Skip to main content
Log in

Rats rapidly develop tolerance to the locomotor-inhibiting effects of the novel neuropeptide orphanin FQ

  • Physiology and Behavior
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined the effects of intracerebroventricular (i.c.v.) administration of orphanin FQ (OFQ) on locomotor activity in rats. The rats were habituated to locomotor-testing boxes and then injected i.c.v. with OFQ (0–10 nmoles). Acute injections of OFQ produced dose-orderly reductions in horizontal locomotion and rearing activity. This suppression of motor activity was characterized by a disruption of balance and muscle control. Within minutes of i.c.v. injection of the higher doses of OFQ, the rats exhibited flaccid muscle tone. They each lay in an atypical posture, pressing the abdomen against the floor, and splaying the hindlimbs. When these rats locomoted, their gate was unsteady. They wobbled from side to side, and frequently fell over. Repeated daily injections of OFQ resulted in a rapid development of tolerance to the OFQ-induced suppression of locomotion and rearing activity. Tolerance to the observed impairments of motor control were also apparent. In the rats that were repeatedly treated with the highest dose (10 nmol) of OFQ, tolerance to the motoric effects was still apparent after 7 days without OFQ treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bunzow, J. R., Saez, C., Mortrud, M., Bouvier, C., Williams, J. T., Low, M., and Grandy, D. K. 1994. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a μ, ∂ or κ opioid receptor type. FEBS Lett. 347:284–288.

    Article  PubMed  CAS  Google Scholar 

  2. Mollereau, C., Parmentier, M., Mailleux, P., Butour, J.-L., Moisand, C., Chalon, P., Caput, D., Vassart, G., and Meunier, J.-C. 1994. ORL1, a novel member of the opioid receptor family—Cloning, functional expression and localization. FEBS Lett. 341:33–38.

    Article  PubMed  CAS  Google Scholar 

  3. Wick, M. J., Minnerath, S. R., Lin, X., Elde, R., Law, P.-Y., and Loh, H. H. 1994. Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned μ, ∂, and κ opioid receptors. Molec. Brain Res. 27:37–44.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, Y., Fan, Y., Liu, J., Mestek, A., Tian, M., Kozak, C. A., and Yu, L. 1994. Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett. 347:279–283.

    Article  PubMed  CAS  Google Scholar 

  5. Fukuda, K., Kato, S., Mori, K., Nishi, M., Takeshima, H., Iwabe, N., Miyata, T., Houtani, T., and Sugimoto, T. 1994. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett. 343:42–46.

    Article  PubMed  CAS  Google Scholar 

  6. Lachowicz, J. E., Shen, Y., Monsma, F. J., Jr., and Sibley, D. R. 1995. Molecular cloning of a novel G protein-coupled receptor related to the opiate receptor family. J. Neurochem. 64:34–40.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, J. B., Johnson, P. S., Imai, Y., Persico, A. M., Ozenberger, B. A., Eppler, C. M., and Uhl, G. R. 1994. cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett. 348:75–79.

    Article  PubMed  CAS  Google Scholar 

  8. Nishi, M., Takeshima, H., Mori, M., Nakagawara, K.-I., and Takeuchi, T. 1994. Structure and chromosomal mapping of genes for the mouse κ-opioid receptor and an opioid receptor homologue (MOR-C). Biochem. Biophys. Res. Commun. 205:1353–1357.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, Y., Mestek, A., Liu, J., Hurley, J. A., and Yu, L. 1993. Molecular cloning and functional expression of a μ-opioid receptor from rat brain. Molecular Pharmacology 44:8–12.

    PubMed  CAS  Google Scholar 

  10. Minami, M., Onogi, T., Toya, T., Katao, Y., Hosoi, Y., Maekawa, K., Katsumata, S., Yabuuchi, K., and Satoh, M. 1994. Molecular cloning and in situ hybridization histochemistry for rat μ-opioid receptor. Neurosci. Res. 18:315–322.

    Article  PubMed  CAS  Google Scholar 

  11. Thompson, R. C., Mansour, A., Akil, H., and Watson, S. J. 1993. Cloning and pharmacological characterization of a rat μ opioid receptor. Neuron 11:903–913.

    Article  PubMed  CAS  Google Scholar 

  12. Evans, C. J., Keith, D. E., Jr., Morrison, H., Magendzo, K., and Edwards, R. H. 1992. Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955.

    Article  PubMed  CAS  Google Scholar 

  13. Kieffer, B. L., Befort, K., Gaveriaux-Ruff, C., and Hirth, C. G. 1992. The ∂-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. U.S.A. 89:12048–12052.

    Article  PubMed  CAS  Google Scholar 

  14. Meng, F., Xie, G.-X., Thompson, R. C., Mansour, A., Goldstein, A., Watson, S. J., and Akil, H. 1993. Cloning and pharmacological characterization of a rat κ opioid receptor. Proc. Natl. Acad. Sci. U.S.A. 90:9954–9958.

    Article  PubMed  CAS  Google Scholar 

  15. Minami, M., Toya, T., Katao, Y., Maekawa, K., Nakamura, S., Onogi, T., Kaneko, S., and Satoh, M. 1993. Cloning and expression of a cDNA for the rat κ-opioid receptor. FEBS Lett. 329:291–295.

    Article  PubMed  CAS  Google Scholar 

  16. Reinscheid, R. K., Nothacker, H.-P., Bourson, A., Ardati, A., Henningsen, R. A., Bunzow, J. R., Grandy, D. K., Langen, H., Monsma, F. J., Jr., and Civelli, O. 1995. Orphanin FQ: A neuropeptide that activates an opioidlike G-protein-coupled receptor. Science 270:792–794.

    Article  PubMed  CAS  Google Scholar 

  17. Meunier, J.-C., Mollereau, C., Toll, L., Suaudeau, C., Moisand, C., Alvinerie, P., Butour, J.-C., Guillemot, J.-C., Ferrara, P., Monsarrat, B., Mazargull, H., Vassart, G., Parmentier, M., and Costentin, J. 1995. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535.

    Article  PubMed  CAS  Google Scholar 

  18. Devine, D. P., Reinscheid, R., Monsma, F., Civelli, O., and Akil, H. 1996. The novel neuropeptide orphanin FQ fails to produce conditioned place preference or aversion. Brain Res. 727:225–229.

    Article  PubMed  CAS  Google Scholar 

  19. Shuster, L., Webster, G. W., and Yu, G. 1975. Increased running response to morphine in morphine-pretreated mice. J. Pharmacol. Exp. Ther. 192:64–72.

    PubMed  CAS  Google Scholar 

  20. Johnson, D. W., and Glick, S. D. 1993. Dopamine release and metabolism in nucleus accumbens and striatum of morphine-tolerant and nontolerant rats. Pharmacol. Biochem. Behav. 46:341–347.

    Article  PubMed  CAS  Google Scholar 

  21. Di Chiara, G., and Imperato, A. 1988. Opposite effects ofmu andkappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J. Pharmacol. Exp. Ther. 244:1067–1080.

    PubMed  Google Scholar 

  22. Amalric, M., and Koob, G. F. 1985. Low doses of methylnaloxonium in the nucleus accumbens antagonize hyperactivity induced by heroin in the rat. Pharmacol. Biochem. Behav. 23:411–415.

    Article  PubMed  CAS  Google Scholar 

  23. Meyer, M. E., and Meyer, M. E. 1993. Behavioral effects of opioid peptide agonists DAMGO, DPDPE, and DAKLI on locomotor activities. Pharmacol. Biochem. Behav. 45:315–320.

    Article  PubMed  CAS  Google Scholar 

  24. Meyer, M. E., McLaurin, B. I., and Meyer, M. E. 1995. DALDA (H-Tyr-D-Arg-Phe-Lys-NH2), a potent μ-opioid peptide agonist, affects various patterns of locomotor activities. Pharmacol. Biochem. Behav. 51:149–151.

    Article  PubMed  CAS  Google Scholar 

  25. Chang, K.-J., Rigdon, G. C., Howard, J. L., and McNutt, R. W. 1993. A novel, potent and selective nonpeptidicdelta opioid receptor agonist BW373U86. J. Pharmacol. Exp. Ther. 267:852–857.

    PubMed  CAS  Google Scholar 

  26. Michael-Titus, A., Dourmap, N., and Costentin, J. 1989. Mu and delta opioid receptors control differently the horizontal and vertical components of locomotor activity in mice. Neuropeptid. 13:235–242.

    Article  CAS  Google Scholar 

  27. Ukai, M., Yamada, S., and Kameyama, T. 1984. Naloxone reverses the inhibitory effects of dynorphin A on motor activity in the mouse. Pharmacol. Biochem. Behav. 20:815–818.

    Article  PubMed  CAS  Google Scholar 

  28. Trujillo, K. A., and Akil, H. 1991. Opioid and non-opioid behavioral actions of dynorphin A and the dynorphin analogue DAKLI. NIDA Res. Mono. 105:397–398.

    Google Scholar 

  29. Leyton, M., and Stewart, J. 1992. The stimulation of central κ opioid receptors decreases male sexual behavior and locomotor activity. Brain Res. 594:56–74.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson, A., and Cooper, S. J. 1986. An observational analysis of the effect of the selective kappa opioid agonist, U-50,488H, on feeding and related behaviours in the rat. Psychopharmacol. 90:217–221.

    CAS  Google Scholar 

  31. von Voightlander, P. F., Lahti, R. A., and Ludens, J. H. 1983. U-50,488: a selective and structurally novel non-mu (kappa) opioid agonist. J. Pharmacol. Exp. Ther. 224:7–12.

    Google Scholar 

  32. Post, R. M. 1980. Intermittent versus continuous stimulation: effect of time interval on the development of sensitization or tolerance. Life Sci. 26:1275–1282.

    Article  PubMed  CAS  Google Scholar 

  33. Kalivas, P. W., and Duffy, P. 1987. Sensitization to repeated morphine injection in the rat: possible involvement of A10 dopamine neurons. J. Pharmacol. Exp. Ther. 241:204–212.

    PubMed  CAS  Google Scholar 

  34. Bartoletti, M., Gaiardi, M., Gubellini, G., Bacchi, A., and Babbini, M. 1983. Long-term sensitization to the excitatory effects of morphine. A motility study in post-dependent rats. Neuropharmacol. 22:1193–1196.

    Article  CAS  Google Scholar 

  35. Moghaddam, B., and Bunney, B. S. 1989. Ionic composition of microdialysis perfusing solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J. Neurochem. 53:652–654.

    Article  PubMed  CAS  Google Scholar 

  36. Guyton, A. C. 1981. Textbook of Medical Physiology. Page 441. W. B. Saunders Co., Philadelphia.

    Google Scholar 

  37. Johnson, A. K., and Epstein, A. N. 1975. The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin. Brain Res. 86:399–418.

    Article  PubMed  CAS  Google Scholar 

  38. Calcagnetti, D. J., and Holtzman, S. G. 1991. Delta opioid antagonist, naltrindole, selectively blocks analgesia induced by DPDPE but not DAGO or morphine. Pharmacol. Biochem. Behav. 38:185–190.

    Article  PubMed  CAS  Google Scholar 

  39. Tuli, J. S., Smith, J. A., and Morton, D. B. 1995. Stress measurements in mice after transportation. Laboratory Animals 29:132–138.

    Article  PubMed  CAS  Google Scholar 

  40. Seggie, J. A., and Brown, G. M. 1975. Stress response patterns of plasma corticosterone, prolactin, and growth hormone in the rat, following handling or exposure to a novel environment. Can. J. Physiol. Pharmacol. 53:629–637.

    Article  PubMed  CAS  Google Scholar 

  41. Morimoto, A., Nakamori, T., Morimoto, K., Tan, N., and Murakami N. 1993. The central role of corticotrophin-releasing factor (CRF-41) in psychological stress in rats. J. Physiol. 460:221–229.

    PubMed  CAS  Google Scholar 

  42. Piazza, P. V., Deminière, J.-M., Le Moal, M., and Simon, H. 1989. Factors that predict individual vulnerability to amphetamine self-administration. Science 245:1511–1513.

    Article  PubMed  CAS  Google Scholar 

  43. Nothacker, H.-P., Reinscheid, R. K., Mansour, A., Henningsen, R. A., Ardati, A., Monsma, F. J., Jr., Watson, S. J., and Civelli, O. 1996. Primary structure and tissue distribution of the orphanin FQ precursor. Proc. Natl. Acad. Sci. U.S.A. (In Press)

  44. Kalivas, P. W., Taylor, S., and Miller, J. S. 1985. Sensitization to repeated enkephalin administration into the ventral tegmental area of the rat. 1. Behavioral characterization. J. Pharmacol. Exp. Ther. 235:537–543.

    PubMed  CAS  Google Scholar 

  45. Holmes, L. J., and Wise R. A. 1985. Contralateral circling induced by tegmental morphine: anatomical localization, pharmacological specificity, and phenomenology. Brain Res. 326:19–26.

    Article  PubMed  CAS  Google Scholar 

  46. Kelley, A. E., Stinus, L., and Iversen, S. D. 1980. Interactions between D-Ala-Metenkephalin, A10 dopaminergic neurones, and spontaneous behavior in the rat. Behav. Brain Res. 1:3–24.

    Article  PubMed  CAS  Google Scholar 

  47. Jenck, F., Bozarth, M., and Wise, R. A. 1988. Contraversive circling induced by ventral tegmental microinjections of moderate doses of morphine and [D-Pen2, D-Pen5]enkephalin. Brain Res. 450:382–386.

    Article  PubMed  CAS  Google Scholar 

  48. Daugé, V., Kalivas, P. W., Duffy, T., and Roques, B. P. 1992. Effect of inhibiting enkephalin catabolism in the VTA on motor activity and extracellular dopamine. Brain Res. 599:209–214.

    Article  PubMed  Google Scholar 

  49. Latimer, L. G., Duffy, P., and Kalivas, P. W. 1987.Mu opioid receptor involvement in enkephalin activation of dopamine neurons in the ventral tegmental area. J. Pharmacol. Exp. Ther. 241:328–337.

    PubMed  CAS  Google Scholar 

  50. Broekkamp, C. L. E., Phillips, A. G., and Cools, A. R. 1979. Stimulant effects of enkephalin microinjection into the dopaminergic A10 area. Nature 278:560–562.

    Article  PubMed  CAS  Google Scholar 

  51. Kalivas, P. W., Widerlöv, E., Stanley, D., Breese, G., and Prange, A. J., Jr. 1983. Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. J. Pharmacol. Exp. Ther. 227:229–237.

    PubMed  CAS  Google Scholar 

  52. Joyce, E. M., and Iversen, S. D. 1979. The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neurosci. Lett. 14:207–212.

    Article  PubMed  CAS  Google Scholar 

  53. Kalivas, P. W. 1985. Sensitization to repeated enkephalin administration into the ventral tegmental area of the rat. II. Involvement of the mesolimbic dopamine system. J. Pharmacol. Exp. Ther. 235:544–550.

    PubMed  CAS  Google Scholar 

  54. Vezina, P., and Stewart, J. 1984. Conditioning and place-specific sensitization of increases in activity induced by morphine in the VTA. Pharmacol. Biochem. Behav. 20:925–934.

    Article  PubMed  CAS  Google Scholar 

  55. Calenco-Choukroun, G., Daugé, V., Gacel, G., Féger, J., and Roques, B. P. 1991. Opioid ∂ agonists and endogenous enkephalins induce different emotional reactivity than m agonists after injection in the rat ventral tegmental area. Psychopharmacol. 103: 493–502.

    Article  CAS  Google Scholar 

  56. Kalivas, P. W., and Richardson-Carlson, R. 1986. Endogenous enkephalin modulation of dopaminergic neurons in the ventral tegmental area. Am. J. Physiol. 251:R243-R249.

    PubMed  CAS  Google Scholar 

  57. Vezina, P., and Stewart, J. 1989. The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine. Brain Res. 499:108–120.

    Article  PubMed  CAS  Google Scholar 

  58. Kalivas, P. W., and Duffy, P. 1990. Effect of acute and daily neurotensin and enkephalin treatments on extracellular dopamine in the nucleus accumbens. J. Neurosci. 10:2940–2949.

    PubMed  CAS  Google Scholar 

  59. Cunningham, S. T., and Kelley, A. E. 1992. Opiate infusion into nucleus accumbens: contrasting effects on motor activity and responding for conditioned reward. Brain Res. 588:104–114.

    Article  PubMed  CAS  Google Scholar 

  60. Churchill, L., and Kalivas, P. W. 1992. Dopamine depletion produces augmented behavioral responses to a mu-, but not delta-opioid receptor agonist in the nucleus accumbens: lack of a role for receptor upregulation. Synapse 11:47–57.

    Article  PubMed  CAS  Google Scholar 

  61. Meyer, M. E., McLaurin, B. I., Allen, M., and Meyer, M. E. 1994. Biphasic effects of intraacumbens μ-opioid peptide agonist DAMGO on locomotor activities. Pharmacol. Biochem. Behav. 47:827–831.

    Article  PubMed  CAS  Google Scholar 

  62. Daugé, V., Rossignol, P., and Roques, B. P. 1988. Comparison of the behavioural effects induced by administration in rat nucleus accumbens or nucleus caudatus of selective μ and ∂ opioid peptides or kelatorphan an inhibitor of enkephalin-degrading-enzymes. Psychopharmacol. 96:343–352.

    Article  Google Scholar 

  63. Austin, M. C., and Kalivas, P. W. 1990. Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum. J. Pharmacol. Exp. Ther. 252:1370–1377.

    PubMed  CAS  Google Scholar 

  64. Klitenick, M. A., and Kalivas, P. W. 1994. Behavioral and neurochemical studies of opioid effects in the pedunculopontine nucleus and mediodorsal thalamus. J. Pharmacol. Exp. Ther. 269:437–448.

    PubMed  CAS  Google Scholar 

  65. Klitenick, M. A., and Wirtshafter, D. 1995. Behavioral and neurochemical effects of opioids in the paramedian midbrain tegmentum including the median raphe nucleus and ventral tegmental area. Journal of Pharmacology and Experimental Therapeutics 273:327–336.

    PubMed  CAS  Google Scholar 

  66. Vezina, P., Kalivas, P. W., and Stewart, J. 1987. Sensitization occurs to the locomotor effects of morphine and the specific μ opioid receptor agonist, DAGO, administered repeatedly to the ventral tegmental area but not to the nucleus accumbens. Brain Res. 417:51–58.

    Article  PubMed  CAS  Google Scholar 

  67. Long, J. B., Mobley, W. C., and Holaday, J. W. 1988. Neurological dysfunction after intrathecal injection of dynorphin A (1–13) in the rat. I. Injection procedures modify pharmacological responses. J. Pharmacol. Exp. Ther. 246:1158–1166.

    PubMed  CAS  Google Scholar 

  68. Long, J. B., Petras, J. M., Mobley, W. C., and Holaday, J. W. 1988. Neurological dysfunction after intrathecal injection of dynorphin A (1–13) in the rat. II. Nonopioid mechanisms mediate loss of motor, sensory, and autonomic functions. J. Pharmacol. Exp. Ther. 246:1167–1174.

    PubMed  CAS  Google Scholar 

  69. Reinscheid, R. K., Ardati, A., Monsma, F. J., Jr., and Civelli, O. 1996. Structure-activity relationship studies on the novel neuropeptide orphanin FQ. J. Biol. Chem. 271:14163–14168.

    Article  PubMed  CAS  Google Scholar 

  70. Jacquet, Y. F., and Marks, N. 1976. The C-fragment of β-lipotropin: an endogenous neuroleptic or antipsychotogen? Science 194:632–635.

    Article  PubMed  CAS  Google Scholar 

  71. Bloom, F., Segal, D., Ling, N., and Guillemin, R. 1976. Endorphins: profound behavioral effects in rats suggest new etiological factors in mental illness. Science 194:630–632.

    Article  PubMed  CAS  Google Scholar 

  72. Segal, D. S., Brown, R. G., Bloom, F., Ling, N., and Guillemin, R. 1977. β-endorphin: endogenous opiate or neuroleptic? Science 198:411–414.

    Article  PubMed  CAS  Google Scholar 

  73. Chang, J.-K., and Fong, B. T. W. 1976. Opiate receptor affinities and behavioral effects of enkephalin: structure-activity relationship of ten synthetic peptide analogues. Life Sci. 18:1473–1482.

    Article  PubMed  CAS  Google Scholar 

  74. Büscher, H. H., Hill, R. C., Römer, D., Cardinaux, F., Closse, A., Hauser, D., and Pless J. 1976. Evidence for analgesic activity of enkephalin in the mouse. Nature 261:423–425.

    Article  PubMed  Google Scholar 

  75. Belluzzi, J. D., Grant, N., Garsky, V., Sarantakis, D., Wise, C. D., and Stein L. 1976. Analgesia induced in vivo by central administration of enkephalin in rat. Nature 260:625–626.

    Article  PubMed  CAS  Google Scholar 

  76. Deakin, J. F. W., Dostrovsky, J. O., and Smyth, D. G. 1980. Influence of N-terminal acetylation and C-terminal proteolysis on the analgesic activity of beta-endorphin. Biochem. J. 189:501–506.

    PubMed  CAS  Google Scholar 

  77. Akil, H., Young, E., Watson, S. J., and Coy, D. H. 1981. Opiate binding properties of naturally occurring N- and C-terminus modified beta-endorphins. Peptides 2:289–292.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devine, D.P., Taylor, L., Reinscheid, R.K. et al. Rats rapidly develop tolerance to the locomotor-inhibiting effects of the novel neuropeptide orphanin FQ. Neurochem Res 21, 1387–1396 (1996). https://doi.org/10.1007/BF02532380

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532380

Key Words

Navigation