Skip to main content
Log in

Action of botulinum neurotoxins in the central nervous system: Antiepileptic effects

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Botulinum neurotoxins (BoNTs) are metalloprote-ases which act on nerve terminals and cause a long-lasting inhibition of neurotransmitter release. BoNTs act by cleaving core proteins of the neurotransmitter release machinery, namely the SNARE (soluble NSF-attachment receptors) proteins. The action of BoNTs in the peripheral nervous system (PNS) has been extensively documented, and knowledge gained in this field laid the foundations for the use of BoNTs in human disorders characterized by hyperfunction of peripheral nerve terminals. Much less is known about the action of BoNTs on the central nervous system (CNS).In vitro studies have demonstrated that BoNTs can affect the release of several neurotransmitters from central neurons. Recent studies have provided the first characterization of the effects of BoNT/E on CNS neurons in vivo. It has been shown that BoNT/E injected into the rat hippocampus inhibits glutamate release and blocks spike activity of pyramidal neurons. Intrahippocampal injection of BoNT/E resulted in significant inhibition of seizure activity in experimental models of epilepsy, suggesting a potential therapeutic use of BoNTs in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ando S, S Kobayashi, H Waki, K Kon, F Fukui, T Tadenuma, M Iwamoto, Y Takeda, N Izumiyama, K Watanabe and H Nakamura (2002) Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine.J. Neurosci. Res. 70, 519–527.

    Article  CAS  PubMed  Google Scholar 

  • Ashton AC and JO Dolly (1988) Characterization of the inhibitory action of botulinum neurotoxin type A on the release of several transmitters from rat cerebrocortical synaptosomes.J. Neurochem. 50, 1808–1816.

    Article  CAS  PubMed  Google Scholar 

  • Ashton AC and JO Dolly (1991) Microtubule-dissociating drugs and A23187 reveal differences in the inhibition of synaptosomal transmitter release by botulinum neurotoxins types A and B.J. Neurochem. 56, 827–835.

    Article  CAS  PubMed  Google Scholar 

  • Ashton AC and JO Dolly (2000) A late phase of exocytosis from synaptosomes induced by elevated [Ca2+]i is not blocked by Clostridial neurotoxins.J. Neurochem. 74, 1979–1988.

    Article  CAS  PubMed  Google Scholar 

  • Bergquist F, HS Niazi and H Nissbrandt (2002) Evidence for different exocytosis pathways in dendritic and terminal dopamine releasein vivo. Brain Res. 950(1-2), 245–253.

    Article  CAS  Google Scholar 

  • Berliocchi L, E Fava, M Leist, V Horvat, D Dinsdale, D Read and P Nicotera (2005) Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis.J. Cell Biol. 168(4), 607–618.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bigalke H, G Ahnert-Hilger and E Habermann (1981a) Tetanus toxin and botulinum toxin A inhibit acetylcholine release from but not calcium uptake into brain tissue.Naunyn Schmiedebergs Arch. Pharmacol. 316, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Bigalke H, I Heller, B Bizzini and E Habermann (1981b) Tetanus toxin and botulinum A toxin inhibit release and uptake of various transmitters, as studied with particulate preparations from rat brain and spinal cord.Naunyn Schmiedebergs Arch. Pharmacol. 316, 244–251.

    Article  CAS  PubMed  Google Scholar 

  • Bigalke H, F Dreyer and G Bergey (1985) Botulinum A neurotoxin inhibits non-cholinergic synaptic transmission in mouse spinal cord neurons in culture.Brain Res. 360, 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Capogna M, BH Gahwiler and SM Thompson (1996) Calcium-independent actions of alpha-latrotoxin on spontaneous and evoked synaptic transmission in the hippocampus.J. Neurophysiol. 76, 3149–3158.

    CAS  PubMed  Google Scholar 

  • Capogna M, RA McKinney, V O’Connor, BH Gahwiler and SM Thompson (1997) Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin.J. Neurosci. 17, 7190–7202.

    CAS  PubMed  Google Scholar 

  • Cohen I, V Navarro, S Clemenceau, S Baulac and R Miles (2002) On the origin of interictal activity in human temporal lobe epilepsyin vitro. Science 298, 1418–1421.

    CAS  Google Scholar 

  • Costantin L, Y Bozzi, C Richichi, A Viegi, F Antonucci, M Funicello, M Gobbi, T Mennini, O Rossetto, C Montecucco, L Maffei, A Vezzani and M Caleo (2005) Antiepileptic effects of botulinum neurotoxin E.J. Neurosci. 25, 1943–1951.

    Article  CAS  PubMed  Google Scholar 

  • Dolly JO, RS Williams, JD Black, CK Tse, P Hambleton and J Melling (1982) Localization of sites for125 I-labelled botulinum neurotoxin at murine neuromuscular junction and its binding to rat brain synaptosomes.Toxicon 20, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Engel J (1996) Introduction to temporal lobe epilepsy.Epilepsy Res. 26, 141–150. Review.

    Article  PubMed  Google Scholar 

  • Fassio A, R Sala, G Bonanno, M Marchi and M Raiteri (1999) Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F.Neuroscience 90, 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Foran PG, N Mohammed, GO Lisk, S Nagwaney, GW Lawrence, E Johnson, L Smith, KR Aoki and JO Dolly (2003) Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons.J. Biol. Chem. 278, 1363–1371.

    Article  CAS  PubMed  Google Scholar 

  • Gilio F, A Currà, C Lorenzano, N Modugno, M Manfredi and A Berardelli (2000) Effects of botulinum toxin type A on intracorti-cal inhibition in patients with distonia.Ann. Neurol. 48, 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Grosse G, J Grosse, R Tapp, J Kuchinke, M Gorsleben, I Fetter, B Hohne-Zell, M Gratzl and M Bergmann (1999) SNAP-25 requirement for dendritic growth of hippocampal neurons.J. Neurosci. Res. 56, 539–546.

    Article  CAS  PubMed  Google Scholar 

  • Holmes GL (2002) Seizure-induced neuronal injury: animal data.Neurology 59, S3-S6. Review.

    Article  PubMed  Google Scholar 

  • Hou Q, X Gao, X Zhang, L Kong, X Wang, W Bian, Y Tu, M Jin, G Zhao, B Li, N Jing and L Yu (2004) SNAP-25 in hippocampal CA1 region is involved in memory consolidation.Eur. J. Neurosci. 20(6), 1593–1603.

    Article  PubMed  Google Scholar 

  • Kawakami M, M Sekiguchi, K Sato, S Kozaki and M Takahashi (2001) Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia.J. Biol. Chem. 276, 39469–39475.

    Article  CAS  PubMed  Google Scholar 

  • Keller JE, E Neale, G Oyler and M Adler (1999) Persistence of botulinum neurotoxin action in cultured spinal cord cells.FEBS Lett. 456, 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Keller JE and EA Neale (2001) The role of the synaptic protein SNAP-25 in the potency of botulinum neurotoxin type A.J. Biol. Chem. 276(16), 13476–13482.

    Article  CAS  PubMed  Google Scholar 

  • Lalli G, S Bohnert, K Deinhardt, C Verastegui and G Schiavo (2003) The journey of tetanus and botulinum toxins in neurons.Trends Microbiol. 11(9), 431–437. Review.

    Article  Google Scholar 

  • Luvisetto S, O Rossetto, C Montecucco and F Pavone (2003) Toxicity of botulinum neurotoxins in central nervous system of mice.Toxicon 41(4), 475–481.

    Article  CAS  PubMed  Google Scholar 

  • Luvisetto S, S Marinelli, O Rossetto, C Montecucco and F Pavone (2004) Central injection of botulinum neurotoxins: behavioural effects in mice.Behav. Pharmacol. 15(3), 233–240.

    CAS  PubMed  Google Scholar 

  • McMahon HT, P Foran, JO Dolly, M Verhage, VM Wiegant and DG Nicholls (1992) Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action.J. Biol. Chem. 267, 21338–21343.

    CAS  PubMed  Google Scholar 

  • Meldrum BS (1995) Excitatory amino acid receptors and their role in epilepsy and cerebral ischemia.Ann. NYAcad. Sci. 757, 492–505. Review.

    Article  CAS  Google Scholar 

  • Meunier FA, G Schiavo and J Molgo (2002) Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission.J. Physiol. Paris 96, 105–113. Review.

    Article  CAS  PubMed  Google Scholar 

  • Montecucco A and J Molgo (2005) Botulinal neurotoxins: revival of an old killer.Curr. Op. Pharmacol. 5, 274–279. Review.

    Article  CAS  Google Scholar 

  • Murakami T, M Okada, Y Kawata, G Zhu, A Kamata and S Kaneko (2001) Determination of effects of antiepileptic drugs on SNAREs-mediated hippocampal monoamine release usingin vivo microdialysis.Br. J. Pharmacol. 134(3), 507–520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakov R, E Habermann, G Hertting, S Wurster and C Allgaier (1989) Effects of botulinum A toxin on presynaptic modulation of evoked transmitter release.Eur. J. Pharmacol. 164, 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Neale EA, LM Bowers, M Jia, KE Bateman and LC Williamson (1999) Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal.J. Cell Biol. 147(6), 1249–1260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okada M, DJ Nutt, T Murakami, G Zhu, A Kamata, Y Kawata and S Kaneko (2001) Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release.J. Neurosci. 21, 628–640.

    CAS  PubMed  Google Scholar 

  • Osen-Sand A, JK Staple, E Naldi, G Schiavo, O Rossetto, S Petitpierre, A Malgaroli, C Montecucco and S Catsicas (1996) Common and distinct fusion proteins in axonal growth and transmitter release.J. Comp. Neurol. 367, 222–234.

    Article  CAS  PubMed  Google Scholar 

  • Otto H, PI Hanson, ER Chapman, J Blasi and R Jahn (1995) Poisoning by botulinum neurotoxin A does not inhibit formation or disassembly of the synaptosomal fusion complex.Biochem. Biophys. Res. Commun. 212, 945–952.

    Article  Google Scholar 

  • Owe-Larsson B, K Kristensson, RH Hill and L Brodin (1997) Distinct effects of clostridial toxins on activity-dependent modulation of autaptic responses in cultured hippocampal neurons.Eur. J. Neurosci. 9, 1773–1777.

    Article  CAS  PubMed  Google Scholar 

  • Regesta G and P Tanganelli (1999) Clinical aspects and biological bases of drug-resistant epilepsies.Epilepsy Res. 34, 109–122. Review.

    Article  CAS  PubMed  Google Scholar 

  • Rossetto O, M Severo, P Caccin, G Schiavo and C Montecucco (2001) Tetanus and botulinum neurotoxins: turning bad guys into good by research.Toxicon 39, 27–41. Review.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Prieto J, TS Sihra, D Evans, A Ashton, JO Dolly and DG Nicholls (1987) Botulinum toxin A blocks glutamate exocytosis from guinea-pig cerebral cortical synaptosomes.Eur. J. Biochem. 165, 675–681.

    Article  CAS  PubMed  Google Scholar 

  • Schiavo G, M Matteoli and C Montecucco (2000) Neurotoxins affecting neuroexocytosis.Physiol. Rev. 80, 717–766. Review.

    CAS  PubMed  Google Scholar 

  • Spencer SS (2002) When should temporal-lobe epilepsy be treated surgically?Lancet Neurol. 1, 375–382. Review.

    Article  PubMed  Google Scholar 

  • Stables JP, E Bertram, FE Dudek, G Holmes, G Mathern, A Pitkanen and HS White (2003) Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics: summary of the NIH/NINDS/AES models II workshop.Epilepsia 44, 1472–1478. Review.

    Article  Google Scholar 

  • Stigliani S, L Raiteri, A Fassio and G Bonanno (2003) The sensitivity of catecholamine release to botulinum toxin C1 and E suggests selective targeting of vesicles set into the readily releasable pool.J. Neurochem. 85(2), 409–421.

    Article  CAS  PubMed  Google Scholar 

  • Sutton MA, NR Wall, GN Aakalu and EM Schuman (2004) Regulation of dendritic protein synthesis by miniature synaptic events.Science 304, 1979–1983.

    Article  CAS  PubMed  Google Scholar 

  • Takei N, T Numakawa, S Kozaki, N Sakai, Y Endo, M Takahashi and H Hatanaka (1998) Brain-derived neurotrophic factor induces rapid and transient release of glutamate through the non-exo-cytotic pathway from cortical neurons.J. Biol. Chem. 273(42), 27620–27624.

    Article  CAS  PubMed  Google Scholar 

  • Trudeau LE, Y Fang and PG Haydon (1998) Modulation of an early step in the secretory machinery in hippocampal nerve terminals.Proc. Natl. Acad. Sci. USA 95, 7163–7168.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turton K, JA Chaddock and KR Acharya (2002) Botulinum and tetanus neurotoxins: structure, function and therapeutic utility.Trends Biochem. Sci. 27, 552–557. Review.

    Article  CAS  PubMed  Google Scholar 

  • Verderio C, S Coco, O Rossetto, C Montecucco and M Matteoli (1999) Internalization and proteolytic action of botulinum toxins in CNS neurons and astrocytes.J. Neurochem. 73, 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Verderio C, D Pozzi, E Pravettoni, F Inverardi, U Schenk, S Coco, V Proux-Gillardeaux, T Galli, O Rossetto, C Frassoni and M Matteoli (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization.Neuron 41, 599–610.

    Article  CAS  PubMed  Google Scholar 

  • Williamson LC, JL Halpern, C Montecucco, JE Brown and EA Neale (1996) Clostridial neurotoxins and substrate proteolysis in intact neurons. Botulinum neurotoxin C acts on synaptosomal-associated protein of 25 kDa.J. Biol. Chem. 271, 7694–7699.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Caleo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzi, Y., Costantin, L., Antonucci, F. et al. Action of botulinum neurotoxins in the central nervous system: Antiepileptic effects. neurotox res 9, 197–203 (2006). https://doi.org/10.1007/BF03033939

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033939

Keywords

Navigation