the three agonists: 7-OH-DPAT induced a biphasic effect, with a maximal decrease in lever-pressing at 0.1 mg/kg, followed by a return to baseline levels with increasing doses (0.3–3 mg/kg); quinpirole showed a tendency to decrease responding over the whole dose-range tested with a maximal effect of about 50% of baseline between 0.25 and 1 mg/kg, and apomorphine dose-dependently decreased responding, with rats ceasing to respond at 0.3 mg/kg. All three DA agonists induced stereotypies, but there was a difference in the maximal stereotypy score induced by each of the ligands: 7-OH-DPAT produced a lower maximal effect than quinpirole or apomorphine. This indicates that each of the three dopamine agonists preferentially induced different types of stereotypies. Together, these data suggest that the putative dopamine D3 agonist 7-OH-DPAT, at low doses, has depressant effects similar to those induced by low doses of the other two DA agonists. Differences in the behavioural effects of higher doses were, however, mostly observed in two procedures, PR responding and induction of stereotypies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlenius S, Salmi P (1994) Behavioral and biochemical effects of the dopamine D3 receptor-selective ligand, 7-OH-DPAT, in the normal and the reserpine-treated rat. Eur J Pharmacol 260:177–181

    Article  PubMed  Google Scholar 

  • Ariano MA, Sibley DR (1994) Dopamine receptor distribution in the rat CNS: elucidation using anti-peptide antisera directed against D1A and D3 subtypes. Brain Res 649:95–110

    Article  PubMed  Google Scholar 

  • Arnt J, Hyttel J, Perregaard J (1987) Dopamine D-1 receptor agonists combined with the selective D-2 agonist quinpirole facilitate the expression of oral stereotyped behaviour in rats. Eur J Pharmacol 133:137–145

    Article  PubMed  Google Scholar 

  • Baldessarini RJ, Kula NS, McGrath CR, Bakthavachalam V, Kebabian JW, Neumeyer JL (1993) Isomeric selectivity at dopamine D3 receptors. Eur J Pharmacol 239:269–270

    Article  PubMed  Google Scholar 

  • Booth RG, Baldessarini RJ, Marsh E, Owens CE (1994) Actions of (±)-7-hydroxy-N,N-dipropylaminotetralin (7-OH-DPAT) on dopamine synthesis in limbic and extrapyramidal regions of rat brain. Brain Res 662:283–288

    Article  PubMed  Google Scholar 

  • Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC (1991) Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 564: 203–219

    Article  PubMed  Google Scholar 

  • Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–1816

    PubMed  Google Scholar 

  • Caine SB, Koob GF (1995) Pretreatment with the dopamine agonist 7-OH-DPAT shifts the cocaine self-administration dose-effect function to the left under different schedules in the rat. Behav Pharmacol 6:333–347

    PubMed  Google Scholar 

  • Costall B, Naylor RJ, Cannon JG, Lee T (1977) Differentiation of the dopamine mechanisms mediating stereotyped behaviour and hyperactivity in the nucleus accumbens and caudate-putamen. J Pharm Pharmacol 29:337–342

    PubMed  Google Scholar 

  • Daly SA, Waddington JL (1993) Behavioural effects of the putative D-3 dopamine receptor agonist 7-OH-DPAT in relation to other “D-2-like” agonists. Neuropharmacology 32:509–510

    Article  PubMed  Google Scholar 

  • Damsma G, Bottema T, Westerink BHC, Tepper PG, Dijkstra D, Pugsley TA, MacKenzie RG, Heffner TG, Wikstrom H (1993) Pharmacological aspects ofR-(+)-7-OH-DPAT, a putative dopamine D3 receptor ligand. Eur J Pharmacol 249:R9-R10

    Article  PubMed  Google Scholar 

  • De Fonseca FR, Rubio P, Martin-Calderon JL, Caine SB, Koob GF, Navarro M (1995) The dopamine receptor agonist 7-OH-DPAT modulates the acquisition and expression of morphine-induced place preference. Eur J Pharmacol 274:47–55

    Article  PubMed  Google Scholar 

  • Dews PB, Wenger GR (1977) Rate-dependency of the behavioral effects of amphetamine. In: Thompson T, Dews PB (eds) Advances in behavioral pharmacology, vol. 1. Academic, New York, pp 167–227

    Google Scholar 

  • Di Chiara G, Porceddu ML, Vargiu L, Argiolas A, Gessa GL (1976) Evidence for dopamine receptors mediating sedation in the mouse brain. Nature 264:564–567

    Article  PubMed  Google Scholar 

  • Eilam D, Szechtman H (1989) Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur J Pharmacol 161: 151–157

    Article  PubMed  Google Scholar 

  • Feenstra MGP, Sumners C, Goedemoed JH, de Vries JB, Rollema H, Horn AS (1983) A comparison of the potencies of various dopamine receptor agonists in models for pre- and postsynaptic receptor activity. Naunyn-Schmiedeberg's Arch Pharmacol 324:108–115

    Article  Google Scholar 

  • Fibiger HC, Phillips AG (1988) Mesocorticolimbic dopamine systems and reward. Ann NY Acad Sci 537:206–215

    PubMed  Google Scholar 

  • Gallistel CR, Karras D (1984) Pimozide and amphetamine have opposing effects on the reward summation function. Pharmacol Biochem Behav 20:73–77

    Article  PubMed  Google Scholar 

  • Gallistel CR, Gomita Y, Yadin E, Campbell KA (1985) Fore brain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide. J Neurosci 5 [5]1246–1261

    PubMed  Google Scholar 

  • Gilbert DB, Millar J, Cooper SJ (1995) The putative dopamine D3 agonist, 7-OH-DPAT, reduces dopamine release in the nucleus accumbens and electrical self-stimulation to the ventral tegmentum. Brain Res 681:1–7

    Article  PubMed  Google Scholar 

  • Gonzalez AM, Sibley DR (1995) [3H]7-OH-DPAT is capable of labeling dopamine D2 as well as D3 receptors. Eur J Pharmacol 272:R1-R3

    Article  PubMed  Google Scholar 

  • Herberg LJ, Stephens DN, Franklin KBJ (1976) Catecholamines and self-stimulation: evidence suggesting a reinforcing role for noradrenaline and a motivating role for dopamine. Pharmacol Biochem Behav 4:575–582

    Article  PubMed  Google Scholar 

  • Hernandez L, Hoebel BG (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci 42:1705–1711

    Article  PubMed  Google Scholar 

  • Herroelen L, De Backer J-P, Wilczak N, Flamez A, Vauquelin G, De Keyser J (1994) Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin. Brain Res 648:222–228

    Article  PubMed  Google Scholar 

  • Hillefors-Berglund M, Von Euler G (1994) Pharmacology of dopamine D3 receptors in the islands of Calleja of the rat using quantitative receptor autoradiography. Eur J Pharmacol 261:179–183

    Article  PubMed  Google Scholar 

  • Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134:943–944

    PubMed  Google Scholar 

  • Kirby KN (1993) Advanced data analysis with SYSTAT. Van Nostrand Reinhold, New York

    Google Scholar 

  • Landwehrmeyer B, Mengod G, Palacios JM (1993a) Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur J Neurosci 5:145–153

    PubMed  Google Scholar 

  • Landwehrmeyer B, Mengod G, Palacios JM (1993b) Dopamine D3 receptor mRNA and binding sites in human brain. Mol Brain Res 18:187–192

    Article  PubMed  Google Scholar 

  • Leith NJ (1983) Effects of apomorphine on self-stimulation responding: does the drug mimic the current? Brain Res 277:129–136

    Article  PubMed  Google Scholar 

  • Levesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC, Sokoloff P (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-(3H)hydroxy-N, N-di-n-propyl-2- aminotetralin. Proc Natl Acad Sci USA 89:8155–8159

    PubMed  Google Scholar 

  • Liu J-C, Cox RF, Greif GJ, Freedman JE, Waszczak BL (1994) The putative dopamine D3 receptor agonist 7-OH-DPAT: lack of mesolimbic selectivity. Eur J Pharmacol 264:269–278

    Article  PubMed  Google Scholar 

  • Lynch MR, Wise RA (1985) Relative effectiveness of pimozide, haloperidol and trifluoperazine on self-stimulation rate-intensity functions. Pharmacol Biochem Behav 23:777–780

    Article  PubMed  Google Scholar 

  • McElroy J, Zeller, K, Amy K, Ward K, Cawley J, Mazzola A, Keim W, Rohrbach K (1993) In vivo agonist properties of 7-hydroxy-N, N-di-N-propyl-2-aminotetralin, a dopamine D3-selective receptor ligand. Drug Dev Res 30:257–259

    Article  Google Scholar 

  • McElroy J (1994) Discriminative stimulus properties of 7-OH-DPAT, a dopamine D3-selective receptor ligand. Pharmacol Biochem Behav 48:531–533

    Article  PubMed  Google Scholar 

  • MacKenzie RG, VanLeeuwen D, Pugsley TA, Shih YH, Demattos S, Tang L, Todd RD, O'Malley KL (1994) Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur J Pharmacol [Mol Pharmacol Sec] 266:79–85

    Article  Google Scholar 

  • Mallet PE, Beninger RJ (1994) 7-OH-DPAT produces place conditioning in rats. Eur J Pharmacol 261:R5-R6

    PubMed  Google Scholar 

  • Meller E, Bohmaker K, Goldstein M, Basham DA (1993) Evidence that striatal synthesis-inhibiting autoreceptors are dopamine D3 receptors. Eur J Pharmacol 249:R5-R6

    Article  PubMed  Google Scholar 

  • Mulder TB, de Vries JB, Dijkstra D, Wiechers JW, Grol CJ, Horn AS (1987) Further in vitro and in vivo studies with the putative presynaptic dopamine agonistN, N-dipropyl-7-hydroxy-2-aminotetralin. Naunyn Schmiedeberg's Arch Pharmacol 336: 494–501

    Google Scholar 

  • Murray AM, Ryoo H, Joyce JN (1992) Visualization of dopamine D3-like receptors in human brain with (125l)epidepride. Eur J Pharmacol 227:443–445

    Article  PubMed  Google Scholar 

  • Nakajima S, O'Regan NB (1991) The effects of dopaminergic agonists and antagonists on the frequency-response function for hypothalamic self-stimulation in the rat. Pharmacol Biochem Behav 39:465–468

    Article  PubMed  Google Scholar 

  • Nakajima S, Liu X, Lau CL (1993) Synergistic interaction of D1 and D2 dopamine receptors in the modulation of the reinforcing effect of brain stimulation. Behav Neurosci 107:161–165

    Article  PubMed  Google Scholar 

  • Parsons B, Stanley M, Javitch J (1993) Differential visualization of dopamine D2 and D3 receptors in rat brain. Eur J Pharmacol 234:269–272

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Poncelet M, Chermat R, Soubrie P, Simon P (1983) The progressive ratio schedule as a model for studying the psychomotor stimulant activity of drugs in the rat. Psychopharmacology 80:184–189

    Article  PubMed  Google Scholar 

  • Sahakian BJ, Koob GF (1978) The relationship between pipradrol-induced responding for electrical brain stimulation, stereotyped behaviour and locomotor activity. Neuropharmacology 17:363–366

    Article  PubMed  Google Scholar 

  • Schoemaker H (1993) [3H]7-OH-DPAT labels both dopamine D3 receptors andσ sites in the bovine caudate nucleus. Eur J Pharmacol 242:R1-R2

    Article  PubMed  Google Scholar 

  • Seeman P, Van Tol HHM (1994) Dopamine receptor pharmacology. Trends Pharmacol Sci 15:264–270

    Article  PubMed  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  PubMed  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Andrieux M, Besancon R, Pilon C, Bouthenet ML, Souil E, Schwartz JC (1992) Localization and function of the D3 dopamine receptor. Arzneimittelforschung 42:224–230

    PubMed  Google Scholar 

  • Stahle L, Ungerstedt U (1986) Effects of neuroleptic drugs on the inhibition of exploratory behaviour induced by a low dose of apomorphine: implications for the identity of dopamine receptors. Pharmacol Biochem Behav 25:473–480

    Article  PubMed  Google Scholar 

  • Starr MS, Starr BS (1989) Behavioural synergism between the dopamine agonists SKF 38393 and LY 171555 in dopamine-depleted mice: antagonism by sulpiride reveals only stimulant postsynaptic D-2 receptors. Pharmacol Biochem Behav 33: 41–44

    Google Scholar 

  • Stellar JR, Rice MB (1989) Pharmacological basis of intracranial self-stimulation reward. In: JM Liebman, SJ Cooper (eds) The neuropharmacological basis of reward. Oxford University Press, Oxford p 14–65

    Google Scholar 

  • Svensson K, Carlsson A, Waters N (1994a) Locomotor inhibition by the D3 ligandR-(+)-7-OH-DPAT is independent of changes in dopamine release. J Neural Transm [Gen Sect] 95:71–74

    Article  Google Scholar 

  • Svensson K, Carlsson A, Huff RM, Kling-Petersen T, Waters N (1994b) Behavioral and neurochemical data suggest functional differences between dopamine D2 and D3 receptors. Eur J Pharmacol 263:235–243

    Article  PubMed  Google Scholar 

  • Tang L, Todd RD, O'Malley KL (1994) Dopamine D2 and D3 receptors inhibit dopamine release. J Pharmacol Exp Ther 270:475–479

    PubMed  Google Scholar 

  • Timmerman W, Tepper PG, Dijkstra D, Stoelwinder H, Grol CJ, Westerink BHC, Horn AS (1991) Enantiomers of monohydroxy-2-aminotetralin derivatives and their activity at dopamine autoreceptors as studied by brain dialysis. Eur J Pharmacol 199:145–151

    Article  PubMed  Google Scholar 

  • Timmermans PB, Mathy MJ, Wilffert B, Kalkman HO, Smit G, Dijkstra D, Horn, AS, and Van Zwieten PA (1984) α12-adrenoceptor agonist selectivity of mono- and dihydroxy-2-N,N-di-n-propylaminotetralins. Eur J Pharmacol 97:55–65

    Article  PubMed  Google Scholar 

  • Tsuruta K, Frey EA, Grewe CW, Cote TE, Eskay RL, Kebabian JW (1981) Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor. Nature 292:463–465

    Article  PubMed  Google Scholar 

  • Van den Buuse M (1993) Effects of 7-hydroxy-N, N-di-n-propylaminotetralin on behaviour and blood pressure of spontaneously hypertensive rats. Eur J Pharmacol 243:169–177

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Depoortere, R., Perrault, G. & Sanger, D.J. Behavioural effects in the rat of the putative dopamine D3 receptor agonist 7-OH-DPAT: comparison with quinpirole and apomorphine. Psychopharmacology 124, 231–240 (1996). https://doi.org/10.1007/BF02246662

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246662

Key words

Navigation