Skip to main content
Log in

The role of dendritic cells in cutaneous immunity

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

This article reviews the role of dendritic cells in cutaneous immunity. Langerhans cells (LC) found in the epidermis are the best-characterized dendritic cell population. They have the ability to process antigen in the periphery, transport it to the draining lymph nodes (DLN) where they are able to cluster with, and activate, antigen-specific naive T cells. During migration LC undergo phenotypic and functional changes which enable them to perform this function. There are other less well-characterized dendritic cells including dendritic epidermal T cells, dermal dendrocytes and dermal ‘LC-like’ cells. Although there is no evidence that dendritic epidermal T cells (DETC) can present antigen or migrate to lymph nodes, they do influence the intensity of cutaneous immune responses to chemical haptens. Antigen-presenting cells (APC) in the dermis may provide alternative routes of antigen presentation which could be important in the regulation of skin immune responses. Therefore, dendritic cells are vital for the induction of immune responses to antigens encountered via the skin. LC are particularly important in primary immune responses due to their ability to activate naive T cells. The faster kinetics of secondary responses, and the ability of nonprofessional APC to induce effector function in previously activated cells, suggest that antigen presentation in the DLN may be less important in responses to previously encountered antigens. In these seondary responses, dendritic and nondendritic APC in the skin may directly induce effector functions from antigen-specific recirculating cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Streilein JW (1978) Lymphocyte traffic, T-cell malignancies and the skin. J Invest Dermatol 71: 167–171

    Article  PubMed  CAS  Google Scholar 

  2. Birbeck MS, Breathnach AS, Everall JD (1961) An electron microscope study of basal monocytes and high-level clear cells in vitiligo. J Invest Dermatol 37: 51–63

    Article  Google Scholar 

  3. Elbe A, Stingl G, Steiner G, Tschachler E, Binder A, Wolff K (1989) Maturational steps of bone-marrow derived dendritic murine epidermal cells—phenotype and functional studies on Langerhans cells and thy-1 dendritic epidermal-cells in the perinatal period. J Immunol 143: 2431–2438

    PubMed  CAS  Google Scholar 

  4. Furue M, Nindl M, Kawabe K, Nakamura K, Ishibashi Y, Sagawa K (1992) Epitope mapping of CD1a-antigens, CD1b-antigens, CD11b-antigens and CD1c-antigens in human skin: differential localization on Langerhans cells, keratinocytes and basement-membrane zone. J Invest Dermatol 99: 23S-26S

    Article  PubMed  CAS  Google Scholar 

  5. Tschangler E, Steiner G, Yamada H, Elbe A, Wolff K, Stingl G (1989) Dendritic epidermal T cells: activation requirements and phenotypic characterisation of proliferating cells. J Invest Dermatol 92: 763: 768

    Article  Google Scholar 

  6. Shimada S, Shibagaki N, Tanaka T, Kubots Y, Hashimoto Y, Tamaki K (1992) Identification of an equivalent to murine thy-1 dendritic epidermal cells in the rat epidermis. J Dermatol Sci 3: 68–71

    Article  PubMed  CAS  Google Scholar 

  7. Bergstresser PR, Cruz PD Jr, Takashima A (1993) Dendritic epidermal T cells: lessons from mice for humans. J Invest Dermatol 100: 80S-83S

    Article  PubMed  CAS  Google Scholar 

  8. Welsch EA, Kripke ML (1990) Murine thy-1 dendritic cells induce immulogic tolerance in vivo. J Immunol 144: 883–891

    Google Scholar 

  9. Bigby M, Kwan T, Sy M-S (1987) Ratio of Langerhans cells to thy-1 dendritic epidermal cells influences the intensity of contact hypersensitivity. J Invest Dermatol 89: 485–499

    Article  Google Scholar 

  10. Braverman IM, Keh-Yen A (1992) The periadventitial cell of the cutaneous microvasculature known as the veil cell, is the dermal dendrocyte. Clin Res 40: A496

    Google Scholar 

  11. Bergstresser PR, Cruz PD Jr, Niederkorn JY, Takashima A (1995) Third International Workshop on Langerhans Cells: discussion overview. J Invest Dermatol 99: 1S-4S

    Article  Google Scholar 

  12. Duraiswamy N, Tse Y, Hammerberg C, Kang S, Cooper KD (1994) Distinction of Class II MHC+Langerhans cell-like interstitial dendritic antigen-presenting cells in the murine dermis from dermal macrophages. J Invest Dermatol 103: 678–683

    Article  PubMed  CAS  Google Scholar 

  13. Toews GB, Bergstresser PR, Streilein JW (1980) Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J Immunol 124: 445–453

    PubMed  CAS  Google Scholar 

  14. Bergstresser PR, Toews GB, Streilein JW (1980) Natural and perturbed distributions of Langerhans cells. Responses to UV light, heterotrophic skin grafting and DNFB sensitization. J Invest Dermatol 5: 73–77

    Article  Google Scholar 

  15. Streilein JW, Bergstresser PR (1981) Langerhans cell function dictates induction of contact hypersensitivity of unresponsiveness to DNFB in Syrian hamsters. J Invest Dermatol 77: 272–277

    Article  PubMed  CAS  Google Scholar 

  16. Kurimoto I, Streilein JW (1993) Contact hypersensitivity in mice with optimal sensitizing doses of hapten. J Invest Dermatol 101: 132–136

    Article  PubMed  CAS  Google Scholar 

  17. Bergstresser PR, Elmets CA, Streilein JW (1983) Local effects of ultraviolet radiation on immune function in mice. In: Parrish JA (ed) The effect of ultraviolet light on the immune system. Johnson and Johnson, Skilwell, pp 73–86

    Google Scholar 

  18. Elmets CA, Bergstresser PR, Tigelaar RE, Wood PJ, Streilein JW (1983) Analysis of the mechanism of unresponsiveness produced by haptens painted on the skin exposed to low dose UVB radiation. J Exp Med 158: 781–794

    Article  PubMed  CAS  Google Scholar 

  19. Howie SEM, Ross JA, Norval M, Maingay JP (1987) In vivo modulation of antigen presentation generates Ts rather than T Dh in HSV-1 infection. Immunology 60: 419–423

    PubMed  CAS  Google Scholar 

  20. Noonan FP, De Fabo EC, Kripke ML (1981) Suppression of contact hypersensitivity by UV radiation and its relationship to UV-induced suppression of tumor immunity. Photochem Photobiol 34: 683–690

    PubMed  CAS  Google Scholar 

  21. Streilein JW, Grammer SF (1989) In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes. J Immunol 143: 3925–3933

    PubMed  CAS  Google Scholar 

  22. Moll M (1993) Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol Today 14: 383–386

    Article  PubMed  CAS  Google Scholar 

  23. Sinigaglia F (1994) The molecular basis of metal recognition by T cells. J Invest Dermatol 102: 398–401

    Article  PubMed  CAS  Google Scholar 

  24. Reis e Sousa C, Stahl PD, Austyn JM (1993) Phagocytosis of antigens by Langerhans cells in vitro. J Exp Med 178: 509–519

    Article  PubMed  CAS  Google Scholar 

  25. Luger TA, Sztein MB, Schmidt JA, Murphey P, Grabner G, Oppenheimer JJ (1983) Properties of murine and human epidermal cell-derived thymocyte-activating factor. Fed Proc 42: 2772–2776

    PubMed  CAS  Google Scholar 

  26. Streilein JW (1989) SALT: the next generation. In: Bos JD (ed) Skin immune system. CRC Press, Boca Raton, pp 26–45

    Google Scholar 

  27. Nickoloff BJ, Turka LA (1994) Immunological functions of non-professional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes. Immunol Today 15: 464–469

    Article  PubMed  CAS  Google Scholar 

  28. Hanau D, Fabre M, Schmitt DA, Stampf J-C, Garaud J-C, Bieber T, Grosshans E, Benezra C, Cazenave J-P (1987) Human epidermal Langerhans cells internalize by receptor-mediated endocytosis T6 (CD1 “NA1/34”) surface antigen. Birbeck granules are involved in the intracellular traffic of the T6 antigen. J Invest Dermatol 89: 172–177

    Article  PubMed  CAS  Google Scholar 

  29. Hanau D, Fabre M, Schmitt DA, Garaud J-C, Pauly G, Cazenave J-P (1988) Appearance of Birbeck granule-like structures in anti-T6 antibody-treated human epidermal Langerhans cells. J Invest Dermatol 90: 298–304

    Article  PubMed  CAS  Google Scholar 

  30. Bucana CD, Munn CG, Jasony M, Dunner K, Kripke ML (1992) Internalization of Ia molecules into Birbeck granule-like structures in murine dendritic cells. J Invest Dermatol 99: 365–373

    Article  PubMed  CAS  Google Scholar 

  31. Mommaas M, Mulder A, Vermeer BJ, Koning F (1994) Functional human epidermal Langerhans cells that lack Birbeck granules. J Invest Dermatol 103: 807–810

    Article  PubMed  CAS  Google Scholar 

  32. Kinnaird A, Peters SW, Foster JR, Kimber I (1989) Dendritic cell accumulation in draining lymph nodes during the induction phase of contact allergy in mice. Int Arch Allergy Appl Immunol 89: 202–210

    PubMed  CAS  Google Scholar 

  33. Moodycliffe AM, Kimber I, Norval M (1992) The effect of ultraviolet B irradiation and urocanic acid isomers on dendritic cell migration. Immunology 77: 394–399

    PubMed  CAS  Google Scholar 

  34. Hill S, Edwards AJ, Kimber I, Knight SC (1990) Systemic migration of dendritic cells during contact sensitization. Immunology 71: 277–281

    PubMed  CAS  Google Scholar 

  35. Bos JD, Kapsenberg ML (1993) The skin immune system: progress in cutaneous biology. Immunol Today 14: 75–78

    Article  PubMed  CAS  Google Scholar 

  36. Enk AH, Katz SI (1992) Early molecular events in the induction phase of contact hypersensitivity. Proc Natl Acad Sci USA 89: 1398–1402

    Article  PubMed  CAS  Google Scholar 

  37. Enk AH, Katz SI (1992) Early events in the induction phase of contact hypersensitivity. J Invest Dermatol 99: S39-S41

    Article  Google Scholar 

  38. Enk AH, Angeloni VL, Udey MC, Katz SI (1993) An essential role for Langerhans cell-derived IL-1 β in the initiation of primary immune responses in the skin. J Immunol 150: 3698–3704

    PubMed  CAS  Google Scholar 

  39. Köck A, Schwartz T, Kirnbauer R, Urbanski A, Perry P, Ansel JC, Luger TA (1990) Human keratinocytes are a source of tumour necrosis factor: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 172: 1609–1614

    Article  PubMed  Google Scholar 

  40. Kimber I, Cumberbatch M (1992) Stimulation of Langerhans’ cell migration by tumour necrosis factor-α (TNF-α). J Invest Dermatol 99: 48S-50S

    Article  PubMed  CAS  Google Scholar 

  41. Cumberbatch M, Fielding I, Kimber I (1994) Modulation of epidermal Langerhans’ cell frequency by tumour necrosis factor-α (TNF-α). Immunology 81: 395–401

    PubMed  CAS  Google Scholar 

  42. Moodycliffe AM, Kimber I, Norval M (1994) Role of tumour-necrosis factor-α in ultraviolet B light-induced dendritic cell migration and suppression of contact hypersensitivity. J Immunol 81: 79–84

    CAS  Google Scholar 

  43. Cumberbatch M, Kimber I (1995) Tumour necrosis factor-α is required for accumulation of dendritic cells in draining lymph nodes and for optimal contact sensitization. Immunology 84: 31–35

    PubMed  CAS  Google Scholar 

  44. Macpherson GG, Jenkins CD, Stein MJ, Edwards C (1995) Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF-α dependence. J Immunol 154: 1317–1322

    PubMed  CAS  Google Scholar 

  45. Streilein JW (1993) Sunlight and skin-associated lymphoid tissues (SALT): if UVB is the trigger and TNF-α is its mediator, what is the message? J Invest Dermatol 100: 47S-52S

    Article  PubMed  CAS  Google Scholar 

  46. Moodycliffe AM, Norval M, Kimber I, Simpson TJ (1993) Characterization of a monoclonal antibody tocis-urocanic acid: detection ofcis-urocanic acid in the serum of irradiated mice by immunoassay. Immunology 79: 667–672

    PubMed  CAS  Google Scholar 

  47. Lappin MB, El-Ghorr AA, Kimber I, Norval M (1995) The role ofcis-urocanic acid in UVB-induced immunosuppression. In: Banchereau J, Schmitt D (eds) Dendritic cells in fundamental and clinical immunology. Plenum Publishing, London (in press)

    Google Scholar 

  48. Kripke ML, Munn CG, Jeevan A, Tang J-M, Bucana C (1990) Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact hypersensitivity. J Immunol 145: 2833–2838

    PubMed  CAS  Google Scholar 

  49. Liddington MI, Hankins DF, Morris PJ, Austyn JM (1995) Direct observation of Langerhans cell migration from skin to lymphoid tissue. In: Banchereau J, Schmitt D (eds) Dendritic cells in fundamental and clinical immunology. Plenum Publishing, London (in press)

    Google Scholar 

  50. Macatonia SE, Edwards AJ, Knight SC (1986) Dendritic cells and the initiation of contact sensitivity to fluorescein isothiocyanate. Immunology 59: 509–514

    PubMed  CAS  Google Scholar 

  51. Hauser C, Yokoyama WM, Katz SI (1989) Characterization of primary T helper cell activation and T helper cell lines stimulated by hapten-modified, cultured Langerhans cells. J Invest Dermatol 93: 649–655

    Article  PubMed  CAS  Google Scholar 

  52. Aberer W, Kruisbeek AM, Shimada S, Katz SI (1986) In vivo treatment with anti-I-A antibodies: Differential effects on Ia antigens and antigen-presenting cell function of spleen cells and epidermal Langerhans cells. J Immunol 136: 830–836

    PubMed  CAS  Google Scholar 

  53. Budjoso R, Dutia BM, Young P, McConnell I (1989) Characterisation of sheep afferent lymph dendritic cells and their role in antigen challenge. J Exp Med 170: 1285–1302

    Article  Google Scholar 

  54. McKeever DJ, Awino E, Morrison WI (1992) Afferent lymph veiled cells prime CD4+ T cell responses in vivo Eur J Immunol 22: 3057–3061

    PubMed  CAS  Google Scholar 

  55. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC (1993) Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361: 82–85

    Article  PubMed  CAS  Google Scholar 

  56. Todd C, Hewitt SD, Kempenaar J, Noz K (1993) Co-culture of human melanocytes and keratinocytes in a skin equivalent model: effects of UV radiation. Arch Dermatol Res 285: 455–459

    Article  PubMed  CAS  Google Scholar 

  57. Ma J, Wang J-H, Guo Y-J, Sy M-S, Bigby M (1994) In vivo treatment with anti-ICAM-1 and anti-LFA-1 antibodies inhibits contact sensitization-induced migration of epidermal Langerhans cells to regional lymph nodes. Cell Immunol 158: 389–399

    Article  PubMed  CAS  Google Scholar 

  58. Aiba S, Nakagawa S, Ozawa H, Miyake K, Yagita H, Tagami H (1993) Up-regulation of α-4 integrin on activated Langerhans cells: analysis of adhesion molecules on Langerhans cells relating to their migration from skin to draining lymph nodes. J Invest Dermatol 100: 143–147

    Article  PubMed  CAS  Google Scholar 

  59. Omary MB, Trowbridge IS, Letarte M, Kagnoff MF, Isacke CM (1988) Structural heterogeneity of human pgp-1 and its relationship with p85. Immunogenetics 27: 460–464

    Article  PubMed  CAS  Google Scholar 

  60. Springer TA (1990) Adhesion receptors of the immune system. Nature 346: 425–433

    Article  PubMed  CAS  Google Scholar 

  61. Witmer-Pack MD, Valinsky J, Olivier W, Steinman RM (1988) Quantitation of surface antigens on cultured murine epidermal Langerhans cells: rapid and selective increase in the level of surface MHC products. J Invest Dermatol 90: 387–394

    Article  PubMed  CAS  Google Scholar 

  62. Heufler C, Koch F, Schuler G (1988) Granulocyte/macrophage colony-stimulating factor and interleukin-1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 167: 700–705

    Article  PubMed  CAS  Google Scholar 

  63. Grabbe S, Granstein R (1993) Modulation of antigen-presenting cell function as a potential regulatory mechanism in tumour-host immune reactions. In Vivo 7: 265–270

    PubMed  CAS  Google Scholar 

  64. Koch F, Heufler C, Kämpgen E, Schneeweiss D, Böck G, Schuler G (1990) Tumor necrosis factor α maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation. J Exp Med 171: 159–171

    Article  PubMed  CAS  Google Scholar 

  65. Caux C, Liu Y-J, Banchereau J (1994) Recent advances in the study of dendritic cells and follicular dendritic cells. Immunol Today 16: 2–4

    Article  Google Scholar 

  66. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360: 258–261

    Article  PubMed  CAS  Google Scholar 

  67. Sullivan, S, Bergstresser, PR, Tigelaar, RE, Streilein, JW (1986) Induction and regulation of contact hypersensitivity by resident, bone marrow derived, dendritic epidermal cells: Langerhans cells and Thy-1+ epidermal cells. J Immunol 137: 2460–2467

    PubMed  CAS  Google Scholar 

  68. Cumberbatch, M, Kimber, I (1990) Phenotypic characteristics of antigen-bearing dendritic cells in the draining lymph nodes of mice. Immunology 71: 404–410

    PubMed  CAS  Google Scholar 

  69. Cruz, PD Jr, Nixon-Fulton, J, Tigelaar, RE, Bergstresser, PR (1989) Disparate effects of in vitro low-dose UVB radiation on intravenous immunisation with purified epidermal cell subpopulations for the induction of contact hypersensitivity. J Invest Dermatol 90: 671–678

    Google Scholar 

  70. Streilein, JW (1989) Antigen-presenting cells in the induction of contact hypersensitivity in mice: evidence that Langerhans cells are sufficient but not required. J Invest Dermatol 93: 433–448

    Article  Google Scholar 

  71. Kurimoto, I, Arana, M, Streilein, JW (1994) Role of dermal cells from normal and ultraviolet B-damaged skin in induction of contact hypersensitivity. J Immunol 152: 3317–3323

    PubMed  CAS  Google Scholar 

  72. Baadsgaard, O, Lisby, S, Avnstorp, C, Clemmensen, O, Lange-Vejlsgaard, G (1990) Antigen-presenting activity of non-Langerhans epidermal cells in contact hypersensitivity reactions. Scand J Immunol 32: 217–224

    Article  PubMed  CAS  Google Scholar 

  73. Baadsgaard, O, Wulf, HC, Wantzin, GL, Cooper, KD (1987) UVB and UVC but not UVA potently induce the appearance of T6-DR+ antigen-presenting cells in human epidermis. J Invest Dermatol 89: 113–118

    Article  PubMed  CAS  Google Scholar 

  74. Baadsgaard, O, Fox, D, Cooper, KD (1988) Human epidermal cells from ultraviolet light-exposed skin potently activate autoreactive CD4+2H4+ suppressor inducer lymphocytes and CD8 suppressor/cytotoxic lymphocytes. J Immunol 142: 4213–4218

    Google Scholar 

  75. Cooper, KD, Neises, GR, Katz, SI (1986) Antigen-presenting OKM5+ melanophages appear in human epidermis after ultraviolet radiation. J Invest Dermatol 86: 363–370

    Article  PubMed  CAS  Google Scholar 

  76. Cooper, KD, Duraiswamy, N, Hammerberg, C, Allen, E, Kimbrough-Green, C, Dillon, W, Thomas, D (1993) Neutrophils, differentiated macrophages, and monocyte/macrophage antigen presenting cells infiltrate murine epidermis after injury. J Invest Dermatol 101: 155–163

    Article  PubMed  CAS  Google Scholar 

  77. Shimada, S, Caughman, SW, Sharrow, SO, Stephany, D, Katz, SI (1987) Enhanced antigen-presenting capacity of cultured Langerhans’ cells is associated with markedly increased expression of Ia antigen. J Immunol 139: 2551–2555

    PubMed  CAS  Google Scholar 

  78. Cumberbatch, M, Gould, SJ, Peters, SW, Kimber, I (1991) MHC class II expression by Langerhans cells and lymph node dendritic cells: possible evidence for maturation of Langerhans cells following contact sensitivity. Immunology 74: 414–419

    PubMed  CAS  Google Scholar 

  79. Cumberbatch, M, Peters, SW, Gould, SJ, Kimber, I (1992) Intercellular adhesion molecule-1 (ICAM-1) expression by lymph node dendritic cells: comparison with epidermal Langerhans cells. Immunol Lett 32: 105–110

    Article  PubMed  CAS  Google Scholar 

  80. Streilein, JW, Grammer, SF, Yoshikawa, T, Demidem, A, Vermeer, M (1990) Functional dichotomy between Langerhans cells that present antigen to naive and to memory/effector T lymphocytes. Immunol Rev 117: 159–183

    Article  PubMed  CAS  Google Scholar 

  81. Makgoba, MW, Saunders, ME, Shaw, S (1989) The CD2-LFA-3 and LFA-1-ICAM-1 pathways: relevance to T cell recognition. Immunol Today 10: 417–422

    Article  PubMed  CAS  Google Scholar 

  82. Inaba, K, Witmer, MD, Steinman, RM (1984) Clustering of dendritic cells, helper T lymphocytes, and histocompatibility B cells during primary immune responses in vitro. J Exp Med 160: 858–876

    Article  PubMed  CAS  Google Scholar 

  83. Inaba, K, Steinman, RM (1984) Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J Exp Med 160: 1717–1735

    Article  PubMed  CAS  Google Scholar 

  84. Inaba, K, Steinman, RM (1986) Accessory cell-T lymphocyte interactions. Antigen-dependent and-independent clustering. J Exp Med 163: 247–261

    Article  PubMed  CAS  Google Scholar 

  85. Austyn, JM, Weinstein, DE, Steinman, RM (1988) Clustering with dendritic cells precedes and is essential for T-cell proliferation in a mitogenesis model. Immunology 63: 691–696

    PubMed  CAS  Google Scholar 

  86. Inaba, K, Steinman, RM (1987) Monoclonal antibodies to LFA-1 and to CD4 inhibit mixed leucocyte reaction after the antigen-dependent clustering of dendritic cells and T lymphocytes. J Exp Med 165: 1403–1417

    Article  PubMed  CAS  Google Scholar 

  87. Dang, LH, Michalek, MT, Takei, B, Benaceraff, B, Rock, KL (1990) Role of ICAM-1 in antigen presentation demonstrated by ICAM-1 defective mutants. J Immunol 144: 4082–4091

    PubMed  CAS  Google Scholar 

  88. Van Seventer GA, Shimizu, Y, Horgan, KJ, Shaw, S (1992) The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol 144: 4579–4586

    Google Scholar 

  89. Lorenz, H-M, Harrer, T, Lagoo, AS, Baur, A, Eger, G, Kalden, JR (1994) CD45 monoclonal-antibody induced cell adhesion in peripheral blood mononuclear cells via LFA-1 and ICAM-1. Cell Immunol 147: 110–128

    Article  Google Scholar 

  90. June, CH, Bluestone, JA Nadler, LM, Thompson, CB (1994) The B7 and CD28 receptor families. Immunol Today 15: 321–331

    Article  PubMed  CAS  Google Scholar 

  91. Young, JW, Koulova, L, Soergel, SA, Clark, EA, Steinman, RM, Dupont, B (1992) The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro. J Clin Invest 90: 229–237

    Article  PubMed  CAS  Google Scholar 

  92. Azuma, M, Ito, D, Yagita, H, Okumura, K, Phillips, JH, Lanier, LL, Somoza, C (1993) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366: 76–79

    Article  PubMed  CAS  Google Scholar 

  93. Inaba, K, Witmer-Pack, MD, Inaba, M, Hathcock, S, Sakuta, H, Azuma, M, Yagita, H, Okumura, K, Linsley, PS, Ikehara, S, Muramatsu, H, Hodes, R, Steinman, RM (1994) The tissue distribution of the B7-2 costimulator on dendritic cells in situ and during maturation in vitro. J Exp Med 180: 1849–1860

    Article  PubMed  CAS  Google Scholar 

  94. Larsen, CP, Ritchie, SC, Pearson, TC, Linsley, PS, Lowry, RP (1992) Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations. J Exp Med 176: 1215–1220

    Article  PubMed  CAS  Google Scholar 

  95. Symington, FW, Brady, W, Linsley, PS (1993) Expression and function of B7 on human epidermal Langerhans cells. J Immunol 150: 1286–1295

    PubMed  CAS  Google Scholar 

  96. Hathcock, KS, Lazlo, G, Pucillo, C, Linsley, PS, Hodes, RJ (1994) Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 180: 631–640

    Article  PubMed  CAS  Google Scholar 

  97. Freeman, GJ, Gray, GS, Gimmi, CD, Lombard, DB, Liang-Ji, Z, White, M, Fingeroth, JD, Gribben, JD, Nadler, LM (1991) Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J Exp Med 174: 625–631

    Article  PubMed  CAS  Google Scholar 

  98. Lane, P, Gerhard, W, Hubele, S, Lanzavecchia, A, McConnell, F (1993) Expression and functional properties of mouse B7/BB1 using a fusion protein between mouse CTLA4 and human gamma 1. Immunology 80: 56–61

    PubMed  CAS  Google Scholar 

  99. Caux, C, Vanbervliet B Massacrier C, Azuma, M, Okumura, K, Lanier LL Banchereau J (1994) B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells. J Exp Med 180: 1841–1847

    Article  PubMed  CAS  Google Scholar 

  100. Levin D, Constant S, Pasqualini T, Flavell R, Bottomly K (1993) Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo. J Immunol 151: 6743–6750

    Google Scholar 

  101. Knight SC (1984) Veiled cell-dendritic cells of the peripheral lymph. Immunobiology 168: 349–361

    PubMed  CAS  Google Scholar 

  102. Macatonia SE, Knight SE, Edwards AJ, Griffiths S, Fryer P (1987) Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. J Exp Med 166: 1654–1667

    Article  PubMed  CAS  Google Scholar 

  103. Haslett C (1992) Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes Clin Sci 83: 639–648

    PubMed  CAS  Google Scholar 

  104. Mackay CR, Marston W Dudler L (1992) Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. Eur J Immunol 22: 2205–2210

    PubMed  CAS  Google Scholar 

  105. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clones. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357

    PubMed  CAS  Google Scholar 

  106. Issekutz TB, Stolz JM, Meide P van der (1988) Lymphocyte recruitment in delayed type hypersensitivity. J Immunol 140: 2989–2993

    PubMed  CAS  Google Scholar 

  107. Fong TAT, Mosmann TR (1989) The role of IFNγ in delayed type hypersensitivity mediated by Th1 clones. J Immunol 143: 2287–2293

    Google Scholar 

  108. Simon JC, Mosmann T, Edelbaum D, Schopf E, Bergstresser PR, Cruz PD Jr (1994) In vivo evidence that ultraviolet-B-induced suppression of allergic contact sensitivity is associated with functional inactivation of Th1 cells. Photodermatol Photoimmunol Photomed 10: 206–211

    PubMed  CAS  Google Scholar 

  109. Rivas JM, Ullrich SE (1994) The role of IL-4, IL-10, and TNF-α in the immune suppression induced by ultraviolet radiation. J Leukoc Biol 56: 769–775

    PubMed  CAS  Google Scholar 

  110. Bradley LM, Croft M, Swain SL (1993) T-cell memory: new perspectives. Immunol Today 14: 197–199

    Article  PubMed  CAS  Google Scholar 

  111. Beike MA (1989) Vascular endothelium in immunology and infectious disease. Rev Infect Dis 11: 273–283

    Google Scholar 

  112. Pober JS, Collins T, Gimbrone MA, Libby P, Reiss CS (1986) Inducible expression of class II MHC antigen on the immunogenicity of vascular endothelium. Transplantation 41: 141–146

    PubMed  CAS  Google Scholar 

  113. Tanaka Y, Adams DH, Shaw S (1993) Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunol Today 14: 111–115

    Article  PubMed  CAS  Google Scholar 

  114. Rowden G (1980) Expression of Ia antigens on Langerhans cells in mice guinea pigs, and man. J Invest Dermatol 75: 22–31

    Article  PubMed  CAS  Google Scholar 

  115. Crowley M, Inaba K, Witmer-Pack M, Steinman RM (1989) The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus. Cell Immunol 118: 108–125

    Article  PubMed  CAS  Google Scholar 

  116. Rowden G, Lewis MG, Sullivan AK (1977) Ia antigen expression on human epidermal Langerhans cells. Nature 268: 247–248

    Article  PubMed  CAS  Google Scholar 

  117. Takashima A, Xu S, Ariizumi K, Bergstresser PR (1995) Reciprocal regulation of growth and maturation in class II MHC-bearing antigen presenting cell lines derived from mouse epidermis. In: Banchereau J, Schmitt D (eds) Dendritic cells in fundamental and clinical immunology. Plenum Publishing, London (in press)

    Google Scholar 

  118. Wood GS, Freudenthal PS, Edinger A, Steinman RM, Warnke RA (1991) CD45 epitope mapping of human CD1a+ dendritic cells and peripheral blood dendritic cells. Am J Pathol 138: 1451–1459

    PubMed  CAS  Google Scholar 

  119. Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 161: 526–546

    Article  PubMed  CAS  Google Scholar 

  120. Tschachler E, Schuler G, Hutterer J, Leibl H, Wolff K, Stingl G (1983) Expression of thy-1 by murine epidermal cells. J Invest Dermatol 81: 282

    Article  PubMed  CAS  Google Scholar 

  121. Bergstresser PR, Tigelaar RE, Dees JH, Streilein JW (1983) Thy-1 antigen-bearing dendritic cells populate murine epidermis. J Invest Dermatol 81: 286–288

    Article  PubMed  CAS  Google Scholar 

  122. Kuziel WA, Takashima A, Bonyhadi M, Bergstresser PR, Allison JP, Tigelaar RE, Tucker PW (1987) Regulation of T-cell receptor γ chain RNA expression in murine thy-1+ dendritic cells. Nature 328: 263–266

    Article  PubMed  CAS  Google Scholar 

  123. De Panfilis G, Manara GC, Ferrari C, Torresani C (1990) Adhesion molecules on the plasma membrane of epidermal cells II. The intercellular adhesion molecule-1 is constitutively present on the cell surface of human resting Langerhans cells. J Invest Dermatol 94: 317–321

    Article  PubMed  Google Scholar 

  124. Cerio R, Griffeths CEM, Cooper KD Nicoloff BJ (1989) Characterization of factor X111a positive dermal Langerhans cells in normal and inflammed skin. Br J Dermatol 121: 421–431

    Article  PubMed  CAS  Google Scholar 

  125. Hart DN, Prickett TC (1993) Intercellular adhesion molecule-2 (ICAM-2) expression on human dendritic cells. Cell Immunol 148: 447–454

    Article  PubMed  CAS  Google Scholar 

  126. De Panfilis G, Soligo D, Manara GC, Ferrai C, Torresani C (1989) Adhesion molecules on the plasma membrane of epidermal cells. 1. Human resting Langerhans cells express two members of adherence-promoting CD11/CD18 family, namely, H-Mac-1 (CD11b/CD18) and gp 150,95 (CD11c/CD18). J Invest Dermatol 93: 60–69

    Article  PubMed  Google Scholar 

  127. Agger R, Crowley MT, Witmer-Packer MD (1990) The surface of dendritic cells in the mouse as studied with monoclonal antibodies. Int Rev Immunol 6: 89–101

    PubMed  CAS  Google Scholar 

  128. De Panfilis G, Manara GC, Ferrari C, Torresani C (1991) Adhesion molecules on the plasma membrane of epidermal cells. III. Keratinocytes and Langerhans cell constitutively express the lymphocyte function-associated antigen-3. J Invest Dermatol 96: 512–517

    Article  PubMed  Google Scholar 

  129. Staquet MJ, Lavarlet B, Dezutter-Dambuyant C, Schmitt D (1992) Human epidermal Langerhans cells express β1 integrins that mediate theiradhesion to laminin and fibronectin. J Invest Dermatol 99: S12-S14

    Article  Google Scholar 

  130. Zambruno G, Manca V, Santantonio ML, Soligo D, Giannetti A (1991) VLA protein expression on epidermal cells (keratinocytes, Langerhans cells, melanocytes): a light and electron microscope immunohistochemical study. Br J Dermatol 124: 135–145

    Article  PubMed  CAS  Google Scholar 

  131. Cooper KD, Gonzalez R, Ramos A, Meunier L, Taylor RS, Lee MS, Hammerberg C (1995) Distinction of dermal Langerhans cells from dermal macrophages by triple colour flowcytometric analysis of CD1a, CD1c, CD11c, Fcγ-RII and HLA-DR. Clin Res 40: A497

    Google Scholar 

  132. Enk AH, Katz SI (1994) Heat-stable antigen is an important costimulatory molecule on epidermal Langerhans’ cells. J Immunol 152: 3264–3270

    PubMed  CAS  Google Scholar 

  133. Blauvelt A, Katz SI, Udey MC (1995) Human Langerhans cells express E-cadherin. J Invest Dermatol 104: 293–296

    Article  PubMed  CAS  Google Scholar 

  134. Bieber T, de la Salle H, de la Salle C, Hanau D, Wollenberg A (1992) Expression of the high-affinity receptor for IgE (FcεR1) on human Langerhans cells: the end of the dogma. J Invest Dermatol 99: S10-S11

    Article  Google Scholar 

  135. Romani N, Lenz A, Glassel H, Stossel H, Stanzel U, Majic O, Fritsch P, Schuler G (1989) Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol 93: 600–609

    Article  PubMed  CAS  Google Scholar 

  136. Freudenthal PS, Steinman RM (1990) The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc Natl Acad Sci USA 87: 7698–7702

    Article  PubMed  CAS  Google Scholar 

  137. Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Law-less D, Steinman RM (1990) The distinct leukocytic integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J Exp Med 171: 1753–1771

    Article  PubMed  CAS  Google Scholar 

  138. Borkowski TA, Van Dyke BJ, Schwarzenberger K, McFarland VW, Farr AG, Udey MC (1994) Expression of E-cadherin by murine dendritic cells: E-cadherin as a dendritic cell differentiation antigen characteristic of epidermal Langerhans cells and related cells. Eur J Immunol 24: 2767–2774

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappin, M.B., Kimber, I. & Norval, M. The role of dendritic cells in cutaneous immunity. Arch Dermatol Res 288, 109–121 (1996). https://doi.org/10.1007/BF02505819

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02505819

Key words

Navigation