Skip to main content
Log in

Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The immunosuppressant, SDZ IMM 125 (IMM), is a derivative of cyclosporin A (CyA). The disposition kinetics of IMM in plasma, blood cells, and various tissues of the rat was characterized by a physiologically based pharmacokinetic (PBPK) model; the model was then applied to predict the disposition kinetics in dog and human. Accumulation of IMM in blood cell is high (equilibrium blood cell/plasma ratio=8), although the kinetics of drug transference between plasma and blood cell is moderately slow, taking approximately 10 min to reach equilibrium, implying a membranelimited distribution into blood cells. A local PBPK model, assuming blood-flow limited distribution and tissue/blood partition coefficient (K P) data, failed to adequately describe the observed kinetics of distribution, which were slower than predicted. A membrane transport limitation is therefore needed to model dynamic tissue distribution data. Moreover, a slowly interacting intracellular pool was also necessary to adequately describe the kinetics of distribution in some organs. Three elimination pathways (metabolism, biliary secretion, and glomerular filtration) of IMM were assessed at steady statein vivo and characterized independently by the corresponding clearance terms. A whole-body PBPK model was developed according to these findings, which described closely the IMM concentration-time profiles in arterial blood as well as 14 organs/tissues of the rat after intravenous administration. The model was then scaled up to larger mammals by modifying physiological parameters, tissue distribution and elimination clearances;in vivo enzymatic activity was considered in the scale-up of metabolic clearance. The simulations agreed well with the experimental measurements in dog and human, despite the large interspecies difference in the metabolic clearance, which does not follow the usual allometric relationship. In addition, the nonlinear increase in maximum blood concentration andAUC with increasing dose, observed in healthy volunteers after intravenous administration, was accommodated quantitatively by incorporating the known saturation of specific binding of IMM to blood cells. Overall, the PBPK model provides a promising tool to quantitatively link preclinical and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Bernareggi and M. Rowland. Physiological modelling of cyclosporin kinetics in rats and man.J. Pharmacokin. Biopharm. 19:21–50 (1991).

    Article  CAS  Google Scholar 

  2. R. Kawai and M. Lemaire. Role of blood cell uptake on cyclosporin pharmacokinetics.Proceeding of the International Symposium on Blood Binding and Drug Transfer, EFC Publishing, Paris, 1993, pp. 89–108.

    Google Scholar 

  3. P. C. Heistand, M. Graeber, U. Hurtenbach, P. Herrmann, S. Cammisuli, B. P. Richardson, M. K. Eberle, and J. F. Borel. The new cyclosporine derivative, SDZ IMM 125; in vitro and in vivo pharmacologic effects.Transplant Proc. 24:31–38 (1992).

    Google Scholar 

  4. A. Bruelisauer, R. Kawai, P. Misslin, and M. Lemaire. Absorption and disposition of SDZ IMM 125, a new cyclosporine derivative, in rats after single and repeated administration.Drug Metab. Dispos. 22:194–199 (1994).

    CAS  PubMed  Google Scholar 

  5. B. Legg and M. Rowland. Cyclosporin: erythrocyte binding and an examination of its use to estimate unbound concentration.Ther. Drug Monit. 10:16–19 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. B. Foxwell, G. Frazer, M. Winters, P. Hiestand, R. Wenger, and B. Ryffel. Identification of cyclophilin as the erythrocyte cyclosporin-binding protein.Biochim. Biophys. Acta 938:447–455 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. A. Tsuji, K. Nishide, H. Minami, E. Nakashima, T. Terasaki, and T. Yamana. Physiologically based pharmacokinetic model for cefazolin in rabbits and its preliminary extrapolation to man.Drug Metab. Dispos. 13:729–739 (1985).

    CAS  PubMed  Google Scholar 

  8. C. Sloop, L. Dory, and P. Roheim. Interstitial fluid lipoproteins.J. Lipid Res. 28:225–237 (1987).

    CAS  PubMed  Google Scholar 

  9. W. M. Pardridge, D. Triguero, J. Yang, and P. A. Cancilla. Comparison of in vitro and in vivo models of drug transcytosis through the blood brain barrier.J. Pharmacol. Exp. Ther. 253:884–891 (1990).

    CAS  PubMed  Google Scholar 

  10. J. Fisher, T. Whittaker, D. Taylor, H. Clewell, and M. Anderson. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure for trichloroethylene and its metabolite, trichloroacetic acid.Toxicol. Appl. Pharmacol. 99:395–414 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. D. Staats, J. Fisher, and R. Connolly. Gastrointestinal absorption of xenobiotics in physiologically based pharmacokinetic model; a two-compartment description.Drug Metab. Dispos. 19:144–148 (1991).

    CAS  PubMed  Google Scholar 

  12. F. Ichimura, K. Yokogawa, T. Yamana, A. Tsuji, K. Yamamoto, S. Murakami, and Y. Mizukami. Physiological pharmacokinetic model for distribution and elimination of pentazocine. II. Study in rabbits and scale-up to man.Int. J. Pharm. 19:75–88 (1984).

    Article  CAS  Google Scholar 

  13. S. Khor and M. Mayersohn. Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling; Residual tissue blood. I. Theoretical considerations.Drug Metab. Dispos. 19:478–485 (1991).

    CAS  PubMed  Google Scholar 

  14. S. Khor, H. Bozigian, and M. Mayersohn. Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling; Residual tissue blood.II. Distribution of phencyclidine in the rat.Drug Metab. Dispos. 19:486–490 (1991).

    CAS  PubMed  Google Scholar 

  15. P. Altman. Analysis and compilation. In D. Dittman (ed.),Biological Handbooks: Blood and Other Body Fluids FASEB, Washington, DC, 1961.

    Google Scholar 

  16. L. Jansky and J. Hart. Cardiac output and organ blood flow in warm-and cold-acclimated rats exposed to cold.Can. J. Physiol. Pharmacol. 46:653–659 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. A. Tsuji, T. Yoshikawa, K. Nishide, H. Minami, M. Kimura, E. Nakashima, T. Terasaki, E. Miyamoto, C. Nightingale, and T. Yamana. Physiologically based pharmacokinetic model for beta-lactam antibiotics I: Tissue distribution and elimination in rats.J. Pharm. Sci. 72:1239–1252 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. A. Tsuji, H. Sato, I. Tamai, H. Adachi, T. Nishihara, M. Ishiguro, N. Ohnuma, and T. Noguchi. Physiologically based pharmacokinetics of a new penem, SUN5555, for evaluation of in vivo efficacy.Drug Metab. Dispos. 18:245–252 (1990).

    CAS  PubMed  Google Scholar 

  19. S. Pang and M. Rowland. Hepatic clearance of drugs.I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding and hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  20. H. Akima. A new method of interpolation and smooth curve fitting based on local procedures,Journal of ACM 17:589–602 (1970).

    Article  Google Scholar 

  21. H. Akaike. An information criterion (AIC).Math. Sci. 14: 5–9 (1976).

    Google Scholar 

  22. R. Dedrick, M. Flessner, J. Collins, and J. Schultz. Is the peritoneum a membrane?ASAIO Journal 51:1–8 (1982).

    Google Scholar 

  23. J. Holt and E. Rhode. Similarity of renal glomerular hemodynamics in mammals.Am. Heart J. 92:465–472 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. A. Vickers, E. Meyer, R. Dannecker, B. Keller, R. Tynes, and G. Maurer. Human Liver Cytochrome P4503A Biotransformation of the Cyclosporin Derivative SD2IMM125.Drug Metab. Dispos. 23; 1–6 (1995).

    Google Scholar 

  25. A. Vickers, V. Fischer, S. Connors, R. Fisher, J-P. Baldeck, G. Maurer, and K. Brendel. Cyclosporin A metabolism in human liver, kidney, and intestine slices: Comparison to rat and dog slices and human cell lines.Drug Metab. Dispos. 20:802–809 (1992).

    CAS  PubMed  Google Scholar 

  26. J. Mordenti and W. Chappell. The use of interspecies scaling in toxicokinetics. In A. Yacobi, J. Skelly, and V. Batra (eds.),Toxicokinetics and New Drug Development, Pergamon Press, New York, 1989, pp. 42–96.

    Google Scholar 

  27. S. Urien, R. Zini, M. Lemaire, and J-P. Tillement. Assessment of cyclosporine A interactions with human plasma lipoproteins in vitro and in vivo in the rat.J. Pharmacol. Exp. Ther. 253:305–309 (1990).

    CAS  PubMed  Google Scholar 

  28. H. Lee and W. Chiou. Erythrocytes as barriers for drug elimination in the isolated rat liver.I. Doxorubicin.Pharm. Res. 6:833–839 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. H. Lee and W. Chiou. Erythrocytes as barriers for drug elimination in the isolated rat liver.II. Propanol.Pharm. Res. 6:840–843 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. T. Chen, M. Abdelhameed, and W. Chiou. Erythrocytes as a total barrier for renal excretion of hydrochlorothiazide: Slow influx and efflux across erythrocyte membranes.J. Pharm. Sci. 81:212–218 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. R. Kawai, Y. Sawada, M. Channing, B. Dunn, A. Newman, K. Rice, and R. Blasberg. Kinetic analysis of the opiate antagonist cyclofoxy in rat brain: Simultaneous infusion of active and inactive enantiomers.J. Pharmacol. Exp. Ther. 255:826–835 (1990).

    CAS  PubMed  Google Scholar 

  32. J. Gallo, P. Varkonyi, E. Hassan, and D. Groothius. Targeting anticancer drugs to the brain:II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats.J. Pharmacokin. Biopharm. 21:575–592 (1993).

    Article  CAS  Google Scholar 

  33. T. Terasaki, T. Iga, Y. Sugiyama, and M. Hanano. Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin: Interorgan and interspecies variation of tissue-to-plasma partition coefficients in rats, rabbits and guinea pigs.J. Pharm. Sci. 73:1359–1363 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. M. Roberts and M. Rowland. A dispersion model of hepatic elimination:I. formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Article  CAS  Google Scholar 

  35. H. Sato, Y. Sugiyama, T. Iga, and M. Hanano. Physiologically based pharmacokinetics of radioiodinated human beta-endorphin in rats: an application of capillary membrane-limited model.Drug Metab. Dispos. 15:540–550 (1987).

    CAS  PubMed  Google Scholar 

  36. L. Sangalli, A. Bortolotti, L. Jiritano, and M. Bonati. Cyclosporine pharmacokinetics in rats and interspecies comparison in dogs, rabbits, rats, humans.Drug. Metab. Dispos. 16:749–753 (1988).

    CAS  PubMed  Google Scholar 

  37. H. Boxenbaum. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics.J. Pharmacokin. Biopharm. 10:201–227 (1982).

    Article  CAS  Google Scholar 

  38. R. Dedrick. Interspecies scaling of regional drug delivery.J. Pharm. Sci. 75:1047–1052 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. J. L. Gabrielsson, P. Johansson, U. Bondesson, and L. K. Paalzow. Analysis of methadone disposition in the pregnant rat by means of a physiological flow model,J. Pharmacokin. Biopharm. 13:355–372 (1985).

    Article  CAS  Google Scholar 

  40. E. Adolph. Quantitative relations in the physiological constitutions of mammals.Science 109:579–585 (1949).

    Article  CAS  PubMed  Google Scholar 

  41. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin,J. Pharmacokin. Biopharm. 8:165–176 (1980).

    Article  CAS  Google Scholar 

  42. J. Katz, G. Bonorris, S. Golden, and A. Sellers. Extravascular albumin mass and exchange in rat tissues.Clin. Sci. 39:705–724 (1970).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, R., Lemaire, M., Steimer, JL. et al. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125. Journal of Pharmacokinetics and Biopharmaceutics 22, 327–365 (1994). https://doi.org/10.1007/BF02353860

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353860

Key Words

Navigation