Skip to main content
Log in

The PTH/PTHrP receptor in Jansen’s metaphyseal chondrodysplasia

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Nutley M.T., Parimi S.A., Harvey S. Sequence analysis of hypothalamic parathyroid hormone messenger ribonucleic acid. Endocrinology 1995, 136: 5600–5607.

    CAS  PubMed  Google Scholar 

  2. Potts J., Jueppner H. Parathyroid hormone and parathyroid hormone-related peptide in calcium homeostasis, bone metabolism, and bone development: the proteins, their genes and receptors. In: Avioli L., Krane S. (Eds.), Metabolic bone disease, Academic Press, New York, 1997, pp. 51–94.

    Google Scholar 

  3. Silver Kronenberg H. Parathyroid hormone: molecular biology and regulation. In: Bilezikian J., Raisz L., Rodan G. (Eds.), Principles of bone biology. Academic Press, New York, 1996, pp. 325–346.

    Google Scholar 

  4. Strewler G.J., et al. Parathyroid hormonelike protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J. Clin. Invest. 1987, 80: 1803–1807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Broadus A., Steward A.F. Parathytoid hormone-related protein: structure, processing, and physiologic actions. In: Bilezikian J. (Ed.), The parathyroids: basic and clinical concepts. Raven Press, New York, 1994, 311–320.

    Google Scholar 

  6. Wysolmerski J.J., Broadus A.E. Hypercalcemia of malignancy: the central role of parathyroid hormone-related protein. Ann. Rev. Med. 1994, 45: 189–200.

    Article  CAS  PubMed  Google Scholar 

  7. Karaplis A.C., et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994, 8: 277–289.

    Article  CAS  PubMed  Google Scholar 

  8. Vasavada R.C., et al. Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypo-glycemia. J. Biol. Chem. 1996, 271: 1200–1208.

    Article  CAS  PubMed  Google Scholar 

  9. Weir E.C., et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodyspla-sia and delayed endochondral bone formation. Proc. Natl. Acad. Sci. USA 1996, 93: 10240–10245.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Abou-Samra A.B., et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases in-tracellular free calcium. Proc. Natl. Acad. Sci. USA 1992, 89: 2732–2736.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Juppner H., et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991, 254: 1024–1026.

    Article  CAS  PubMed  Google Scholar 

  12. Schipani E., et al. Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH-related peptide receptor. Endocrinology 1993, 132: 2157–2165.

    CAS  PubMed  Google Scholar 

  13. Iida-Klein, A., et al. Mutations in the second cytoplasmic loop of the rat parathyroid hormone (PTH)/PTH-related protein receptor result in selective loss of PTH- stimulated phospholipase C activity. J. Biol. Chem. 1997, 272: 6882–6889.

    Article  CAS  PubMed  Google Scholar 

  14. Aubin J.E., et al. Osteoblast and chondroblast differentiation. Bone 1995, 17(Suppl. 2): 77S–83S.

    Article  CAS  PubMed  Google Scholar 

  15. Bos M.P., et al. Expression of the parathyroid hormone receptor and correlation with other osteoblastic parameters in fetal rat osteoblasts. Calcif. Tissue Int. 1996, 58: 95–100.

    Article  CAS  PubMed  Google Scholar 

  16. Lanske B., et al. Ablation of the PTHrP gene or the PTH/PTHrP receptor gene leads to distinct abnormalities in bone development. J. Clin. Invest. 1999, 104: 399–407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Usdin T.B., Gruber C., Bonner T.I. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J. Biol. Chem. 1995, 270: 15455–15458.

    Article  CAS  PubMed  Google Scholar 

  18. Usdin T.B., et al. Distribution of the parathyroid hormone 2 receptor in rat: immunolocalization reveals expression by several endocrine cells. Endocrinology 1999, 140: 3363–3371.

    CAS  PubMed  Google Scholar 

  19. Usdin T.B., et al. TIP39: a new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat. Neurosci. 1999, 2: 941–943.

    Article  CAS  PubMed  Google Scholar 

  20. Jobert A.S., et al. Absence of functional receptors for parathyroid hormone and parathyroid hormone-related peptide in Blomstrand chondrodysplasia. J. Clin. Invest. 1998, 102: 34–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhang P., et al. A homozygous inactivating mutation in the parathyroid hormone/parathyroid hormone-related peptide receptor causing Blomstrand chondrodysplasia. J. Clin. Endocrinol. Metab. 1998, 83: 3365–3368.

    Article  CAS  PubMed  Google Scholar 

  22. Karaplis A.C., et al. Inactivating mutation in the human parathyroid hormone receptor type 1 gene in Blomstrand chon-drodysplasia (see comments). Endocrinology 1998, 139: 5255–5258.

    Article  CAS  PubMed  Google Scholar 

  23. De Haas W.H.D., D.W., Griffioen F. Metaphysial dysostosis. J. Bone Joint Surg. 1969, 51B: 290–299.

    Google Scholar 

  24. Charrow J., Poznanski A.K. The Jansen type of metaphyseal chondrodysplasia: confirmation of dominant inheritance and review of radiographic manifestations in the newborn and adult. Am. J. Med. Genet. 1984, 18: 321–327.

    Article  CAS  PubMed  Google Scholar 

  25. Jansen M. Über atypishe Chondrodystrophie (Achondroplasie) und über eine noch nicht beschriebene angeborene Wachstumsstörung des Knochensystem: Metaphy-säre Dysostosys. Zeitschr. Orthop. Chir. 1934, 61: 253–286.

    Google Scholar 

  26. Gram P., et al. Metaphysial chondrodysplasia of Jansen. J. Bone Joint Surg., 1959, 41A: 951–959.

    Google Scholar 

  27. Frame B., Poznaski A. Conditions that may be confused with rickets. In: DeLuca H., Anast C. (Ed.), Pediatric diseases related to calcium. Elsevier, New York, 1980, p. 269–289.

    Google Scholar 

  28. Silverthorn K.G., Houston C.S., Duncan B.P. Murk Jansen’s metaphyseal chondrodysplasia with long-term followup. Pediatr. Radiol. 1987, 17: 119–123.

    Article  CAS  PubMed  Google Scholar 

  29. Kruse K., Schutz C. Calcium metabolism in the Jansen type of metaphy-seal dysplasia. Eur. J. Pediatr. 1993, 152: 912–915.

    Article  CAS  PubMed  Google Scholar 

  30. Minagawa M., et al. Jansen-type metaphyseal chondrodysplasia: analysis of PTH/PTH-related protein receptor messenger RNA by the reverse transcriptase-polymerase chain method. Endocr. J. 1997, 44: 493–499.

    Article  CAS  PubMed  Google Scholar 

  31. Holthusen W., Holt J.F., Stoeckenius M. The skull in metaphyseal chondrodysplasia type Jansen. Pediatr. Radiol. 1975, 3: 137–144.

    Article  CAS  PubMed  Google Scholar 

  32. Lenz W. Skeletal dysplasias. In: First Conference on the Clinical Delineation of Birth Defects. The Johns Hopkins Hospital, Baltimore, 1969.

    Google Scholar 

  33. Schipani E., et al. Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen’s metaphyseal chondrodysplasia. N. Engl. J. Med. 1996, 335: 708–714.

    Article  CAS  PubMed  Google Scholar 

  34. Parfitt A.M., et al. Hypercalcemia due to constitutive activity of the parathyroid hormone (PTH)/PTH-related peptide receptor: comparison with primary hyperparathyroi-dism. J. Clin. Endocrinol. Metab., 1996, 81: 3584–3588.

    CAS  PubMed  Google Scholar 

  35. Schipani E., Kruse E.K., Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995, 268: 98–100.

    Article  CAS  PubMed  Google Scholar 

  36. Schipani E., et al. A novel parathyroid hormone (PTH)/PTH-related peptide receptor mutation in Jansen’s metaphyseal chondrodysplasia. J. Clin. Endocrinol. Metab. 1999, 84: 3052–3057.

    CAS  PubMed  Google Scholar 

  37. Juppner H., Schipani E. Receptors for parathyroid hormone and parathyroid hormone-related peptide: from molecular cloning to definition of diseases. Curr. Opin. Nephrol. Hypertens. 1996, 5: 300–306.

    Article  CAS  PubMed  Google Scholar 

  38. Robinson P.R., et al. Constitutively active mutants of rhodopsin. Neuron 1992, 9: 719–725.

    Article  CAS  PubMed  Google Scholar 

  39. Dryja T.P., et al. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat. Genet. 1993, 4: 280–283.

    Article  CAS  PubMed  Google Scholar 

  40. Parma J., et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas [see comments]. Nature 1993, 365: 649–651.

    Article  CAS  PubMed  Google Scholar 

  41. Paschke R., et al. Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor in hyperfunctioning autonomous adenomas of the thyroid. J. Clin. Endocrinol. Metab. 1994, 79: pp. 1785–1789.

    CAS  PubMed  Google Scholar 

  42. Parma J., et al. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyper-functioning thyroid adenomas: identification of additional mutations activating both the cyclic adeno-sine 3’,5’-monophosphate and inositol phosphate-Ca2+ cascades. Mol. Endocrinol. 1995, 9: 725–733.

    CAS  PubMed  Google Scholar 

  43. Duprez L., et al. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyper-thyroidism. Nat. Genet. 1994, 7: 396–401.

    Article  CAS  PubMed  Google Scholar 

  44. Kopp P., et al. Brief report: congenital hyperthyroidism caused by a mutation in the thyrotropin-receptor gene. N. Engl. J. Med. 1995, 332: 150–154.

    Article  CAS  PubMed  Google Scholar 

  45. Tonacchera M., et al. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing au-tosomal dominant toxic thyroid hyperplasia. J. Clin. Endocrinol. Metab. 1996, 81: 547–554.

    CAS  PubMed  Google Scholar 

  46. Shenker A., et al. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993, 365: 652–654.

    Article  CAS  PubMed  Google Scholar 

  47. Latronico A.C., et al. A novel mutation of the luteinizing hormone receptor gene causing male gonadotropin-independent precocious puberty. J. Clin. Endocrinol. Metab., 1995, 80: 2490–2494.

    CAS  PubMed  Google Scholar 

  48. Kraaij R., et al. A missense mutation in the second transmembrane segment of the luteinizing hormone receptor causes familial male-limited precocious puberty. J. Clin. Endocrinol. Metab. 1995, 80: 3168–3172.

    CAS  PubMed  Google Scholar 

  49. Kosugi S., et al. Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty. Hum. Mol. Genet. 1995, 4: 183–188.

    Article  CAS  PubMed  Google Scholar 

  50. Pollak M.R., et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat. Genet. 1994, 8: 303–307.

    Article  CAS  PubMed  Google Scholar 

  51. Baron J., et al. Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathy-roidism. Hum. Mol. Genet. 1996, 5: 601–606.

    Article  CAS  PubMed  Google Scholar 

  52. Erlebacher A., et al. Toward a molecular understanding of skeletal development (comment). Cell 1995, 80: 371–378.

    Article  CAS  PubMed  Google Scholar 

  53. Hunziker E.B. Growth plate structure and function. Pathol. Immunopathol. Res. 1988, 7: 9–13.

    Article  CAS  PubMed  Google Scholar 

  54. Smith D.M., Roth L.M., Johnston C.C. Jr. Hormonal responsiveness of adenylate cyclase activity in cartilage. Endocrinology 1976, 98: 242–246.

    Article  CAS  PubMed  Google Scholar 

  55. Takano T., et al. Effects of synthetic analogs and fragments of bovine parathyroid hormone on adenosine 3’,5’-monophos-phate level, ornithine decarboxylase activity, and gly-cosaminoglycan synthesis in rabbit costal chondro-cytes in culture: structure-activity relations. Endocrinology 1985, 116: 2536–2542.

    Article  CAS  PubMed  Google Scholar 

  56. Koike T., et al. Potent mitogenic effects of parathyroid hormone (PTH) on embryonic chick and rabbit chondrocytes. Differential effects of age on growth, proteoglycan, and cyclic AMP responses of chondrocytes to PTH. J. Clin. Invest. 1990, 85: 626–631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Iwamoto M., et al. Changes in parathyroid hormone receptors during chondrocyte cytodifferentiation. J. Biol. Chem. 1994, 269: 17245–17251.

    CAS  PubMed  Google Scholar 

  58. Jikko A., et al. Effects of cyclic adenosine 3’,5’-monophosphate on chondrocyte terminal differentiation and cartilage-matrix calcification. Endocrinology 1996, 137: 122–128.

    CAS  PubMed  Google Scholar 

  59. Chung U.I., et al. The parathyroid hormone/parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondro-cyte differentiation. Proc. Natl. Acad. Sci. USA 1998, 95: 13030–13035.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lanske B., et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth (see comments). Science 1996, 273: 663–666.

    Article  CAS  PubMed  Google Scholar 

  61. Vortkamp A., et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein (see comments). Science 1996, 273: 613–622.

    Article  CAS  PubMed  Google Scholar 

  62. St-Jacques, Hammerschmidt B.M., McMahon A.P. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999, 13: 2072–2086.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Schipani E., et al. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc. Natl. Acad. Sci. U.S.A. 1997, 94: p. 13689–13694.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Karp S.J., et al. Indian hedgehog coordinates endochondral bone growth and morphogenesis via parathyroid hormone related-protein-dependent and -independent pathways. Development 2000, 127: 543–548.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestina Schipani M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvi, L.M., Schipani, E. The PTH/PTHrP receptor in Jansen’s metaphyseal chondrodysplasia. J Endocrinol Invest 23, 545–554 (2000). https://doi.org/10.1007/BF03343773

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343773

Keywords

Navigation