Skip to main content
Log in

Metabolism-based anticancer drug design

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Many conventional anticancer drugs display relatively poor selectivity for neoplastic cells, in particular for solid tumors. Furthermore, expression or development of drug resistance, increased glutathione transferases as well as enhanced DNA repair decrease the efficacy of these drugs. Research efforts continue to overcome these problems by understanding these mechanisms and by developing more effective anticancer drugs. Cyclophosphamide is one of the most widely used alkylating anticancer agents. Because of its unique activation mechanism, numerous bioreversible prodrugs of phosphoramide mustard, the active species of cyclophosphamide, have been investigated in an attempt to improve the therapeutic index. Solid tumors are particularly resistant to radiation and chemotherapy. There has been considerable interest in designing drugs selective for hypoxic environments prevalent in solid tumors. Much of the work had been centered on nitroheterocyclics that utilize nitroreductase enzyme systems for their activation. In this article, recent developments of anticancer prodrug design are described with a particular emphasis on exploitation of selective metabolic processes for their activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Abele, R., Aapro, M. S., Haefliger, J-M. and Alberto, P., Phase I Study of Cyclophosphamide and Lysine Salt of Mafosfamide.Cancer Chemo. Pharmaco., 16, 182–183 (1986).

    CAS  Google Scholar 

  • Aiko, I., Owari, S. and Torigoe, M., Nitrogen mustard N-oxide and its effects on the Yoshida sarcoma.J. Pharm. Soc. (Japan), 72, 1297–1300 (1952).

    CAS  Google Scholar 

  • Alberts, D. S., Einspahr, J. G., Struck, R. F., Bignami, G., Young, L., Surwit, E. A. and Salmon, S. E., Comparative in vitro cytotoxicity of cyclophosphamide, its major active metabolites and the new oxazaphosphorine ASTA Z 7557 (INN mafosfamide).Inv. New Drugs, 2, 141–148 (1984).

    CAS  Google Scholar 

  • Anders, M. W., Ratnayake, J. H., Hanna, P. E. and Fuchs, J. A., Involvement of thioredoxin in sulfoxide reduction by mammalian tissues.Biochem. & Biophys. Res. Comm., 97 (3), 846–851 (1980).

    Article  CAS  Google Scholar 

  • Aymard, C., Seyer, L. and Cheftel, J., Enzymatic reduction of methionine sulfoxide. In vitro experiments with rat liver and kidney.Agric. Biol. Chem., 43, 1869–1872 (1979).

    CAS  Google Scholar 

  • Borch, R. F. and Canute, G. W., Synthesis and Antitumor Properties of Activated Cyclophosphamide Analogues.J. Med. Chem., 34, 3044–3052 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Borch, R. F. and Valente R. R., Synthesis, activation and cytotoxicity of aldophosphamide analogues.J. Med. Chem., 34, 3052–3058 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Boyd, V. L., Zon, G., Himes, V. L., Stalick, J. K., Mighell, A. D. and Secor, H. V., Synthesis and Antitumor Activity of Cyclophosphamide Analogues. 3. Preparation, Molecular Structure Determination, and Anticancer Screening of Racemic cis-and trans-4-Phenylcyclophosphamide.J. Med. Chem., 23, 372–375 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Brock, N., Comparative pharmacologic study in vitro and in vivo with cyclophosphamide (NSC-26271), cyclophosphamide metabolites, and plain nitrogen mustard compounds.Cancer Treat. Rep., 60, 301–307 (1976).

    PubMed  CAS  Google Scholar 

  • Brock, N. and Hohorst, H. J., The problem of specificity and selectivity of alkylating cytostaticis: Studies on N-2-chloroethylamido-oxazaphosphorines.Zeitschr. Krebsforsch. Klin. Onkol., 88, 185–215 (1977).

    CAS  Google Scholar 

  • Brown, J. M., Tumor hypoxia: problems and opportunities. InEncyclopedia of Cancer, Volume III; Bertino, J. R. Ed.; Academic Press: San Diego, Lonton; pp 1883–1898, 1997.

    Google Scholar 

  • Bruntsch, U., Groos, G., Hiller, T. A., Wandt, H., Tigges, F.-J. and Gallmeier, W. M., Phase-I Study of Mafosfamide-Cyclohexylamine (ASTA-Z-7557, NSC 345842) and Limited Phase-I Data on Mafosfamide-Lysine.Invest. New Drugs, 3, 293–296 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Colvin, M. and Hilton, J., In Mechanisms of Drug Resistance in Neoplastic Cells; Wooley, P. V.; Tew, K. D., Eds.: Academic Press: New York; p 161–171, 1988.

    Google Scholar 

  • Connors, T. A. and Whisson, M. E., Cure of mice bearing advanced plasma cell tumors with aniline mustard: The relationship between glucurinidase activity and tumor sensitivity.Nature, 210, 866–867 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Connors, T. A., Farmer, P. B., Foster, A.B., Gilsenan, A. M., Jarman, M. and Tisdale, M. J., Metabolism of aniline mustard.Biochem. Pharmacol., 22, 1971–1980 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Connors, T. A., Cox, P. J., Farmer, P. B., Foster, A. B. and Jarman, M., Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide.Biochem. Pharmacol., 23, 115–129 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Connors, T. A., In “Structure-activity Relationships of Antitumour Agents”; Reinhoudt, D. N.; Connors, T. A.; Pinedo, H. M.; van den Poll, K. W., Eds.; The Hague: Martinus Nijhoff.; pp 47–57 (1983).

    Google Scholar 

  • Cowan, D. S. M., Kanagasabapathy, V. M., McClelland, R. A. and Rauth, A. M., Mechanistic studies of enhanced in vitro radiosensitization and hypoxic cell cytotoxicity by targeting radiosensitizers to DNA via intercalation.Int. J. Radiation Oncology Biol Phys., 22, 541–544 (1992).

    CAS  Google Scholar 

  • Cox, P. J., Cyclophosphamide cystitis-identification of acrolein as the causative agent.Biochem. Pharmacol., 28, 2045–2049 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Davis, P. J. and Guenthner, L. E., Sulindac oxidation/reduction by microbial cultures; microbial models for mammalian metabolism.Xenobiotica, 15, 845–857 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Denny, W. A. and Wilson, W. R., Considerations for the design of nitrophenyl mustards as agents with selective toxicity for hypoxic tumor cells.J. Med. Chem., 29 (6), 879–887 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Denny, W. A., Atwell, G. J., Anderson, R. F. and Wilson, W. R., Hypoxia-selective antitumor agents: 4. Relationships between structure, physicochemical properties, and hypoxia-selective cytotoxicity for nitracrine analogues with varying side chains: The “Iminoacridan Hypothesis”.J. Med. Chem., 33, 1288–1295 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Denny, W. A., Roberts, P. B., Anderson, R. F., Brown, J. M. and Wilson, W. R., NLA-1: A 2-nitroimidazole radiosensitizer targeted to DNA by intercalation.Int. J. Radiation Oncology Biol. Phys., 22, 553–556 (1992).

    CAS  Google Scholar 

  • Domeyer, B. E. and Sladek, N. E., Kinetics of cyclophosphamide biotransformationin vivo.Cancer Res., 40, 174–180 (1980).

    PubMed  CAS  Google Scholar 

  • Draeger, U., Peter, G. and Hohorst, H. J., Deactivation of cyclophosphamide (NSC-26271) metabolites by sulfhydryl compounds.Cancer Treat. Rep., 60, 355–359 (1976).

    PubMed  CAS  Google Scholar 

  • Duggan, D. E., Hooke, K. F., Noll, R. M., Hucker, H. B. and Van Arman, C. G., Comparative disposition of sulindac and metabolites in five species.Biochem. Pharmacol., 27, 2311–2320 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Engel, T. W., Zon, G. and Egan, W.,31P NMR kinetic studies of the intra- and intermolecular alkylation chemistry of phosphoramide mustard and cognateN-phosphorylated derivatives ofN,N-bis(2-chloroethyl) amine.J. Med. Chem., 25, 1347–1357 (1982).

    Article  Google Scholar 

  • Fielden, E. M., Adams, G. E., Cole, S., Naylor, M. A., O'Neill, P., Stephens, M. A. and Stratford, I. J., Assessment of a range of novel nitro-aromatic radiosensitizers and bioreductive drugs.Int. J. Radiation Oncology Biol. Phys., 22, 707–711 (1992).

    CAS  Google Scholar 

  • Firestone, A., Mulcahy, R. T. and Borch, R. F., Nitroheterocycle reduction as a paradigm for intramolecular catalysis of drug delivery to hypoxic cells.J. Med. Chem., 34, 2933–2935 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Friedman, O. M., Wodinsky, I. and Myles, A., Cyclophosphamide (NSC-26271)-related phosphoramide mustardsrecent advances and historical perspective.Cancer Treat. Rep., 60, 337–346 (1976).

    PubMed  CAS  Google Scholar 

  • Gomori, G., Histochemical demonstration of sites of phosphoramidase activity.Proc Soc Exp Biol Med, 69, 407–409 (1948).

    PubMed  CAS  Google Scholar 

  • Hemminki, K., Binding of metabolites of cyclophosphamide to DNA in a rat liver microsomal system and in vivo in mice.Cancer Res., 45, 4237–4243 (1985).

    PubMed  CAS  Google Scholar 

  • Hilton, J., Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia.Cancer Res., 44, 5156–5160 (1984).

    PubMed  CAS  Google Scholar 

  • Hipkens, J. H., Struck, R. F. and Gurtoo, H. L., Role of aldehyde dehydrogenase in the metabolism-dependent biological activity of cyclophosphamide.Cancer Res., 41, 3571–3583 (1981).

    PubMed  CAS  Google Scholar 

  • Jardine, I., Fenselau, C., Appler, M., Kan, M.-N., Brundrett, R. B. and Colvin, M., Quantitation by gas chromatography-chemical ionization mass spectrometry of cyclophosphamide, phosphoramide mustard, and nornitrogen mustard in the plasma and urine of patients receiving cyclophosphamide therapy.Cancer Res., 38, 408–415 (1978).

    PubMed  CAS  Google Scholar 

  • Kennedy, K. A., Teicher, B. A., Rockwell, S. and Sartorelli, A. C., The hypoxic tumor cell: A target for selective cancer chemotherapy.Biochem. Pharmacol., 29, 1–8 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, S. and Tatsumi, K., A sulfoxide-reducing enzyme system consisting of aldehyde oxidase and xanthine oxidase — a new electron transfer system.Chem. Pharm. Bull. (Japan), 31(2), 760–763 (1983).

    CAS  Google Scholar 

  • won, C.-H., Borch, R. F., Engel, J. and Niemeyer, U., Activation Mechanisms of Mafosfamide and the Role of Thiols in Cyclophosphamide Metabolism.J. Med. Chem., 30, 395–399 (1987).

    Article  Google Scholar 

  • Kwon, C.-H., Moon, K.-Y., Baturay, N. and Shirota, F. N., Chemically stable, lipophilic prodrugs of phosphoramide mustard as potential anticancer agents.J. Med. Chem., 34, 588–592 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C.-H., Blanco, D. R. and Baturay, N., p-(Methylsulfinyl)phenyl nitrogen mustard as a novel bioreductive prodrug selective against hypoxic tumors.J. Med. Chem., 35, 2137–2139 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kwon, C.-H. Manuscripts in preparation (1999a and 1999b).

  • Lartigau, E. and Guichard, M., The effect of tirapazamine (SR-4233) alone or combined with chemotherapeutic agents on xenografted human tumours.British Journal of Cancer, 73, 1480–1485 (1996).

    PubMed  CAS  Google Scholar 

  • Lee, S. C. and Renwick, A. G., Sulphoxide reduction by rat and rabbit tissues in vitro.Biochem. Pharmacol., 49, 1557–1565 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Low, J. E., Borch, R. F. and Sladek, N. E., Conversion of 4-hydroperoxycyclophosphamide and 4-hydroxycyclophosphamide to phosphoramide mustard and acrolein mediated by bifunctional catalysts.Cancer Res., 42, 830–837 (1982).

    PubMed  CAS  Google Scholar 

  • Ludeman, S. M., Boyd, V. L., Regan, J. B., Gallo, K. A., Zon, G. and Ishii, K., Synthesis and Antitumor Activity of Cyclophosphamide Analogues. 4. Preparation, Kinetics Studies, and Anticancer Screening of “Phenylketophosphamide” and Similar Compounds Related to the Cyclophosphamide Metabolite Aldophosphamide.J. Med. Chem., 29, 716–727 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Lyttle, M. H., Satyam, A., Hocker, M. D., Bauer, K. E., Caldwell, C. G., Hui, H. C., Morgan, A. S., Mergia, A. and Kauvar, L. M., Glutathione-S-transferase activates novel alkylating agents.J. Med. Chem., 37, 1501–1507 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Mazel, P., Katzen, J., Skolnick, P. and Shargel, L., Reduction of sulfoxide by hepatic enzymes.Fed. Proc. Fed. Am. Soc. Exp. Biol., 28, 546 (1969).

    Google Scholar 

  • Michinton, A. I., Lemmon, M. J., Tracy, M., Pollart, D. J., Martinez, A. P., Tosto, L. M. and Brown, J. M., Secondgeneration 1,2,4-benzotriazine 1,4-di-N-oxide bioreductive anti-tumor agents: pharmacology and activity in vitro and in vivo.Int. J. Radiation Oncology Biol. Phys., 22, 701–705 (1992).

    Google Scholar 

  • Moon, K.-Y., Shirota, F. N., Baturay, N. and Kwon, C.-H., Chemically Stable N-Methyl-4-(alkylthio) cyclophosphamide Derivatives as Prodrugs of 4-Hydroxycyclophosphamide.J. Med. Chem., 38, 848–851 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Moon, K.-Y. and Kwon, C.-H., N3-Methyl-Mafosfamide as a Chemically Stable, Alternative Prodrug of Mafosfamide.Bioorg Med. Chem. Letters, 8: 1673–1678, (1998).

    Article  CAS  Google Scholar 

  • Oostveen, E. A. and Speckamp, W. N., Mitomycin analogues, I. Indoloquinones as (potential) bisalkylating agents.Tetrahedron, 43, 255–262 (1987).

    Article  CAS  Google Scholar 

  • Palmer, B. D., Wilson, W. R. and Denny, W. A., Nitro analogues of chlorambucil as potential hypoxiaselective anti-tumor drugs.Anti-cancer Drug Design, 5, 337–349 (1990a).

    PubMed  CAS  Google Scholar 

  • Palmer, B. D., Wilson, W. R., Pullen S. M. and Denny, W. A., Hypoxia-selective antitumor agents. 3. Relationships between structure and cytotoxicity against cultured tumor cells for substituted N,N-Bis(2-chloroethyl) anilines.J. Med. Chem., 33, 112–121 (1990b).

    Article  PubMed  CAS  Google Scholar 

  • Palmer, B. D., Wilson, W. R., Cliffe, S. and Denny, W. A., Hypoxia-slective antitumor agents. 5. Synthesis of watersoluble nitroaniline mustards with selective cytotoxicity for hypoxic mammalian cells.J. Med. Chem., 35, 3214–3222 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Pohl, J., Asta-Z-7557, Summary for Investigators. Preclinical Report, Asta-Werke, 1983.

  • Pohl, J., Hilgard, P., Jahn, W. and Zechel, H. J., Experimental Toxicology of ASTAZ 7557 (INN mafosfamide).Invest. New Drugs, 2, 201–206 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Poste, G., Pathogenesis of metastatic disease. Implications for current therapy and for the development of new therapeutic strategies.Cancer Treat. Rep., 70, 183–199 (1986).

    PubMed  CAS  Google Scholar 

  • Powers, J. F. and Sladek, N. E., Cytotoxic activity relative to 4-hydroxycyclophosphamide and phosphoramide mustard concentrations in the plasma of cyclophosphamide-treated rats.Cancer Res., 43, 1101–1106 (1983).

    PubMed  CAS  Google Scholar 

  • Renwick, A. G., Sulfoxides and sulfones. In Sulfurcontainingdrugs and related organic compounds vol. 1 Part B; Damani, L. A., Ed. Ellis Horwood Ltd., London, 134–154 1989.

    Google Scholar 

  • Sartorelli, A. C., Therapeutic attack of hypoxic ells of solid tumors: Presidential Address.Cancer Res., 48, 775–778 (1988).

    PubMed  CAS  Google Scholar 

  • Shibata, T., Shibamoto, Y., Sasai, K., Oya, N., Murata, R., Takagi, T., Hiraoka, M. and Abe, M., Comparison of in vivo efficacy of hypoxic cytotoxin tirapazamine and hypoxic cell radiosensitizer KU-2285 in combination with single and fractinated irradiation.Jpn. J. Cancer Res., 87, 98–104 (1996).

    PubMed  CAS  Google Scholar 

  • Sladek, N. E. and Landkamer, G. J., Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphosphorineresistant L1210 and cross-linking agent-resistant P388 cell lines.Cancer Res., 45, 1549–1555 (1985).

    PubMed  CAS  Google Scholar 

  • Sladek, N. E., Low, J. E. and Landkamer, G. J., Collateral sensitivity to cross-linking agents exhibited by cultured L1210 cells resistant to oxazaphosphorines.Cancer Res., 45, 625–629 (1985).

    PubMed  CAS  Google Scholar 

  • Sladek, N. E., Metabolism of oxazaphosphorines.Pharmacol. Ther., 37, 301–355 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Sladek, N. E., Manthey, C. L., Maki, P. A., Zhang, Z. and Landkamer, G. J., Xenobiotic oxidation catalyzed by aldehyde dehydrogenases.Drug Metab. Rev., 20 (2–4), 697–720 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Sladek, N. E., Oxazaphosphorine-specific acquired cellular resistance. In: Teicher B.A., ed.Drug Resistance in Oncology. New York: Marcel Dekker., pp. 375–410, 1993.

    Google Scholar 

  • Smigiero, L. and Kohn, K. W., Mechanisms of DNA strand breakage and interstrand cross-linking by diaziridinylbenzoquinone (diaziquone) in isolated nuclei.Cancer Res., 44, 4453–4457 (1984).

    Google Scholar 

  • Sourkes, T. L. and Tano, Y., Reduction of methionine sulfoxides by Escherichia coli.Arch. Biochem. Biophys., 42, 321–326 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Stec, W. J., Cyclophosphamide and Its Congeners.J. Organophosphorous Chem., 13, 145–174 (1982).

    Article  CAS  Google Scholar 

  • Stratford, I. J., O'Neill, P., Sheldon, P. W., Silver, A. R. J., Walling, J. M. and Adams, G. E. RSU 1069. A nitroimidazole containing an aziridine group.Biochem. Pharm., 35(1), 105–109 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Struck, R. F., Kirk, M. C., Witt, M. H. and Laster, W. R. Jr., Isolation and mass spectral identification of blood metabolites of cyclophosphamide: Evidence for phosphoramide mustard as the biologically active metabolite.Biomed. Mass Spectrom., 2, 46–52 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Struck, R. F., Dykes, D. J., Corbett, T. H., Suling, W. J. and Trader, M. W., Isophosphoramide mustard, a metabolite of ifosfamide with activity against murine tumours comparable to cyclophosphamide.Br. J. Cancer, 47, 15–26 (1983).

    PubMed  CAS  Google Scholar 

  • Suto, MJ, Radiosensitizers.Ann. Rep. Med. Chem. 26: 151–160 (1991).

    Article  CAS  Google Scholar 

  • Tatsumi, K., Kitamura, S. and Yamada, H., Involvement of liver aldehyde oxidase in sulfoxide reduction.Chem. Pharm. Bull. (Japan), 30(12), 4585–4588 (1982).

    CAS  Google Scholar 

  • Tew, K. D. and Clapper, M. L., Glutathione-S-transferase and anticancer drug resistance.In Mechanism of Drug resistance in Neoplastic Cells; Wooley, P.V., Tew, K.D., Eds.; Academic Press: Orlando, FL; pp 141–159, 1987.

    Google Scholar 

  • Tomasz, M., Lipman, R., Chowdary, D., Pawlak, J., Verdine, G. L. and Nakanish, K., Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA.Science, 235, 1204–1208 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Vu, V. T., Fenselau, C. C. and Colvin, M. Identification of three alkylated nucleotide adducts from the reaction of guanosine 5′-monophosphate with phosphoramide mustard.J. Am. Chem. Soc., 103, 7362–7364 (1981).

    Article  CAS  Google Scholar 

  • Walton, M. I., Wolf, C. R. and Workman, P., Molecular enzymology of the bioactivation of hypoxic cell cytotoxins.Int. J. Radiat. Oncol. Biol. Phys., 16, 983–986 (1989).

    PubMed  CAS  Google Scholar 

  • Walton, M. I. and Workman, P., Enzymology of the reductive bioactivation of SR 4233. A novel benzotriazine di-N-oxide hypoxic cell cytotoxin.Biochem. Pharmacol., 39, 1735–1742 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. and Farquhar, D., Aldophosphamide acetal diacetate and structural analogues: synthesis and cytotoxicity studies.J. Med. Chem., 34, 197–203 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Warren, B. A., In Tumor Blood Circulation. Angiogenesis, vascular morphology and blood flow in experimental and humantumors. Peterson, H.-I., Ed. CRC Press: Boca Raton, FI, 1–47, 1978.

    Google Scholar 

  • White, I. N. H., Suzanger, M., Mattocks, A. R., Bailey, E., Farmer, P. B. and Conners, T. A., Reduction of nitromin to nitrogen mustard: unsceduled DNA synthesis in aerobic or anaerobic rat hepatocytes, JB1, BL8 and Walker carcinoma cell lines.Carcinogenesis, 10, 2113 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, W. R., Anderson, R. F. and Denny, W. A., Hypoxia-selective antitumor agents. 1. Relationships between structure, redox properties and hypoxia-selective cytotoxicity for 4-substituted derivatives of nitracrine.J. Med. Chem., 32, 23–30 (1989a).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, W. R., Thompson, L. H., Anderson, R. F. and Denny, W. A., Hypoxia-selective antitumor agents. 2. Electronic effects of 4-substituents on the mechanisms of cytotoxicty and metabolic stability of nitracrine derivatives.J. Med. Chem., 32, 31–38 (1989b).

    Article  PubMed  CAS  Google Scholar 

  • Workman, P. and Walton, M. I., Enzyme-directed bioreductive drug development In “Selective activation of drugs by redox process”, Adams, G. E.; Breccia, A.; Fielden, E. M.; Wardman, P. eds., New York, NY, Plenum; pp. 173–191, 1991.

    Google Scholar 

  • Workman, P., Bioreductive mechanisms.Int. J. Radiat. Oncol. Biol. Phys., 22, 631–637 (1992).

    PubMed  CAS  Google Scholar 

  • Wrabetz, E., Peter, G. and Hohorst, H.-J., Does acrolein contribute to the cytotoxicity of cyclophosphamide?Cancer Res. Clin. Oncol., 98, 119–126 (1980).

    Article  CAS  Google Scholar 

  • Young, C. W., Yogoda, A., Bitlar, E. S., Smith, S. W., Gradstald, H. and Whitmore, W., Therapeutic trial of aniline mustard in patients with advanced cancer. Comparison of the therapeutic response with cytochemical assessment of tumor cell β-glucuronidase activity.Cancer, 38, 1887–1895 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara, S. and Tatusumi, K., Guinea pig liver aldehyde oxidase as a sulfoxide reductase: its purification and characterization.Arch. Biochim. Biophys., 242, 213–224 (1985).

    Article  CAS  Google Scholar 

  • Zon, G., Cyclophosphamide Analogues.Prog. Med. Chem., 19, 205–246 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul-Hoon Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, CH. Metabolism-based anticancer drug design. Arch Pharm Res 22, 533–541 (1999). https://doi.org/10.1007/BF02975322

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02975322

Key words

Navigation