Skip to main content

Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams CJ, Davies NW, Shelton PA, Stanfield PR (1996). The role of a single aspartate residue in ionic selectivity and block of a murine inward rectifier K+ channel Kir2.1. Journal of Physiology 493: 643–649

    PubMed  CAS  Google Scholar 

  • Adams PR, Brown DA, Constanti A (1982). Pharmacological inhibition of the M-current. Journal of Physiology 332: 223–262

    PubMed  CAS  Google Scholar 

  • Adrian RH (1964) The rubidium and potassium permeability of frog muscle membrane. J. Physiol. 175: 134–159.

    PubMed  CAS  Google Scholar 

  • Adrian RH (1969). Rectification in muscle membrane. Progress in Biophysics 19: 341–369.

    Article  Google Scholar 

  • Adrian RH, Chandler WK, Hodgkin AL (1970) Slow changes in potassium permeability in skeletal muscle. Journal of Physiology 208: 645–668.

    PubMed  CAS  Google Scholar 

  • Adrian RH, Freygang W (1962a). The potassium and chloride conductance of frog muscle membrane. Journal of Physiology 163: 61–103.

    PubMed  CAS  Google Scholar 

  • Adrian RH, Freygang W (1962b). Potassium conductance of frog muscle under controlled voltage. Journal of Physiology 163: 104–114.

    PubMed  CAS  Google Scholar 

  • Adrian RH, Peachey LD (1973). Reconstruction of the action potential of frog sartorius muscle. Journal of Physiology 235: 103–131.

    PubMed  CAS  Google Scholar 

  • Adrian RH, Slayman CL (1966). Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle. Journal of Physiology 184: 970–1014

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Wang YY (1986). Pertussis toxin blocks the outward currents evoked by opiate and α2-agonists in locus coeruleus neurons. Brain Research 371: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement IV JP, Boyd III AE, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995). Cloning of the beta cell highaffinity sulfonylurea receptor: a regulator of insulin secretion. Science 268: 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Alagem N, Dvir M, Reuveny E (2001). Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. Journal of Physiology 534: 381–393.

    Article  PubMed  CAS  Google Scholar 

  • Albsoul-Younes AM, Sternweis PM, Zhao P, Nakata H, Nakajima S, Nakajima Y, and Kozasa T (2001) Interaction sites of the G protein β subunit with brain G proteincoupled inward rectifier K+ channel. Journal of Biological Chemistry, 276: 12712–12717.

    Article  PubMed  CAS  Google Scholar 

  • Aleksandrov A, Velimirovic B, Clapham DE (1996). Inward rectification of the IRK1 K+ channel reconstructed in lipid bilayers. Biophysical Journal 70: 2680–2687.

    PubMed  CAS  Google Scholar 

  • Almers W, Stanfield PR, Stühmer W (1983). Lateral distribution of sodium and potassium channels in frog skeletal muscle: measurements with a patch-clamp technique. Journal of Physiology 336: 261–284

    PubMed  CAS  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1986). A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234: 1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Araneda RC, Lan J-Y, Zheng X, Zukin RS, Bennett MVL (1999). Spermine and arcaine block and permeate N-methyl-D-aspartate receptor channels. Biophysical Journal 76: 2899–2911.

    PubMed  CAS  Google Scholar 

  • Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronnello M, Mini E, Olivotto M, Wanke E (1995). A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. Journal of Physiology 489: 455–471.

    PubMed  CAS  Google Scholar 

  • Arcangeli A, Rosati B, Cherubini A, Crociani O, Fontana L Ziller C, Wanke E, Olivotto M (1997) HERG-and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. European Journal of Neuroscience 9: 2596–2604.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM (1966). Time course of TEA+ induced anomalous rectification in squid giant axons. Journal of General Physiology 50: 491–503.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM (1969). Inactivation of potassium conductance and related phenomena caused by quaternary ammonium ion injected into squid axons. Journal of General Physiology 54: 553–575.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CM (1971). Interaction of tetraethylammonium derivatives with the potassium channels of giant axons. Journal of General Physiology 58: 413–437.

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft FM, Stanfield PR (1983). The influence of the permeant ions thallous and potassium on inward rectification in frog skeletal muscle. Journal of Physiology 343: 407–428.

    PubMed  CAS  Google Scholar 

  • Axelrod D (1983). Lateral motion of membrane proteins and biological function. Journal of Membrane Biology 75: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. Journal of Neuroscience 21: 1523–1531.

    PubMed  CAS  Google Scholar 

  • Bannister JPA, Young BA, Sivaprasadarao, A, Wray D (1999). Conserved extracellular cysteine residues in the inwardly rectifying potassium channel Kir2.3 are required for function but not expression in the membrane. FEBS Letters 458: 393–399

    Article  PubMed  CAS  Google Scholar 

  • Barres BA, Chun LLY, Corey DP (1990). Ion channels in vertebrate glia. Annual Reviews of Neuroscience 13: 441–474

    Article  CAS  Google Scholar 

  • Bastian J, Nakajima S (1974) Action potential in the transverse tubules and its role in the activation of skeletal muscle. Journal of General Physiology 63: 257–278.

    Article  PubMed  CAS  Google Scholar 

  • Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998). PIP2 and PIP as determinants for ATP inhibition of K (ATP) channels. Science 282: 1141–1144.

    Article  PubMed  CAS  Google Scholar 

  • Baylor DA, Nicholls JG (1969) After-effects of nerve impulses on signalling in the central nervous system of the leech. Journal of Physiology 203: 571–589

    PubMed  CAS  Google Scholar 

  • Beirão PSL, Davies NW, Stanfield PR (1994). Inactivating ‘ball’ peptide from Shaker B blocks Ca2+-activated but not ATP-dependent K+ channels of rat skeletal muscle. Journal of Physiology 474: 269–274.

    PubMed  Google Scholar 

  • Benson JA, Levitan IB (1983). Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15. Proceedings of the National Academy of Sciences USA 80: 3522–3525

    Article  CAS  Google Scholar 

  • Berman DM, Wilkie TM, Gilman AG (1996). GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein a subunits. Cell 86: 445–452

    Article  PubMed  CAS  Google Scholar 

  • Bernheim L, Liu J-H, Hamann M, Haenggeli CA, Fischer-Lougheed J, Bader CR (1996). Contribution of a non-inactivating potassium current to the resting potential of fusion-competent human myoblasts. Journal of Physiology 493:129–141.

    PubMed  CAS  Google Scholar 

  • Bezanilla F, Armstrong CM (1972). Negative conductance caused by entry of sodium and cesium ions into potassium channels of squid axons. Journal of General Physiology 60:588–608.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi L, Roy M-L, Taglialatela M, Lundgren DW, Brwon AM, Ficker E (1996) Regulation by spermine of native inward rectifier K+ channels in RBL-1 cells. Journal of Biological Chemistry 271:6114–6121.

    Article  PubMed  CAS  Google Scholar 

  • Bijlenga Occhiodoro Liu Bader Bernheim Fischer-Lougheed J (2000). T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proceedings of the National Academy of Sciences USA 97:7627–7632.

    Article  Google Scholar 

  • Bijlenga PT, Liu J-H, Hamann M, Haenggeli CA, Fischer-Lougheed J, Bader CR (1998). An ether-a-go-go K+ current Ih-eag contributes to the hyperpolarization of fusion-competent human myoblasts. Journal of Physiology 512:317–323.

    Article  PubMed  CAS  Google Scholar 

  • Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC (1995). ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. American Journal of Physiology 268: F1132–F1140.

    PubMed  CAS  Google Scholar 

  • Bond CT, Ammala C, Ashfield R, Blair TA, Gribble F, Khan RN, Lee K, Proks P, Rowe ICM, Sakura H, Ashford MJ, Adelman JP, Ashcroft FM (1995). Cloning and expression of the cDNA encoding an inwardly-rectifying potassium channel expressed in pancreatic beta cells and in the brain. FEBS Letters 367:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Bond CT, Pessia M, Xia X-M, Lagrutta AM, Kavanaugh MP, Adelman JP (1994). Cloning and expression of a family of inward rectifier potassium channels. Receptors and Channels 2:183–191.

    PubMed  CAS  Google Scholar 

  • Bowie D, Mayer ML (1995). Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15:453–462.

    Article  PubMed  CAS  Google Scholar 

  • Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ERM, Nelson MT & Horowitz B (1999). Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. Journal of Physiology 515:639–651.

    Article  PubMed  CAS  Google Scholar 

  • Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC (1996). In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circulation Research 78:1083–1089.

    PubMed  CAS  Google Scholar 

  • Braun AP, Fedida D and Giles WR (1992) Activation of α1-adrenoceptors modulates the inwardly rectifying potassium currents of mammalian atrial myocytes. Pflügers Arch, 421:431–439.

    Article  PubMed  CAS  Google Scholar 

  • Brazier SP, Ramesh B, Haris PI, Lee DC, Srai SKS (1998). Secondary structure analysis of the putative membrane associated domains of the inward rectifier K+ channel ROMK1. Biochemical Journal 335:375–380.

    PubMed  CAS  Google Scholar 

  • Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540

    Article  PubMed  CAS  Google Scholar 

  • Breitwieser GE, Szabo G (1988) Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. Journal of General Physiology 91:469–493.

    Article  PubMed  CAS  Google Scholar 

  • Brew H, Gray PTA, Mobbs P, Attwel D (1986). Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature 324:466–468.

    Article  PubMed  CAS  Google Scholar 

  • Brown DA (1990) G-proteins and potassium currents in neurons. Annual Review of Physiology 52:215–242

    Article  PubMed  CAS  Google Scholar 

  • Bünemann M, Hosey MM (1998) Regulators of G Protein signaling (RGS) proteins constitutively activate Gβγ-gated potassium channels. Journal of Biological Chemistry 273:31186–31190

    Article  PubMed  Google Scholar 

  • Burgen ASV, Terroux KG (1953) On the negative inotropic effect in the cat's auricle. Journal of Physiology 120:449–464

    PubMed  CAS  Google Scholar 

  • Cabrera, J.L., De Freitas, F., Satpaev, D.K., and Slepak, V.Z. (1998) Identification of the Gβ5-RGS7 protein complex in the retina. Biochemical and Biophysical Research Communications 249:898–902.

    Article  PubMed  CAS  Google Scholar 

  • Carlson KE, Woolkalis MJ, Newhouse MG, Manning DR (1986) Fractionation of the b subunit common to guanine nucleotide-binding regulatory proteins with the cytoskeleton. Molecular Pharmacology 30:463–468

    PubMed  CAS  Google Scholar 

  • Carmeliet E (1979). Voltage dependent block of inward going rectification in cardiac Purkinje fibers by external Cs+ ions. Archives Internationales de Pharmacodynamie et de Thérapie 242:296–297.

    PubMed  CAS  Google Scholar 

  • Casey PJ (1994) Lipid modifications of G proteins. Current Opinion in Cell Biology 6:219–225

    Article  PubMed  CAS  Google Scholar 

  • Chan KW, Sui JL, Vivaudou M, Logothetis DE (1996) Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proceedings of the National Academy USA 93:14193–14198

    Article  CAS  Google Scholar 

  • Chan KW, Sui JL, Vivaudou M, Logothetis DE (1997) Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity. Journal of Biological chemistry 272:6548–6555

    Article  PubMed  CAS  Google Scholar 

  • Chandy KG, Gutman GA (1993) Nomenclature for mammalian potassium channel genes. Trends in Pharmacological Sciences 14:434.

    Article  PubMed  CAS  Google Scholar 

  • Chilton L, Loutzenhiser R (2001). Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles. Circulation Research 88:152–158.

    PubMed  CAS  Google Scholar 

  • Cho H, Nam G-B, Lee, SH, Earm YE, Ho W-K (2001) Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in α1-adrenergic pathway via the modulation of acetylcholine-activated K+ channels in mouse atrial myocytes. Journal of Biological chemistry 276:159–164.

    Article  PubMed  CAS  Google Scholar 

  • More Cho HC, Tsushima et al. to here from p 157

    Google Scholar 

  • Choe H, Palmer LG, Sackin H (1999). Structural determinants of gating in inwardly-rectifying K+ channels. Biophysical Journal 76:1988–2003.

    PubMed  CAS  Google Scholar 

  • Choe H, Sackin H, Palmers LG (1998). Permeation and gating of an inwardly rectifying potassium channel: evidence for a variable energy well. Journal of General Physiology 112:433–446.

    Article  PubMed  CAS  Google Scholar 

  • Choi KL, Aldrich RW, Yellen G (1991). Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proceedings of the National Academy of Sciences USA 88:5092–5095.

    Article  CAS  Google Scholar 

  • Chrissobolis S, Ziogas J, Chu Y, Faraci FM, Sobey CG (2000). Role of inwardly rectifying K+ channels in K+-induced cerebral vasodilation in vivo. American Journal of Physiology 279:H2704–2712.

    PubMed  CAS  Google Scholar 

  • Chuang HH, Jan YN, Jan LY (1997). Regulation of IRK3 inward rectifier K+ channel by m1 acetylcholine receptor and intracellular magnesium. Cell 89:1121–1132.

    Article  PubMed  CAS  Google Scholar 

  • Chuang HH, Prescott ED, Kong H, Shields S, Jordt S-E, Basbaum AI, Chao MV, Julius D (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962.

    Article  PubMed  CAS  Google Scholar 

  • Chuang HH, Yu M, Jan YN, Jan LY (1998) Evidence that the nucleotide exchange and hydrolysis cycle of G-proteins causes acute desensitization of G-protein gated inward rectifier K+ channels. Proceedings of the National Academy USA 95:11727–11732

    Article  CAS  Google Scholar 

  • Ciani S, Krasne S, Hagiwara S (1980). A model for the effects of potential and external K+ concentration on the Cs+ blocking of inward rectification. Biophysical Journal 30:199–204.

    PubMed  CAS  Google Scholar 

  • Ciani S, Krasne S, Miyazaki S, Hagiwara S (1978). A model for anomalous rectification: electrochemical-potential-dependent gating of membrane channels. Journal of Membrane Biology 44:103–134.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE (1994) Direct G protein activation of ion channels? Annual Reviews of Neuroscience 17:441–464

    Article  CAS  Google Scholar 

  • Clapham DE, Neer EJ (1997) G protein βγ subunits. Annu Rev Pharmacol Toxicol 37:167–203

    Article  PubMed  CAS  Google Scholar 

  • Clarson LH, Greenwood SL, Mylona P, Sibley CP (2001). Inwardly rectifying K+ current and differentiation of human placental cytotrophoblast cells in culture. Placenta 22: 328–336.

    Article  PubMed  CAS  Google Scholar 

  • Cleemann L, Morad M (1979). Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation. Journal of Physiology 286: 114–143.

    Google Scholar 

  • Clement IV JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997). Association and stoichiometry of K(ATP) channel subunits. Neuron 18: 827–838.

    Article  PubMed  CAS  Google Scholar 

  • Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987). The α subunit of the GTP binding protein GK opens atrial potassium channels. Science 236: 442–445

    Article  PubMed  CAS  Google Scholar 

  • Cohen NA, Brenman JE, Snyder SH, Bredt DS (1996a). Binding of the inward rectifier K+ channel Kir2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17: 759–767.

    Article  PubMed  CAS  Google Scholar 

  • Cohen NA, Sha Q, Makhina EN, Lopatin AN, Linder ME, Snyder SH, Nichols CG (1996b). Inhibition of an inward rectifier potassium channel (Kir2.3) by G-protein betagamma subunits. Journal of Biological Chemistry 271: 32301–32305.

    Article  PubMed  CAS  Google Scholar 

  • Cole KS, Curtis HJ (1941). Membrane potential of the squid giant axon during current flow. Journal of General Physiology 24: 551–563

    Article  CAS  PubMed  Google Scholar 

  • Collins A, Chuang H, Jan YN, Jan LY (1997). Scanning mutagenesis of the putative transmembrane segments of Kir2.1, an inward rectifier potassium channel. Proceedings of the National Academy of Sciences USA 94: 5456–5460.

    Article  CAS  Google Scholar 

  • Collins A, German MS, Jan YN, Jan LY, Zhao B (1996). A strongly inwardly rectifying K+ channel that is sensitive to ATP Journal of Neuroscience 16: 1–9.

    PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1981) Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294: 464–466

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1985). Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. Journal of Physiology 369:501–557

    PubMed  CAS  Google Scholar 

  • Constanti A, Galvan M (1983). Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. Journal of Physiology 335:153–178

    PubMed  CAS  Google Scholar 

  • Costantin LL (1970) The role of sodium current in the radial spread of contraction in frog muscle fibers. Journal of General Physiology 55: 703–715.

    Article  PubMed  CAS  Google Scholar 

  • Corey S, Krapivinsky G, Krapivinsky L, Clapham DE (1998). Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. Journal of Biological Chemistry 273:5271–5278

    Article  PubMed  CAS  Google Scholar 

  • Coulter KL, Perier F, Radeke CM, Vandenberg CA (1995). Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR. Neuron 15: 1157–1168.

    Article  PubMed  CAS  Google Scholar 

  • Crank J (1967). The mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. Journal of Physiology 306:377–412

    Google Scholar 

  • Dart C, Leyland ML (2001). Targeting of an A-kinase anchoring protein, AKAP79, to an inwardly rectifying potassium channel, Kir2.1. Journal of Biological Chemistry 276: 20499–20505.

    Article  PubMed  CAS  Google Scholar 

  • Dart C, Leyland ML, Barrett-Jolley R, Shelton PA, Spencer PJ, Conley EC, Sutcliffe MJ, Stanfield PR (1998a). The dependence of Ag+ block of a potassium channel, murine Kir2.1, on a cysteine residue in the selectivity filter. Journal of Physiology 511:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Dart C, Leyland ML, Spencer PJ, Stanfield PR, Sutcliffe MJ (1998b). The selectivity filter of a potassium channel, murine Kir2.1, investigated using scanning cysteine mutagenesis. Journal of Physiology 511: 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Dascal N (1997) Signalling via the G protein-activated K+ channels. Cell Signaling 9: 551–573.

    Article  CAS  Google Scholar 

  • Dascal N, Doupnik CA, Ivanina T, Bausch S, Wang W, Lin C, Garvey J, Chavkin C, Lester HA, Davidson N (1995). Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail. Proceedings of the National Academy USA 92:6758–6762

    Article  CAS  Google Scholar 

  • Dascal N, Schreibmmayer W, Lim NF, Wang W, Chavkin C, DiMagno L, Labarca C, Kieffer BL, Gaveriaux-Ruff C, Trollinger D, Lester HA, Davidson N (1993). Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proceedings of the National Academy USA 90: 10235–10239.

    Article  CAS  Google Scholar 

  • Davies NW, Shelton PA, Conley EC, Stanfield PR (1996). Subconductance states of the inward rectifier Kir2.1 expressed in murine erythroleukaemia (MEL) cells. Journal of Physiology 495: 89P.

    Google Scholar 

  • Dell'Acqua ML, Scott JD (1997). Protein kinase A anchoring. Journal of Biological Chemistry 272: 12881–12884.

    Article  PubMed  Google Scholar 

  • Demo SD, Yellen G (1991). The inactivation gate of the Shaker K+ channel behaves like an open channel blocker. Neuron 7: 743–753.

    Article  PubMed  CAS  Google Scholar 

  • DePaoli AM, Bell GI, Stoffel M (1994) G protein-activated inwardly rectifying potassium channel (GIRK1/KGA) mRNA in adult rat heart and brain by in situ hybridization histochemistry. Molecular and Cellular Neurosciences 5:515–522

    Article  PubMed  CAS  Google Scholar 

  • Derst C, Hirsch JR, Preisig-Müller R, Wischmeyer E, Karschin A, Döring F, Thomzig A, Veh RW, Schlatter E, Kummer W, Daut J (2001a). Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney. Kidney International 59: 2197–2205.

    PubMed  CAS  Google Scholar 

  • Derst C, Karschin C, Wischmeyer E, Hirsch JR, Preisig-Muller R, Engel H, Grzeschik K, Daut J, Karschin A (2001b). Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits. FEBS Letters 491: 205–311.

    Article  Google Scholar 

  • Dissmann E, Wischmeyer E, Spauschus A, Pfeil DV, Karschin C, Karschin A (1996) Functional expression and cellular mRNA localization of a G protein-activated K+ inward rectifier isolated from rat brain. Biochemical and Biophysical Research Communications 223: 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Doi T, Fakler B, Schultz JH, Schulte U, Brandle U, Weidemann S, Zenner HP, Lang F, Ruppersberg JP (1996). Extracellular K+ and intracellular pH allosterically regulate renal Kir1.1 channels. Journal of Biological Chemistry 271: 17261–17266.

    Article  PubMed  CAS  Google Scholar 

  • Dong K, Xu J, Vanoye CG, Welch R, MacGregor GG, Giebische G, Hebert SC (2001). An amino acid triplet in the NH2-terminus of rat ROMK1 determines interaction with SUR2B. Journal of Biological Chemistry 276: 44347–44353.

    Article  PubMed  CAS  Google Scholar 

  • Döring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A. (1998). The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. Journal of Neuroscience 18: 8625–8636.

    PubMed  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA (1995a). The inward rectifier potassium channel family. Current Opinion in Neurobiology 5: 268–277.

    Article  PubMed  CAS  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA, Kofuji P (1997) RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels. Proceedings of the National Academy USA 94:10461–10466

    Article  CAS  Google Scholar 

  • Doupnik CA, Dessauer CW, Slepak VZ, Gilman AG, Davidson N, Lester HA (1996) Time resolved kinetics of direct Gβ1γ2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits. Neuropharmacology 35:923–931

    Article  PubMed  CAS  Google Scholar 

  • Doupnik CA, Lim NF, Kofuji P, Davidson N, Lester HA (1995b) Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel. Journal of General Physiology 106: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gublis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of a potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69–77

    Article  PubMed  CAS  Google Scholar 

  • Drain P, Li L, Wang J (1998) KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore forming subunit. Proceedings of the National Academy of Sciences USA 95: 13953–13985.

    Article  CAS  Google Scholar 

  • Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honoré E (1995a) Susceptibility of cloned K+ channels to reactive oxygen species. Proceedings of the National Academy USA 92: 11796–11800.

    Article  CAS  Google Scholar 

  • Duprat F, Lesage F, Guillemare E, Fink M, Hugnot JP, Bigay J, Lazdunski M, Romey G, Barhanin J (1995b) Heterologous mutimeric assembly is essential for K+ channel activity of neuronal and cardiac G-protein-activated inward rectifiers. Biochemical and Biophysical Research Communications 212: 657–663.

    Article  PubMed  CAS  Google Scholar 

  • Edwards FR, Hirst GDS (1988a) Inward rectification in submucosal arterioles of guinea-pig ileum. Journal of Physiology 404: 437–454.

    PubMed  CAS  Google Scholar 

  • Edwards FR, Hirst GDS, Silverberg GD (1988b). Inward rectification in rat cerebral arterioles; Involvement of potassium ions in autoregulation. Journal of Physiology 404: 455–466.

    PubMed  CAS  Google Scholar 

  • Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396: 269–272

    Article  PubMed  CAS  Google Scholar 

  • Einhorn LC, Gregerson KA, Oxford GS (1991) D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording. Journal of Neurosciences 11: 3727–3737

    CAS  Google Scholar 

  • Einhorn LC, Oxford GS (1993) Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs. Journal of Physiology 462: 563–578

    PubMed  CAS  Google Scholar 

  • Endoh M, Maruyama M, Iijima T (1985) Attenuation of muscarinic cholinergic inhibition by islet-activating protein in the heart. American Journal of Physiology 249: H309–H320

    PubMed  CAS  Google Scholar 

  • Escobar L, Root MJ, MacKinnon R (1993) Influence of protein surface charge on the bimolecular kinetics of a potassium channel peptide inhibitor. Biochemistry 32: 6982–6987

    Article  PubMed  CAS  Google Scholar 

  • Fakler B, Bond C, Adelman JP, Ruppersberg JP (1996a) Heterololigomeric assembly of inward-rectifier K+ channels from subunits of different families K(ir) 2.1 (IRK1) and K(ir)4.1 (BIR10). Pflügers Archiv 433: 77–83

    Article  PubMed  CAS  Google Scholar 

  • Fakler B, Brändle U, Bond C, Glowatzki S, König C, Adelman JP, Zenner H-P, Ruppersberg JP (1994a). A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine. FEBS Letters 356: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Fakler B, Brändle U, Glowatzki S, Weidemann S, Zenner H-P, Ruppersberg JP (1995). Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell 80: 149–154

    Article  PubMed  CAS  Google Scholar 

  • Fakler B, Brändle U, Glowatzki E, Zenner HP, Ruppersberg JP (1994b) Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 13: 1413–1420

    Article  PubMed  CAS  Google Scholar 

  • Fakler B, Schultz JH, Yang J, Schulte U, Brandle U, Zenner HP, Jan LY, Ruppersberg JP (1996b) Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. EMBO Journal 15: 4093–4099

    PubMed  CAS  Google Scholar 

  • Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. Journal of Biological Chemistry 272: 5388–5395

    Article  PubMed  CAS  Google Scholar 

  • Farkas RH, Chien PY, Nakajima S, Nakajima Y (1996) Properties of a slow nonselective cation conductance modulated by neurotensin and other neurotransmitters in midbrain dopaminergic neurons. Journal of Neurophysiology 76: 1968–1981

    PubMed  CAS  Google Scholar 

  • Farkas RH, Chien PY, Nakajima S, Nakajima Y (1997) Neurotensin and dopamine D2 activation oppositely regulate the same K+ conductance in rat midbrain dopaminergic neurons. Neurosciences Letters 231: 21–24

    Article  CAS  Google Scholar 

  • Farkas RH, Nakajima S, Nakajima Y (1994) Neurotensin excites basal forebrain cholinergic neurons: ionic and signal-transduction mechanisms. Proceedings of the National Academy USA 91: 2853–2857

    Article  CAS  Google Scholar 

  • Ferrer J, Nichols CG, Makhina EN, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A (1995) Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels. Journal of Biological Chemistry 270: 26086–26091

    Article  PubMed  CAS  Google Scholar 

  • Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266: 1068–1072

    Article  PubMed  CAS  Google Scholar 

  • Fink M, Duprat F, Heurteaux C, Lesage F, Romey G, Barhanin J, Lazdunski M (1996) Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+ channel proteins via their N-terminal end. FEBS Letters 378: 64–68

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Lougheed J, Liu J-H, Espinos E, Mordasini D, Bader CR, Belin D, Bernheim L (2001) Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology 153: 677–685

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JE, Lindorfer MA, DeFilippo JM, Yasuda H, Guilmard M, Garrison JC (1998) The G protein β5 subunit interacts selectively with the Gqα subunit. Journal of Biological Chemistry 273: 636–644

    Article  PubMed  CAS  Google Scholar 

  • Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR, Rosal R, Weng G, Yang CS, Iyengar R, Miller RJ, Jan LY, Lefkowitz RJ, Hamm HE (1998) Molecular basis for interactions of G Protein βγ subunits with effectors. Science 280: 1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Forsyth SE, Hoger A, Hoger JH (1997) Molecular cloning and expression of a bovine endothelial inward rectifier potassium channel. FEBS Letters 409: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Freissmuth M, Casey PF, Gilman AG (1989) G proteins control diverse pathways of transmembrane signaling. FASEB Journal 3: 2125–2132

    PubMed  CAS  Google Scholar 

  • French RJ, Shoukimas JJ (1981) Blockage of squid axon potassium conductance by internal tetra-n-alkylammonium ions of various sizes. Biophysical Journal 34: 271–291

    PubMed  CAS  Google Scholar 

  • Fukushima Y (1982) Blocking kinetics of the anomalous potassium rectifier of tunicate egg studied by single channel recording. Journal of Physiology 331: 311–331

    PubMed  CAS  Google Scholar 

  • Gay LA, Stanfield PR (1977) Cs+ causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres. Nature 267: 169–170

    Article  PubMed  CAS  Google Scholar 

  • Gerber U, Stevens DR, McCarley RW, Greene RW (1991) Muscarinic agonists activate an inwardly rectifying potassium conductance in medial pontine reticular formation neurons of the rat in vitro. Journal of Neurosciences 11: 3861–3867

    CAS  Google Scholar 

  • Giebisch G (1998) Renal potassium transport: mechanism and regulation. American Journal of Physiology 274: F817–833

    PubMed  CAS  Google Scholar 

  • Glowatzki E, Fakler G, Brandle U, Rexhausen U, Zenner H-P, Ruppersberg JP, Fakler B (1995) Subunit-dependent assembly of inward-rectifier K+ channels. Proceedings of the Royal Society, B. 261: 251–261

    Article  CAS  Google Scholar 

  • Goodman MB, Art JJ (1996) Positive feedback by a potassium-selective inward rectifier enhances tuning in vertebrate hair cells. Biophysical Journal 71: 430–442

    Article  PubMed  CAS  Google Scholar 

  • Gosset P, Ghezala GA, Korn B, Yapso ML, Poutska A, Lehrach H, Sinet PM, Creau N (1997) A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1). Genomics 44: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Grafe P, Rimpel J, Reddy MM, TenBruggencate G (1982) Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation. Neuroscience 7: 3213–3220

    Article  PubMed  CAS  Google Scholar 

  • Grigg JJ, Kozasa T, Nakajima Y, Nakajima S (1996) Single-channel properties of a G-protein-coupled inward rectifier potassium channel in brain neurons. Journal of Neurophysiology 75: 318–328

    PubMed  CAS  Google Scholar 

  • Gulbis JM, Zhou M, Mann S, MacKinnon R (2000). Structure of the cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Lu Z (2000a). Mechanism of cGMP-gated channel block by intracellular polyamines. Journal of General Physiology 115: 783–797.

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Lu Z (2000b). Mechanism of IRK1 channel block by intracellular polyamines. Journal of General Physiology 115: 799–813.

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Lu Z (2000c). Pore block versis intrinsic gating in the mechanism of inward rectification in strongly rectifying IRK1 channels. Journal of General Physiology 116: 561–568.

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Lu Z (2001). Kinetics of inward-rectifier K+ channel block by quaternary alkylammonium ions: dimensions and properties of the inner pore. Journal of General Physiology 117: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Kubo Y (1998). Comparison of the open-close kinetics of the cloned inward rectifier K+ channel IRK1 and its point mutant (Q140E) in the pore region. Receptors & Channels 5: 273–289.

    CAS  Google Scholar 

  • Hagiwara S, Jaffe LA (1979) Electrical properties of egg cell membranes. Annual Reviews of Biophysics and Bioengineering 8: 385–416

    Article  CAS  Google Scholar 

  • Hagiwara S, Miyazaki S, Krasne S, Ciani S (1977) Anomalous permeabilities of the egg cell membrane of a starfish in K+-Tl+ mixtures. Journal of General Physiology 70: 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Miyazaki S, Moody W, Patlak J (1978). Blocking effects of Ba and H ions on the K current during anomalous rectification in the starfish egg. Journal of Physiology 279: 167–185.

    PubMed  CAS  Google Scholar 

  • Hagiwara S, Miyazaki S, Rosenthal NP (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. Journal of General Physiology 67: 621–638.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S., Takahashi K (1974). The anomalous rectification and cation selectivity of the membrane of a starfish egg. Journal of Membrane Biology 18: 61–80.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Yoshii M (1979). Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. Journal of Physiology 292: 251–265.

    PubMed  CAS  Google Scholar 

  • Hansen CA, Schroering AG, Carey DJ, Robishaw JD (1994) Localization of a heterotrimeric G protein γ subunit to focal adhesions and associated stress fibers. Journal of Cell Biology 126: 811–819

    Article  PubMed  CAS  Google Scholar 

  • Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001). Calcium influx via trp channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30: 149–159.

    Article  PubMed  CAS  Google Scholar 

  • He C, Zhang H, Mirshahi T, Logothetis DE (1999). Identification of a potassium channel site that interacts with G protein βγ subunits to mediate agonist-induced signaling. Journal of Biological Chemistry 274: 12517–12524.

    Article  PubMed  CAS  Google Scholar 

  • Hedin KE, Lim NF, Clapham DE (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16: 423–429

    Article  PubMed  CAS  Google Scholar 

  • CHO HC Tsushima RG, Nguyen T-TT, Guy HR, Backx PH (2000). Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1. Biochemistry: 39: 4649–4657.

    Article  PubMed  CAS  Google Scholar 

  • Heginbotham I, Lu Z, Abramson T, MacKinnon R (1994). Mutations in the K+ channel signature sequence. Biophysical Journal 66: 1061–1067.

    Article  PubMed  CAS  Google Scholar 

  • Heiny JA, Ashcroft FM, Vergara J (1983). T-system optical signals associated with inward rectification in skeletal muscle. Nature 301: 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Henry P, Pearson WL, Nichols CG (1996). Protein kinase C inhibition of cloned inward rectifier (HRK1/Kir2.3) K+ channels expressed in Xenopus oocytes. Journal of Physiology 495: 681–688.

    PubMed  CAS  Google Scholar 

  • Herlitze S, Ruppersberg JP, Mark MD (1999) New roles for RGS2, 5, and 8 on the ratio-dependent modulation of recombinant GIRK channels expressed in Xenopus oocytes. Journal of Physiology (1999) 517: 341–352.

    Article  PubMed  CAS  Google Scholar 

  • Hestrin S (1981). The interaction of potassium with the activation of anomalous rectification in frog muscle membrane. Journal of Physiology 317: 497–508.

    PubMed  CAS  Google Scholar 

  • Hibino H, Inanobe A, Tanemoto M, Fujita A, Doi K, Kubo T, Hata Y, Takai Y, Kurachi Y (2000). Anchoring proteins confer G protein sensitivity to an inward rectifier K+ channel through the GK domain. EMBO Journal 19: 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Hilgemann DW, Ball R (1996). Regulation of cardiac Na+, Ca2+ exchanger and K(ATP) potassium channels by PIP2. Science 273: 956–959.

    Article  PubMed  CAS  Google Scholar 

  • Hill JJ, Peralta EG (2001) Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. Journal of Biological Chemistry 276: 5505–5510.

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1973) Potassium channels in myelinated nerve: selective permeability to small cations. Journal of General Physiology 61: 669–686.

    Article  PubMed  CAS  Google Scholar 

  • Hille B (2001). Ionic Channels of Excitable Membranes 3rd edition. Sinauer, Sunderland Mass. 814pp.

    Google Scholar 

  • Hille B, Schwarz W (1978). Potassium channels as multi-ion single file pores. Journal of General Physiology 72: 409–442.

    Article  PubMed  CAS  Google Scholar 

  • Ho IHM, Murrell-Lagnado RD (1999a). Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. Journal of Physiology 520: 645–651.

    Article  PubMed  CAS  Google Scholar 

  • Ho IHM, Murrell-Lagnado RD (1999b) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. Journal of Biological Chemistry 274: 8639–8648.

    Article  PubMed  CAS  Google Scholar 

  • Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362: 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL (1992) Chance & Design: reminiscences of science in peace and war. Cambridge University Press 412pp.

    Google Scholar 

  • Hodgkin AL, Horowicz P (1959a) Movements of Na and K in single muscle fibres. Journal of Physiology 145: 405–432

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1959b). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. Journal of Physiology 148: 127–160.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Horowicz P (1960). The effect of sudden changes in ionic concentration on the membrane potential of single muscle fibres. Journal of Physiology 153: 370–385.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1949) Ionic currents underlying activity in the giant axon of the squid. Archives des Sciences Physiologiques 3: 129–150

    CAS  Google Scholar 

  • Hodgkin AL, Keynes RD (1955). The potassium permeability of a giant nerve fibre. Journal of Physiology 128: 61–88.

    PubMed  CAS  Google Scholar 

  • Horie M, Irisawa H (1987) Rectification of muscarinic K+ current by magnesium ion in guinea pig atrial cells. American Journal of Physiology 253:H210–214

    PubMed  CAS  Google Scholar 

  • Horie M, Irisawa H (1989) Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. Journal of Physiology 408:313–332

    PubMed  CAS  Google Scholar 

  • Horio Y, Hibino H, Inanobe A, Yamada M, Ishii M, Tada Y, Satoh E, Hata Y, Takai Y, Kurachi Y (1997) Clustering and enhanced activity of an inwardly rectifying potassium channel, Kir4.1, by an anchoring protein, PSD-95/SAP90. Journal of Biological Chemistry 272:12885–12888

    Article  PubMed  CAS  Google Scholar 

  • Horio Y, Kurachi Y (1999). Glial inwardly rectifying potassium channels. Current Topics in Membranes 46:471–484

    CAS  Google Scholar 

  • Hoshi T, Zagotta WN, Aldrich RW (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538.

    Article  PubMed  CAS  Google Scholar 

  • Hou P, Yan S, Tang W, Nelson DJ (1999) The inwardly rectifying K+ channel subunit GIRK1 rescues the GIRK2 weaver phenotype. Journal of Neuroscience 19:8327–8336.

    PubMed  CAS  Google Scholar 

  • Huang C-J, Moczydlowski E (2001). Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophysical Journal 80:1262–1279.

    PubMed  CAS  Google Scholar 

  • Huang CL, Fen S, Hilgemann DW (1998). Direct activation of inward rectifier potassium channels by PIP2 and its stabilisation by Gbetagamma. Nature 391:803–806.

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Jan YN, Jan LY (1997) Binding of the G protein βψ subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett 405:291–298

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Slesinger PA, Casey PJ, Jan YN, Jan LY (1995) Evidence that direct binding of Gβψ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15:1133–1143

    Article  PubMed  CAS  Google Scholar 

  • Hughes BA, Kumar G, Yuan Y, Swaminathan A, Yan D, Sharma A, Plumley L, Yang-Feng TL, Swaroop A (2000). Cloning and functional expression of human retinal Kir2.4, a pH-sensitive inwardly rectifying K+ channel. American Journal of Physiology 279:C771–C784

    PubMed  CAS  Google Scholar 

  • Ibarra J, Morley GE, Delmar M (1991). Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes. Biophysical Journal 60: 1534–1539.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Clement IV JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995a) Reconstitution of I(KATP); an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Gonoi T, Seino S (1997). Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Letters 409:232–236.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki N, Tsuura Y, Namba N, Masuda K, Gonoi T, Horie M, Seino Y, Mizuta M, Seino S (1995b) Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, skeletal muscle, and heart. Journal of Biological Chemistry 270:5691–5694.

    Article  PubMed  CAS  Google Scholar 

  • Inanobe A, Horio Y, Fujita A, Tanemoto M, Hibino H, Inageda K, Kurachi Y (1999) Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. Journal of Physiology 521:19–30.

    Article  PubMed  CAS  Google Scholar 

  • Inanobe A, Ito H, Ito M, Hosoya Y, Kurachi Y (1995a) Immunological and physical characterization of the brain G protein-gated muscarinic potassium channel. Biochemical and Biophysical Research Communications 217:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Inanobe A, Morishige KI, Takahashi N, Ito H, Yamada M, Takumi T, Nishina H, Takahashi K, Kanaho Y, Katada T, Kurachi Y (1995b), Gβψ directly binds to the carboxyl terminus of the G protein-gated muscarinic K+ channel, GIRK1. Biochemical and Biophysical Research Communications 212:1022–1028

    Article  PubMed  CAS  Google Scholar 

  • Iñiguez-Lluhi JA, Simon MJ, Robishaw JD, Gilman AG (1992) G protein βψ subunits synthesized in Sf9 cells. Journal of Biological Chemistry 267:23409–23417

    PubMed  Google Scholar 

  • Inoue M, Nakajima S, Nakajima Y (1988) Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism. Journal of Physiology 407:177–198

    PubMed  CAS  Google Scholar 

  • Isa T, Lino M, Itazawa S-I, Ozawa S (1995) Spermine mediates inward rectification of Ca2+-permeable AMPA receptor channels. Neuroreport 6:2045–2048.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K (1997). Time dependent outward currents through the inward rectifier potassium channel IRK1. Journal of General Physiology 109:229–243.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Ehara T (1998). A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. Journal of Physiology 510:755–771.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Hiraoka M, Ochi R (1996). The tetravalent organic cation spermine causes the gating of the IRK1 channel expressed in murine fibroblast cells. Journal of Physiology 491:367–381.

    PubMed  CAS  Google Scholar 

  • Ishihara K, Mitsuiye T, Noma A, Takano M (1989). The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. Journal of Physiology 419:297–320.

    PubMed  CAS  Google Scholar 

  • Ishii K, Yamagishi T, Taira N (1994). Cloning and functional expression of a cardiac inward rectifier K+ channel. FEBS Letters 338:107–111.

    Article  PubMed  CAS  Google Scholar 

  • Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y (1997) Expression and clustered distribution of an inwardly rectifying potassium channel, K(AB)-2/Kir4.1, on mammalian retinal Muller cell membrane: their regulation by insulin and laminin signals. Journal of Neuroscience 17:7725–7735.

    PubMed  CAS  Google Scholar 

  • Isomoto S, Kondo C, Kurachi Y (1997). Inwardly rectifying potassium channels: Their molecular heterogeneity and function. Japanese Journal of Physiology 47:11–39

    Article  PubMed  CAS  Google Scholar 

  • Isomoto S, Kondo C, Takahashi N, Matsumoto S, Yamada M, Takumi T, Horio Y, Kurachi Y (1996) A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes. Biochemical and Biophysical Research Communications 218:286–291.

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Tung RT, Sugimoto T, Kobayashi I, Takahashi K, Katada T, Ui M, Kurachi Y (1992) On the mechanism of G protein βψ subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Journal of General Physiology 99:961–983

    Article  PubMed  CAS  Google Scholar 

  • Ivanova-Nikolova TT, Breitwieser GE (1997) Effector contributions to Gβψ-mediated signaling as revealed by muscarinic potassium channel gating. Journal of General Physiology 109:245–253

    Article  PubMed  CAS  Google Scholar 

  • Ivanova-Nikolova TT, Nilolov EN, Hansen C, Robishaw JD (1998) Muscarinic K+ channel in the heart. Modal regulation by G protein beta gamma subunits. J Gen Physiol 112:199–210

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Wong BS, Morris CE, Lecar H (1983) Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophysical Journal 42:109–114.

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. Journal of Physiology 327:219–246

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1994) Potassium channels and their evolving gates. Nature 371:119–122.

    Article  PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1997). Cloned potassium channels from eukaryotes and prokaryotes. Annual Reviews of Neuroscience 20:91–123

    Article  CAS  Google Scholar 

  • Janmey PA, Xian W, Flanagan LA (1999). Controlling cytoskeletal structure by phosphoinositide-protein interactions: phosphoinositide binding protein domains and effects of lipid packing. Chemistry and Physics of Lipids 101:93–107.

    Article  PubMed  CAS  Google Scholar 

  • Jelacic TM, Kennedy ME, Wickman K, Clapham DE (2000). Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. Journal of Biological Chemistery 275:36211–36216.

    Article  CAS  Google Scholar 

  • Jelacic TM, Sims SM, Clapham, DE (1999). Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3. Journal Membrane Biologn 169:123–129.

    Article  CAS  Google Scholar 

  • Jiang ZG, Pessia M, North RA (1994) Neurotensin excitation of rat ventral tegmental neurones. Journal of Physiology 474:119–129

    PubMed  CAS  Google Scholar 

  • John SA, Monck JR, Weiss JN, Ribalet B (1998). The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6.2 K+ channel linked to the green fluorescent protein in human embryonic kidney cells (HEK 293). Journal of Physiology 510:333–345.

    Article  PubMed  CAS  Google Scholar 

  • Jones SVP (1996). Modulation of the inwardly rectifying potassium channel IRK1 by the m1 muscarinic receptor. Molecular Pharmacology 49:662–667.

    PubMed  CAS  Google Scholar 

  • Jones SVP (1997). Dual modulation of an inwardly rectifying potassium conductance. Neuropharmacology 36:209–215.

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Tauc L (1966). Anomalous rectification in the metacerebral giant cells and its concequences for synaptic transmission. Journal of Physiology 183:287–304.

    PubMed  CAS  Google Scholar 

  • Kang JX, Xiao Y-F, Leaf A (1995). Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proceedings of the National Academy of Sciences USA 92:3997–4001.

    Article  CAS  Google Scholar 

  • Karschin A, Wischmeyer E (1995). Identification of G protein-regulated inwardly rectifying K+ channels in rat brain oligodendrocytes. Neurosci Lett 183:135–138

    Article  PubMed  CAS  Google Scholar 

  • Karschin A, Wischmeyer E, Davidson N, Lester HA (1994). Fast inhibition of inwardly rectifying K+ channels by multiple neurotransmitter receptors in oligodendroglia. European Journal of Neuroscience 6:1756–1764.

    Article  PubMed  CAS  Google Scholar 

  • Karschin C, DiBmann E, Stühmer W, Karschin A (1996). IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. Journal of Neuroscience 16:3559–3570

    PubMed  CAS  Google Scholar 

  • Karschin C, Karschin A (1997). Ontogeny of gene expression of Kir channel subunits in the rat. Molecular & Cellular Neuroscience 10:131–148.

    Article  CAS  Google Scholar 

  • Karschin C, Schreibmayer W, Dascal N, Lester H, Davidson N, Karschin A (1994) Distribution and localization of a G protein-coupled inwardly rectifying K+ channel in the rat. FEBS Letters 348:139–144.

    Article  PubMed  CAS  Google Scholar 

  • Katz B (1949): Les constantes électriques de la membrane du muscle. Archives des Sciences Physiologiques 3:285–299.

    CAS  Google Scholar 

  • Kennedy ME, Nemec J, Corey S, Wickman K, Clapham DE (1999). GIRK4 confers appropriate processing and cell surface localization to G-protein gated potassium channels. Journal of Biological Chemistry 274:2571–2582.

    Article  PubMed  CAS  Google Scholar 

  • Kerkut GA, Thomas RC (1965) An electrogenic sodium pump in snail nerve cells. Comparative Biochemistry and Physiology 14:167–183

    Article  PubMed  CAS  Google Scholar 

  • Kim D (1991) Modulation of acetylcholine-activated K+ channel function in rat atrial cells by phosphorylation. Journal of Physiology 437:133–155.

    PubMed  CAS  Google Scholar 

  • Kim D, Bang H (1999). Modulation of rat atrial G protein-coupled K+ channel function by phospholipids. Journal of Physiology 517:59–74.

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995). Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378:85–88.

    Article  PubMed  CAS  Google Scholar 

  • Kim KM, Nakajima S, Nakajima Y (1997) Dopamine and GABA receptors in cultured substantia nigra neurons: correlation of electrophysiology and immunocytochemistry. Neuroscience 78:759–769.

    Article  PubMed  CAS  Google Scholar 

  • Kim KM, Nakajima Y, Nakajima S (1995) G protein-coupled inward rectifier activated by dopamine agonists in cultured substantia nigra neurons. Neuroscience 69:1145–1158

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Kerst G, Schreiber R, Pavenstadt H, Greger R, Hug MJ, Bleich M (2000). Inwardly rectifying K+ channels in the basolateral membrane of rat pancreatic acini. Pflügers Archiv 441:331–340.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch GE, Nichols RA, Nakajima S (1977) Delayed rectification in the transverse tubules. Origin of the late after-potential in frog skeletal muscle. Journal of General Physiology 70:1–21.

    Article  PubMed  CAS  Google Scholar 

  • Kisselev O, Gautam N (1993) Specific interaction with rhodopsin is dependent on the g subunit type in a G protein. Journal of Biological Chemistry 268:24519–24522

    PubMed  CAS  Google Scholar 

  • Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353:43–48

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B (1992) Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 358:424–426

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B (1993) Selectivity in signal transduction determined by β subunits of heterotrimeric G proteins. Science 259:832–834

    Article  PubMed  CAS  Google Scholar 

  • Knot HJ, Zimmermann PA, Nelson MT (1996). Extracellular K+-induced hyperpolarizations and dilatation of rat coronary and cerebral arteries involve inward rectifier K+ channels. Journal of Physiology 492:419–430.

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochemical and Biophysical Research Communications 208:1166–1173

    Article  PubMed  CAS  Google Scholar 

  • Kobertz WR, Williams C, Miller C (2000) Hanging gondola structure of the T1 domain in a voltage gated K+ channel. Biochemistry 39:10437–10352.

    Article  CAS  Google Scholar 

  • Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nature Cell Biologn 2:507–514.

    Article  CAS  Google Scholar 

  • Kofuji P, Davidson N, Lester HA (1995) Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by Gβγ subunits and function as heteromultimers. Proceedings of the National Academy of Sciences USA 92:6542–6546

    Article  CAS  Google Scholar 

  • Kofuji P, Doupnik CA, Davidson N, Lester HA (1996a) A unique P-region residue is required for slow voltage-dependent gating of a G protein-activated inward rectifier K+ channel expressed in Xenopus oocytes. Journal of Physiology 490.3:633–645

    Google Scholar 

  • Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA, Hatten M (1996b). Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron 16:941–952.

    Article  PubMed  CAS  Google Scholar 

  • Kondo C, Isomoto S, Matsumoto S, Yamada M, Horio Y, Yamashita S, Takemura-Kameda K, Matsuzawa Y, Kurachi Y (1996) Cloning and functional expression of a novel isoform of ROMK inwardly rectifying ATP-dependent K+ channel, ROMK6 (Kir1.1f). FEBS Letters 399:122–126

    Article  PubMed  CAS  Google Scholar 

  • Korchev YE, Bashford CL, Alder GM, Apel PY, Edmonds DT, Lev AA, Nandi K, Zima AV, Pasternak CA (1997) A novel explanation for fluctuations of ion current through narrow pores. FASEB Journal 11: 600–608

    PubMed  CAS  Google Scholar 

  • Koumi SI, Wasserstrom JA, Ten Eick RE (1995a) β-adrenergic and cholinergic modulation of the inwardly rectifying K+ current in guinea-pig ventricular myocytes. Journal of Physiology 486:647–659

    PubMed  CAS  Google Scholar 

  • Koumi SI, Wasserstrom JA, Ten Eick RE (1995b) β-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in guinea-pig ventricle. Journal of Physiology 486:661–678

    PubMed  CAS  Google Scholar 

  • Kovoor, A., Chen, C-K, He, W., Wensel, T.G., Simon, M.I., and Lester H.A. (2000) Coexpression of Gβ5 enhances the function of two Gγ subunit-like domain-containing regulators of G protein signaling proteins. Journal of Biological Chemistry 275:3397–3402

    Article  PubMed  CAS  Google Scholar 

  • Koyama H, Morishige K-I, Takahashi N, Zanelli JS, Fass DN, Kurachi Y (1994) Molecular cloning, functional expression and localization of a novel inward rectifier potassium channel in the rat brain. FEBS Letters 341:303–307

    Article  PubMed  CAS  Google Scholar 

  • Koyano K, Velimirovic BM, Grigg JJ, Nakajima S, Nakajima Y (1993) Two signal transduction mechanisms of substance P-induced depolarization in locus coeruleus neurons. European Journal of Neuroscience 5: 1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Gordon EA, Wickman B, Velimirovic B, Krapivinsky L, Clapham DE (1995a) The G protein gated atrial K+ channel IK(Ach) is a hetermomultimer of 2 inwardly rectifying K+ channel proteins. Nature 374:135–141

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Kennedy ME, Nemec J, Medina I, Krapivinsky L, Clapham DE (1998a) Gβγ binding to GIRK4 subunit is critical for G protein-gated K+ channel activation. Journal of Biological Chemistry 273:16946–16952

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Wickman K, Clapham DE (1995b) Gβγ binds directly to the G protein-gated K+ channel, IKACh. Journal of Biological Chemistry 270:29059–29062

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE (1998b) Novel inward rectifier K+ channel with unique pore properties. Neuron 20: 995–1005

    Article  PubMed  CAS  Google Scholar 

  • Kuba K, Koketsu K (1976) Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Japanese Journal of Physiology 26:651–669

    PubMed  CAS  Google Scholar 

  • Kubo Y (1996) Effects of extracellular cations and mutations in the pore region of the inward rectifier K+ channel IRK1. Receptors & Channels 4: 73–83

    CAS  Google Scholar 

  • Kubo Y, Baldwin TJ, Jan YN & Jan LY (1993a) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Miyashita T, Kubokawa K (1996) A weakly inward rectifying potassium channel of the salmon brain. Glutamate 179 in the second transmembrane domain is insufficient for strong rectification. Journal of Biological Chemistry 271:15729–15735

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Murata Y (2001) Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. Journal of Physiology 531:645–660

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Reuveny E, Slesinger PA, Jan YN & Jan LY (1993b) Primary structure and functional expression of a rat G-protein coupled muscarinic potassium channel. Nature 364:802–806

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Yoshimichi M, Heinemann SH (1998) Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis. FEBS Letters 435:69–73

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW, Sejnowski TJ (1983) Peptidergic and muscarinic excitation at amphibian sympathetic synapses. Journal of Physiology 341:257–278

    PubMed  CAS  Google Scholar 

  • Kumpf RA Dougherty DA (1993) A mechanism for ion selectivity in potassium channels: computational studies of cation-p interactions. Science 261:1708–1710.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel MT, Peralta EG (1995) Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83:443–449

    Article  PubMed  CAS  Google Scholar 

  • Kurachi Y (1985) Voltage-dependent activation of the inward rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. Journal of Physiology 366:365–385

    PubMed  CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflügers Archiv 407:264–274

    Article  PubMed  CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1987) Short-term desensitization of muscarinic K+ channel current in isolated atrial myocytes and possible role of GTP-binding proteins: Pflügers Archiv 410:227–233

    Article  PubMed  CAS  Google Scholar 

  • Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ (1998) CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Molecular & Cellular Neurosciences 11:161–172

    Article  CAS  Google Scholar 

  • Kürz LL, Kuhlke RD, Zhang HJ, Joho RH (1995) Side chain accessibilities in the pore of a K channel probed by sulfhyrdyl reagents after scanning cysteine mutagenesis. Biophysical Journal 68:900–905.

    PubMed  Google Scholar 

  • Kusaka S, Inanobe A, Fujita A, Makino Y, Tanemoto M, Matsushita K, Tano Y, Kurachi Y (2001) Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium. Journal of Physiology 531:27–36

    Article  PubMed  CAS  Google Scholar 

  • Kuschinsky W, Wahl M, Bosse O, Thurau K (1972) Perivascular potassium and pH as determinants of local pial arterial diameter in cats. Circulation Research 31:240–247

    PubMed  CAS  Google Scholar 

  • Kwon G, Axelrod D, Neubig RR (1994) Lateral mobility of tetramethylrhodamine (TMR) labelled G protein α and βγ subunits in NG 108-15 cells. Cellular Signalling 6:663–679

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lagrutta AA, Bond CT, Xia XM, Pessia M, Tucker S, Adelman JP (1996) Inward rectifier potassium channels:cloning, expression and structure-function studies. Japanese Heart Journal 37:651–660

    PubMed  CAS  Google Scholar 

  • Lambright DB, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379:311–319

    Article  PubMed  CAS  Google Scholar 

  • Lancaster MK, Dibb KM, Quinn CC, Leach R, Lee J-K, Findlay JBC, Boyett MR (2000) Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4. Journal of Biological Chemistry 275:35831–35839

    Article  PubMed  CAS  Google Scholar 

  • Leaney JL, Dekker LV, Tinker A (2001) Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca2+-independent protein kinase C. Journal of Physiology 534:367–379

    Article  PubMed  CAS  Google Scholar 

  • Lee J-K, John SA, Weiss JN (1999) Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. Journal of General Physiology 113:555–563

    Article  PubMed  CAS  Google Scholar 

  • Leech CA, Stanfield PR (1981) Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. Journal of Physiology 319:295–309

    PubMed  CAS  Google Scholar 

  • Lei Q, Jones MB, Talley EM, Schrier AD, McIntire WE, Garrison JC, and Bayliss DA (2000) Activation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein βγ subunits. Proceedings of the National Academy of Sciences USA 97:9771–9776.

    Article  CAS  Google Scholar 

  • Lei Q, Talley EM, Bayliss DA (2001) Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves Gαq family subunits, phospholipase C, and readily diffusible messenger. Journal of Biological Chemistry 276: 16720–16730.

    Article  PubMed  CAS  Google Scholar 

  • Leonoudakis D, Mailliard WS, Wingerd KL, Clegg DO, Vandenberg CA (2001). Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. Journal of Cell Science 114:987–998.

    PubMed  CAS  Google Scholar 

  • Lesage F, Duprat F, Fink M, Guillemare E, Coppola T, Lazdunski M, Hugnot JP (1994) Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Letters 353:37–42

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Guillemare E, Fink M, Duprat F, Heurteaux C, Fosset M, Romey G, Barhanin J, Lazdunski M (1995) Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. Journal of Biological Chemistry 270:28660–28667.

    Article  PubMed  CAS  Google Scholar 

  • Leyland ML, Dart C, Spencer PJ, Sutcliffe MJ, Stanfield PR (1999). The possible role of a disculphide bond in forming functional Kir2.1 channels. Pflügers Archiv 438: 778–781.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Jan YN, Jan LY (1992). Specification of subunit assembly by the hydrophilic amino terminal domain of the Shaker potassium channel. Science 257: 1225–1230.

    Article  PubMed  CAS  Google Scholar 

  • Li M, Unwin N, Stauffer KA, Jan YN, Jan LY (1994). Images of purified Shaker potassium channels. Current Biology 4: 110–115.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sternweis PM, Charnecki S, Smith TF, Gilman AG, Neer EJ, Kozasa T (1998) Sites for Gα binding on the G protein β subunit overlap with sites for regulation of phospholipase Cβ and adenylyl cyclase. Journal of Biological Chemistry 273:16265–16272

    Article  PubMed  CAS  Google Scholar 

  • Liao YJ, Jan YN, Jan LY (1996) Heteromultimerization of protein-gated inwardly rectifying K+ channel protein GIRK1 and GIRK2 and their altered expression in weaver brain. Journal of Neuroscience 16: 7137–7150.

    PubMed  CAS  Google Scholar 

  • Lim NF, Dascal N, Labarca C, Davidson N, Lester HA (1995) A G protein-gated K channel is activated via β2-adrenergic receptors and Gβγ subunits in Xenopus oocytes. Journal of General Physiology 105: 421–439

    Article  PubMed  CAS  Google Scholar 

  • Liou HH, Zhou SS, Huang CL (1999). Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. Proceedings of the National Academy of Sciences USA 96:5820–5825.

    Article  CAS  Google Scholar 

  • Liu J-H, Bijlenga P, Fischer-Lougheed J, Occhiodoro T, Kaelin A, Bader CR, Bernheim L (1998). Role of an inward rectifier K+ current and of hyperpolarization in human myoblast formation. Journal of Physiology 510: 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Holmgren M, Jurman ME, Yellen G (1997). Gated access to the pore of a voltage-dependent K+ channel. Neuron 19: 175–184.

    Article  PubMed  Google Scholar 

  • Liu Y, Liu D, Health L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP Yu W, Curran ME (2001). Direct activation of an inwardly rectifying potassium channel by arachadonic acid. Molecular pharmacology 59: 1061–1068.

    PubMed  CAS  Google Scholar 

  • Loew A, Ho Y-K, Blundell T, Bax B (1998) Phoducin induces a structural change in transducin βγ. Structure 6: 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis DE, Kim D, Northup JK, Neer EJ, Clapham DE (1988) Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proceedings of the National Academy of Sciences USA 85: 5814–5818

    Article  CAS  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1984). Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369.

    Article  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1995). The mechanism of inward rectification of potassium channels: ‘long-pore plugging’ by cytoplasmic polyamines. Journal of General Physiology 106:923–955.

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AN, Nichols CG (1996a) [K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). Journal of General Physiology 108: 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AN, Nichols CG (1996b) [K+] dependence of open channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1) Biophysical Journal 71: 682–694

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1983). Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors & Channels 1: 61–71.

    Google Scholar 

  • Loussouarn G, Makhina EN, Rose T, Nichols CG (2000). Structure and dynamics of the pore of inwardly rectifying KATP channels. Journal of Biological Chemistry 275: 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  • Lü Q, Miller C (1995). Silver as a probe of pore forming residues in a potassium channel. Science 268 304–307.

    Article  PubMed  Google Scholar 

  • Lu T, Nguyen B, Zhang X, Yang J (1999a). Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22: 571–580.

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Zhu Y-G, Yang J (1999b). Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel. Proceedings of the National Academy of Sciences USA 96: 9926–9931.

    Article  CAS  Google Scholar 

  • Lu Z, Klem AM, Ramu Y (2001). Ion conduction pore is conserved among potassium channels. Nature 413: 809–813.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, MacKinnon R (1994) Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371: 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, MacKinnon R (1997). Purification, characterization, and synthesis of an inwardrectifier K+ channel inhibitor from scorpion toxin. Biochemistry 36: 6936–6940.

    Article  PubMed  CAS  Google Scholar 

  • Lucas JJ, Mellström B, Colado MI, Naranjo JR (1993). Molecular mechanisms of pain: serotonin1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron 10: 599–611.

    Article  PubMed  CAS  Google Scholar 

  • Luchian T, Dascal N, Dessauer C, Platzer D, Davidson N, Lester HA, Schreibmayer W (1997) A C-terminal peptide of the GIRK1 subunit directly blocks the G protein-activated K+ channel (GIRK) expressed in Xenopus oocytes. Journal of Physiology 505: 13–22

    Article  PubMed  CAS  Google Scholar 

  • Lüscher C, Jan LY, Stoffel M, Malenka RC and Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19: 687–695.

    Article  PubMed  Google Scholar 

  • Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY (2001). Role of ER export signals in controlling surface potassium channel numbers. Science 291: 316–319.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT (1998). Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280: 106–109.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon R, Yellen G (1990). Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250: 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. Journal of Neuroscience 7: 733–741.

    PubMed  CAS  Google Scholar 

  • Makhina EN, Kelley AJ, Lopatin AN, Nichols CG (1994). Cloning and expression of a novel human brain inward rectifier potassium channel. Journal of Biological Chemistry 269: 20468

    PubMed  CAS  Google Scholar 

  • Mark MD, Herlitze S (2000) G-protein mediated gating of inward-rectifier K+ channels. European Journal of Biochemistry 267:5830–5836.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H (1988). Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. Journal of Physiology 397:237–258.

    PubMed  CAS  Google Scholar 

  • Matsuda H, Matsuura H, Noma A (1989). Triple-barrel structure of inwardly rectifying K+ channels revealed by Cs+ and Rb+ block in guinea-pig heart cells. Journal of Physiology 413: 139–157.

    PubMed  CAS  Google Scholar 

  • Matsuda H, Saigusa A, Irisawa H (1987). Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325: 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Stanfield PR (1989). Single inwardly rectifying potassium channels in cultured muscle cells from rat and mouse. Journal of Physiology 414:111–124

    PubMed  CAS  Google Scholar 

  • McCarron JG, Halpern W (1990). Potassium dilates rat cerebral arteries by two independent mechanisms. American Journal of Physiology 259:H902–H908.

    PubMed  CAS  Google Scholar 

  • McGurk JF, Bennett MVL, Zukin RS (1990). Polyamines potentiate responses of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Proceedings of the National Academy of Sciences USA 87: 9971–9974.

    Article  CAS  Google Scholar 

  • McNicholas CM, Guggino WB, Schweibert EM, Hebert SC, Giebisch G, Egan ME (1996). Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proceedings of the National Academy of Sciences USA 93: 8083–8088.

    Article  CAS  Google Scholar 

  • Medina I, Krapivinsky G, Arnold S, Kovoor P, Krapivinsky L, Clapham DE (2000) A switch mechanism for Gßγ activation of IKACh. Journal of Biological Chemistry 275: 29709–29716.

    Article  PubMed  CAS  Google Scholar 

  • Meves H (1994). Modulation of ion channels by arachidonic acid. Progress in Neurobiology 43: 175–186.

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Wellner-Kienitz, M-C, Biewald A, Bender K, Eickel A, Pott L (2001) Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. Journal of Biological Chemistry 276: 5650–5658.

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Deerinck TJ, Jones M, Ellisman MH, Schwarz TL (1996). Inwardly rectifying K+ channels that may participate in K+ buffering are localized in microvilli of Schwann cells. Journal of Neuroscience 16:2421–2429.

    PubMed  CAS  Google Scholar 

  • Mihara S, North RA, Surprenant A (1987) Somatostatin increases an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurones. Journal of Physiology 390:335–355

    PubMed  CAS  Google Scholar 

  • Minor DL, Masseling SJ, Jan YN, Jan LY (1999) Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879–891.

    Article  PubMed  CAS  Google Scholar 

  • Miyake M, Christie MJ, North RA (1989) Single potassium channels opened by opioids in rat locus ceruleus neurons. Proceedings of the National Academy of Sciences USA 86:3419–3422

    Article  CAS  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N (1999). Nicotinic acetylcholine receptor at 4.6Å resolution: transverse tunnels in the channel wall. Journal of Molecular Biology 288: 765–786.

    Article  PubMed  CAS  Google Scholar 

  • Morishige K-I, Takahashi CN, Jahangir A, Yamada CM, Koyama H, Zanelli JS, Kurachi Y (1994). Molecular cloning and functional expression of a novel brain-specific inward rectifier potassium channel. FEBS Letters 346: 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Morishita R, Nakayama H, Isobe T, Matsuda T, Hashimoto Y, Okano T, Fukada Y, Mizuno K, Ohno S, Kozawa O, Kato K, Asano T (1995) Primary structure of a γ subunit of G protein, γ12, and its phosphorylation by protein kinase C. Journal of Biological Chemistry 270:29469–29475

    Article  PubMed  CAS  Google Scholar 

  • Müllner C., Vorobiov D, Bera AK, Uezono Y, Yakubovich D, Frohnwieser-Steinecker B, Dascal N, Schreibmayer W (2000) Journal of General Physiology 115: 547–557.

    Article  PubMed  Google Scholar 

  • Mumby SM, Casey PJ, Gilman AG, Gutowski S, Sternweis PC (1990) G protein γ subunits contain a 20-carbon isoprenoid. Proceedings of the National Academy of Sciences USA 87:5873–5877

    Article  CAS  Google Scholar 

  • Muntz KH, Sternweis PC, Gilman AG, Mumby SM (1992) Influence of γ subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes. Molecular Biological Cell 3: 49–61

    CAS  Google Scholar 

  • Murer G, Adelbrecht C, Lauritzen I, Lesage F, Lazdunski M, Agid Y, Raisman-Vozari R (1997). An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience 80:345–357

    Article  PubMed  CAS  Google Scholar 

  • Nakajima S, Iwasaki S, Obata K (1962). Delayed rectification and anomalous rectification in frog's skeletal muscle membrane. Journal of General Physiology 46:97–115

    Article  PubMed  CAS  Google Scholar 

  • Nakajima S, Nakajima Y, Peachey LD (1973). Speed of repolarization and morphology of glycerol-treated frog muscle fibres. Journal of Physiology 234:465–480.

    PubMed  CAS  Google Scholar 

  • Nakajima S, Takahashi K (1966) Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. Journal of Physiology 187:105–127

    PubMed  CAS  Google Scholar 

  • Nakajima Y, Nakajima S (1994) Signal transduction mechanisms of tachykinin effects on ion channels. In: Buck SH (ed). The tachykinin receptors. Humana Press Inc. Totowa, New Jersey, pp 285–327

    Google Scholar 

  • Nakajima Y, Nakajima S, Inoue M (1988) Pertussis toxin-insensitive G protein mediates substance P-induced inhibition of potassium channels in brain neurons. Proceedings of the National Academy of Sciences USA 85:3643–3647

    Article  CAS  Google Scholar 

  • Nakajima Y, Nakajima S, Kozasa T (1996) Activation of G protein-coupled inward rectifier K+ channels in brain neurons requires association of G protein βγ subunits with cell membrane. FEBS Letters 390:217–220

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Suzuki Y, Sakuta H, Ookata K, Kawahara K, Hirose S (1999). Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: Implication for a functional coupling with Na+, K+-ATPase. Biochemical Journal 342: 329–336.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura TY, Artman M, Rudy B, Coetzee WA (1998). Inhibition of rat ventricular IK1 with antisense oigonucleotides targeted to Kir2.1 mRNA. American Journal of Physiology 274: H892–900.

    PubMed  CAS  Google Scholar 

  • Namba N, Inagaki N, Gonoi T, Seino Y, Seino S (1996). Kir2.2v: a possible negative regulator of the inwardly rectifying K+ channel Kir2.2. FEBS Letters 386:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Navarro B, Kennedy ME, Velimirovic B, Bhat D, Peterson AS, Clapham DE (1996). Non-selective and G-insensitive weaver K+ channels. Science 272: 1950–1953.

    Article  PubMed  CAS  Google Scholar 

  • Nehring RB, Wischmeyer E, Doring F, Veh RW, Sheng M, Karschin A (2000). Neuronal inwardly rectifying K+ channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. Journal of Neuroscience 20: 156–162.

    PubMed  CAS  Google Scholar 

  • Nelson CS, Marino JL, Allen CN (1997). Cloning and characterization of Kir3.1 (GIRK1) C-terminal alternative splice variants. Molecular Brain Research 46: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB Journal 8:939–946

    PubMed  CAS  Google Scholar 

  • Newman EA (1984). Regional specialization of retinal glial cell membrane. Nature 309: 155–157

    Article  PubMed  CAS  Google Scholar 

  • Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. Journal of Neuroscience 13:3333–3345

    PubMed  CAS  Google Scholar 

  • Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annual Reviews of Physiology 59:171–191

    Article  CAS  Google Scholar 

  • Nilius B, Schwarz G, Droogmans G (1993) Modulation by histamine of an inwardly rectifying potassium channel in human endothelial cells. Journal of Physiology 472:359–371

    PubMed  CAS  Google Scholar 

  • Niu XW, Meech RW (1998) The effect of polyamines on K(ATP) channels in guineapig ventricular myocytes. Journal of Physiology 508: 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148

    Article  PubMed  CAS  Google Scholar 

  • North RA (1989) Drug receptors and the inhibition of nerve cells. British Journal of Pharmacology 98:13–28

    PubMed  CAS  Google Scholar 

  • North RA, Uchimura N (1989) 5-hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. Journal of Physiology 417:1–12

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. Journal of Physiology 364:265–280

    PubMed  CAS  Google Scholar 

  • North RA, Williams JT, Surprenant A, Christie MJ (1987) μ and δ receptors belong to a family of receptors that are coupled to potassium channels. Proceedings of the National Academy of Sciences USA 84:5487–5491

    Article  CAS  Google Scholar 

  • Oh U, Ho Y-K, Kim D (1995) Modulation of the serotonin-activated K+ channel by G protein subunits and nucleotides in rat hippocampal neurons. Journal of Membrane Biological 147:241–253

    CAS  Google Scholar 

  • Ohmori H (1978). Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes. Journal of Physiology 281:77–89.

    PubMed  CAS  Google Scholar 

  • Oishi K, Omori K, Ohyama H, Shingu K, Matsuda H (1998). Neutralization of aspartate residues in the murine inwardly rectifying K+ channel IRK1 affects the substate behaviour in Mg2+ block. Journal of Physiology 510:675–683.

    Article  PubMed  CAS  Google Scholar 

  • Olesen SP, Bundgaard M (1993) ATP-dependent closure and reactivation of inward rectifier K+ channels in endothelial cells. Circulation Research 73:492–495

    PubMed  CAS  Google Scholar 

  • Olesen SP, Davies PF, Clapham DE (1988) Muscarinic-activated K+ current in bovine aortic endothelial cells. Circulation Research 62:1059–1064.

    PubMed  CAS  Google Scholar 

  • Oliva C, Cohen IS, Pennefather P (1990). The mechanism of rectification of i(K1) in canine Purkinje myocytes. Journal of General Physiology 96:299–318.

    Article  PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. Journal of Neurophysiology 29:788–806

    PubMed  CAS  Google Scholar 

  • Osmanovic SS, Shefner SA (1987) Anomalous rectification in rat locus coeruleus neurons. Brain Research 417:161–166

    Article  PubMed  CAS  Google Scholar 

  • Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    Article  PubMed  CAS  Google Scholar 

  • Pardo LA, Heinemann SH, Terlau H, Ludewig U, Lorra C, Pongs O, Stühmer W (1992). Extracellular K+ specifically modulates a rat brain K+ channel. Proceedings of the National Academy of Sciences USA 89:2466–2470.

    Article  CAS  Google Scholar 

  • Pascual JM, Shieh C-C, Kirsch GE, Brown AM (1995). K+ pore structure revealed by reporter cysteines at inner and outer surfaces. Neuron 14:1055–1063.

    Article  PubMed  CAS  Google Scholar 

  • Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genetics 11:126–129.

    Article  PubMed  CAS  Google Scholar 

  • Paulson OB, Newman EA (1987). Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898.

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080.

    Article  PubMed  CAS  Google Scholar 

  • Pearson WL, Dourado M, Schreiber M, Salkoff L, Nichols CG. (1999). Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver. Journal of Physiology 514:655–665.

    Article  Google Scholar 

  • Pearson WL, Nichols CG (1998). Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines. Journal of General Physiology 112:351–363.

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Zhang H, Hirsch J, Logothetis DE (2000) The yeast βγ subunits of G proteins inhibit GIRK4 channels. Biophysical Journal 78:465A.

    Google Scholar 

  • Penington NJ, Kelly JS, Fox AP (1993a) Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. Journal of Physiology (Lond) 469:387–405

    CAS  Google Scholar 

  • Penington NJ, Kelly JS, Fox AP (1993b) Unitary properties of potassium channels activated by 5-HT in acutely isolated rat dorsal raphe neurones. Journal of Physiology 469:407–426.

    PubMed  CAS  Google Scholar 

  • Pennefather P, Oliva C, & Mulrine N (1992) Origin of the potassium and voltage dependence of the cardiac inwardly rectifying K-current, I (K1). Biophysical Journal 61:448–462.

    PubMed  CAS  Google Scholar 

  • Pennefather PS, Heisler S, MacDonald JF (1988) A potassium conductance contributes to the action of somatostatin-14 to suppress ACTH secretion. Brain Research 444:346–350

    Article  PubMed  CAS  Google Scholar 

  • Périer F, Radeke CM, Vandenberg CA (1994) Primary structure and characterization of a small-conductance inwardly rectifying potassium channel from human hippocampus. Proceedings of the National Academy of Sciences USA 91:6240–6244.

    Article  Google Scholar 

  • Perillán PR, Li X, Potts EA, Chen M, Bredt DS, Simard JM (2000). Inward rectifier K+ channel Kir2.3 (IRK3) in reactive astrocytes from adult rat brain. Glia 31: 181–192.

    Article  PubMed  Google Scholar 

  • Perozo E, Cortes DM, Cuello LG (1999). Structural rearangements underlying K+-channel activation gating. Science 285:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Pessia M, Tucker SJ, Lee K, Bond CT, Adelman JP (1996). Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO Journal 15: 2980–2987.

    PubMed  CAS  Google Scholar 

  • Peters R (1981) Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biology International Reports 5:733–760

    Article  PubMed  CAS  Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538

    Article  PubMed  CAS  Google Scholar 

  • Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George Jr AL, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105:511–519.

    Article  PubMed  CAS  Google Scholar 

  • Posner BA, Mukhopadhyay, S, Tesmer JJ, Gilman AG, Ross EM (1999) Modulation of the affinity and selectivity of RGS protein interaction with Gα subunits by a conserved aspargine/serine residue. Biochemistry 38:7773–7779.

    Article  PubMed  CAS  Google Scholar 

  • Prior HM, Webster N, Quinn K, Beech DJ, Yates MS (1998). K+-induced dilation of a small renal artery: no role for inward rectifier K+ channels. Cardiovascular Research 37:780–790.

    Article  PubMed  CAS  Google Scholar 

  • Pronin AN, Gautam N (1992) Interaction between G-protein β and γ subunit types is selective. Proceedings of the National Academy of Sciences USA 89:6220–6224

    Article  CAS  Google Scholar 

  • Qu Z, Yang Z, Cui N, Zhu G, Liu C, Xu H, Chanchevalap S, Shen W, Wu J, Li Y, Jiang C (2000) Gating of inward rectifier K+ channels by proton-mediated interactions of N-and C-terminal domains. Journal of Biological Chemistry 275:31573–31580.

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Zhu G, Yang Z, Cui N, Li Y, Chanchevalap S, Sulaiman S, Haynie H, Jiang C (1999) Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. Journal of Biological Chemistry 274:13783–13789.

    Article  PubMed  CAS  Google Scholar 

  • Quayle JM, Dart C, Standen NB (1996) The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. Journal of Physiology 494: 715–726.

    PubMed  CAS  Google Scholar 

  • Raab-Graham KF, Radeke CM, Vandenberg CA (1994) Molecular cloning and expression of a human heart inward rectifier potassium channel. Neuroreport 5:2501–2501.

    Article  PubMed  CAS  Google Scholar 

  • Raab-Graham KF, Vandenberg CA (1998) Tetrameric subunit structure of the native brain inwardly rectifying potassium channel K(ir)2.2. Journal of Biological Chemistry 273:19699–19707.

    Article  PubMed  CAS  Google Scholar 

  • Rakowski RF, Gadsby DC, De Weer P (1989) Stoichiometry and voltage dependence of the sodium pump in voltage-clamped, internally dialyzed squid giant axon. Journal of General Physiology 93:903–941

    Article  PubMed  CAS  Google Scholar 

  • Rang HP, Ritchie JM (1968) On the electrogenic sodium pump in mammalian nonmyelinated nerve fibres and its activation by various external cations. Journal of Physiology 196:183–221.

    PubMed  CAS  Google Scholar 

  • Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage gated K+ channels altered by the presence of a β subunit. Nature 369:289–294.

    Article  PubMed  CAS  Google Scholar 

  • Reuveny E, Jan YN, Jan LY (1996) Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K+-selective permeation. Biophysical Journal 70:754–761.

    Article  PubMed  CAS  Google Scholar 

  • Reuveny E, Slesinger PA, Inglese J, Morales JM, Iñiguez-Lluhi JA, Lefkowitz RJ, Bourne HR, Jan YN, Jan LY (1994) Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature 370:143–146

    Article  PubMed  CAS  Google Scholar 

  • Rohács T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. Journal of Biological Chemistry 274:36065–36072

    Article  PubMed  Google Scholar 

  • Ross, E.M. and Wilkie, T.M. (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annual Reviews of Biochemistery 69:795–827.

    Article  CAS  Google Scholar 

  • Roy ML, Sontheimer H (1995) β-Adrenergic modulation of glial inwardly rectifying potassium channels. Journal of Neurochemistery 64:1576–1584

    Article  CAS  Google Scholar 

  • Roychowdhury S, Rasenick MM (1997) G protein β1γ2 subunits promote microtubule assmebly. Journal of Biological Chemistery 272:31576–31581

    Article  CAS  Google Scholar 

  • Roychowdhury S, Wang N, Rasenick M (1993) G protein binding and G protein activation by nucleotide transfer involve distinct domains on tubulin: regulation of signal transduction by cytokeletal elements. Biochemistry 32:4955–4961

    Article  PubMed  CAS  Google Scholar 

  • Ruppersberg JP, Fakler B (1996) Complexity of the regulation of K(ir)2.1 K+ channels. Neuropharmacology 35:887–893.

    Article  PubMed  CAS  Google Scholar 

  • Sabirov RZ, Okada Y, Oiki S (1997a). Two-sided action of protons on an inward rectifier K+ channel (IRK1). Pflügers Archiv 433:428–434.

    Article  PubMed  CAS  Google Scholar 

  • Sabirov RZ, Tominaga T, Miwa A, Okada Y, Oiki S (1997b). A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers. Journal of General Physiology 110:665–677.

    Article  PubMed  CAS  Google Scholar 

  • Sadja R, Smadja K, Alagem N, Reuveny E (2001) Coupling Gβγ-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels. Neuron 29: 669–680.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh O, Kubo Y, Miyatani Y, Asano T, Nakata H (1997) RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature 390:525–529

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B, Noma A, Trautwein W (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303:250–253

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B, Patlak J, Neher E (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286:71–73.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt CJ, Thomas TC, Levine MA, Neer EJ (1992) Specificity of G protein β and γ subunit interactions. Journal of Biological Chemistery 267:13807–13810

    CAS  Google Scholar 

  • Schreibmayer W, Dessauer CW, Vorobiov D, Gilman AG, Lester HA, Davidson N, Dascal N (1996) Inhibition of an inwardly rectifying K+ channel by G-protein α-subunits. Nature 380:624–627

    Article  PubMed  CAS  Google Scholar 

  • Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J (199) pH gating of ROMK (K(ir)1.1.) channels: control by an Arg-Lys-Arg triad disrupted in Bartter syndrome. Proceedings of the National Academy of Sciences USA 96: 15298–15303.

    Article  Google Scholar 

  • Schulte U, Weidemann S, Ludwig J, ruppersberg JP, Fakler B (2001). K+-dependent gating of Kir2.1 channels is linked to pH gating through a conformational change in the pore. Journal of Physiology 534:59–70.

    Article  Google Scholar 

  • Sharon D, Vorobiov D, Dascal N (1997) Positive and negative coupling of the metabotropic glutamate receptors to a G protein-activated K+ channel, GIRK, in Xenopus oocytes. Journal of General Physiology 109:477–490

    Article  PubMed  CAS  Google Scholar 

  • Shelton PA, Davies NW, Conley EC, Sutcliffe MJ & Stanfield PR (1995). Effects of N-and C-terminal deletions from the murine inward rectifier potassium channel IRK1. Japanese Journal of Physiology 45 (Suppl 2): S110.

    Google Scholar 

  • Shieh R-C (2000) Mechanisms for the time-dependent decay of inward currents through cloned Kir2,1 channels expressed in Xenopus ococytes. Journal of Physiology 526:241–252.

    Article  PubMed  CAS  Google Scholar 

  • Shieh R-C, Chang J-C, Arreola J (1998) Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes. Biophysical Journal 75:2313–2322.

    PubMed  CAS  Google Scholar 

  • Shieh R-C, Chang J-C, Kuo C-C (1999) K+ binding sites and interactions between permeating K+ ions at the external pore mouth of an inward rectifier K+ channel (Kir2.1). Journal of Biological Chemistry 274:17424–17430.

    Article  PubMed  CAS  Google Scholar 

  • Shieh R-C, John SA, Lee J-K, Weiss JN (1996) Inward rectification of the IRK1 channel expressed in Xenopus oocytes: Effects of intracellular pH reveal an intrinsic gating mechanism. Journal of Physiology 494:363–376.

    PubMed  CAS  Google Scholar 

  • Shieh R-C, Lee J-K (2001) Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes. Journal of Physiology 535:359–370.

    Article  PubMed  CAS  Google Scholar 

  • Shin KS, Park JY, Kwon H, Chung CH, Kang MS (1997) A possible role of inwardly rectifying K+ channels in chick myoblast differentiation. American Journal of Physiology 272:C894–900.

    PubMed  CAS  Google Scholar 

  • Shuck ME, Bock JH, Benjamin CW, Tsai TD, Lee KS, Slightom JL, Bienkowski MJ (1994a) Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. Journal of Biological Chemistery 269:24261–24270

    CAS  Google Scholar 

  • Shuck ME, Piser TM, Bock JH, Slightom JL, Lee KS, Bienkowski MJ (1994b) Cloning and characterization of two K+ inward rectifier (K(ir) 1.1) potassium channel homologs from human kidney (K(ir) 1.2 and K(ir) 1.3) Journal of Biological Chemistry 272:586–593.

    Google Scholar 

  • Shyng S-L, Barbieri A, Gumusboga A, Cukras C, Pike L, Davis JN, Stahl PD, Nichols CG (2000) Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase. Proceedings of the National Academy of Sciences USA 97:937–941.

    Article  CAS  Google Scholar 

  • Shyng S-L, Nichols CG (1997). Octameric stoichiometry of the K(ATP) channel complex. Journal of General Physiology 110:655–664.

    Article  PubMed  CAS  Google Scholar 

  • Shyng S-L, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1144

    Article  PubMed  CAS  Google Scholar 

  • Shyng S-L, Sha Q, Ferrigni T, Lopatin AN & Nichols CG (1996). Depletion of intracellular polyamines relieves inward rectification of potassium channels. Proceedings of the National Academy of Sciences USA 93:12014–12019.

    Article  CAS  Google Scholar 

  • Sigworth FJ (1985) Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuation. Biophysical Journal 47:709–720.

    PubMed  CAS  Google Scholar 

  • Silver MR, DeCoursey TE (1990). Intrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+. Journal of General Physiology 96:109–133.

    Article  PubMed  CAS  Google Scholar 

  • Silverman SK, Lester HA, Dougherty DA (1996) Subunit stoichiometry of a heteromultimeric G protein-coupled inward-rectifier K+ channel. Journal of Biological Chemistery 271:30524–30528

    Article  CAS  Google Scholar 

  • Silverman SK, Lester HA, Dougherty DA (1998). Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel. Biophysical Journal 75: 1330–1339.

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Butrynski JE, Gautam N, Unson CG, Spiegel AM (1991) G-protein βγ dimers. Journal of Biological Chemistery 266:5363–5366

    CAS  Google Scholar 

  • Sine SM, Claudio T, Sigworth FJ (1990) Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Journal of General Physiology 96:395–437

    Article  PubMed  CAS  Google Scholar 

  • Sine SM, Steinbach JH (1984) Activation of a nicotinic acetylcholine receptor. Biophysical Journal 45:175–85

    PubMed  CAS  Google Scholar 

  • Slesinger P, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR (1996). Functional effects of the mouse weaver mutation on G-protein-gated inwardly rectifying K+ channels. Neuron 16, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Slesinger PA, Reuveny E, Jan YN, Jan LY (1995) Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron 15:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Snow, B.E., Betts, L., Mangion, J., Sondek, J., and Siderovski, D.P. (1999) Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proceedings of the National Academy of Sciences USA 96: 6489–6494.

    Article  CAS  Google Scholar 

  • Snow, B.E., Krumins, A.M., Brothers, G.M., Lee, S.-F., Wall, M.A., Chung, S., Mangion, J., Arya, S., Gilman, A.G., and Siderovski, D.P. (1998) A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proceedings of the National Academy of Sciences USA 95: 13307–13312.

    Article  CAS  Google Scholar 

  • So I, Ashmole I, Davies NW, Sutcliffe MJ, Stanfield PR (2001). The K+ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. Journal of Physiology 531:37–50.

    Article  PubMed  CAS  Google Scholar 

  • Sodickson DL, Bean BP (1996) GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. Journal of Neuroscience 16:6374–6385.

    PubMed  CAS  Google Scholar 

  • Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Archiv 400:424–431

    Article  PubMed  CAS  Google Scholar 

  • Sokolova O, Kolmakova-Partensky L, Grigorieff N (2001): Three-dimensional structure of a voltage-gated potassium channel at 2.5nm resolution. Structure 9: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a GA protein βγ dimer at 2.1A resolution. Nature 379:369–374

    Article  PubMed  CAS  Google Scholar 

  • Soom M, Schonherr R, Kubo Y, Kirsch C, Klinger R, Heinemann SH (2001). Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Letters 490:49–53.

    Article  PubMed  CAS  Google Scholar 

  • Sorota S, Tsuji Y, Tajima T, Pappano AJ (1985) Pertussis toxin treatment blocks hyperpolarization by muscarinic agonists in chick atrium. Circulation Research 57:748–758

    PubMed  CAS  Google Scholar 

  • Spalding BC, Senyk O, Swift JG, Horowicz P (1981). Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle. American Journal of Physiology 10: C68–C75.

    Google Scholar 

  • Spassova M, Lu Z (1998). Coupled ion movement underlies rectification in an inward-rectifier K+ channel. Journal of General Physiology 112:211–221.

    Article  PubMed  CAS  Google Scholar 

  • Spauschus A, Lentes K-U, Wischmeyer E, Dibmann E, Karschin C, Karschin A (1996) A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels. Journal of Neuroscience 16:930–938

    PubMed  CAS  Google Scholar 

  • Stampe P, Arreola J, Perez-Cornejo P, Begenisich T (1998). Non independent K+ movement throught the pore in IRK1 potassium channels. Journal of General Physiology 112:475–484.

    Article  PubMed  CAS  Google Scholar 

  • Stampe P, Begenisich T (1996). Unidirectional K+ fluxes through recombinant Shaker potassium channels expressed in single Xenopus oocytes. Journal of General Physiology 107:449–457.

    Article  PubMed  CAS  Google Scholar 

  • Standen NB, Stanfield PR (1978a). A potential-and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. Journal of Physiology 280:169–191.

    PubMed  CAS  Google Scholar 

  • Standen NB, Stanfield PR (1978b). Inward rectification in skeletal muscle: a blocking particle model. Pflügers Archiv 378:173–176.

    Article  PubMed  CAS  Google Scholar 

  • Standen NB, Stanfield PR (1979). Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius. Journal of Physiology 294: 497–520.

    PubMed  CAS  Google Scholar 

  • Standen NB, Stanfield PR (1980). Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres. Journal of Physiology 304:415–435.

    PubMed  CAS  Google Scholar 

  • Stanfield PR, Ashcroft FM, Plant TD (1981). Gating of a muscle potassium channel and its dependence on the permeating ion species. Nature 289:509–510.

    Article  PubMed  CAS  Google Scholar 

  • Stanfield PR, Davies NW, Shelton PA Khan IA, Brammar WJ, Standen NB, Conley EC (1994a) The intrinsic gating of inward rectifier K+ channels expressed from the murine IRK1 gene depends on voltage, K+ and Mg2+. Journal of Physiology 475: 1–7.

    PubMed  CAS  Google Scholar 

  • Stanfield PR, Davies NW, Shelton PA Sutcliffe MJ Khan IA, Brammar WJ, Conley EC (1994b) A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. Journal of Physiology 478:1–6.

    PubMed  CAS  Google Scholar 

  • Stanfield PR, Nakajima Y, Yamaguchi K (1985) Substance P raises neuronal membrane excitability by reducing inward rectification. Nature 315:498–501

    Article  PubMed  CAS  Google Scholar 

  • Stevens EB, Shah BS, Pinnock RD, Lee K (1999) Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. Molecular Pharmacology 55:1020–1027.

    PubMed  CAS  Google Scholar 

  • Stockklausner, C, Ludwig J, Ruppersberg JP, Klöcker N (2001). A sequence motif responsible for ER export and surface expression of Kir2.0 inward rectifier K+ channels. FEBS Letters 493:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ (1999). Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochemistry & Cell Biology 112:457–465.

    Article  CAS  Google Scholar 

  • Sui JL, Chan KW, Logothetis DE (1996) Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J Gen Physiol 108:381–391

    Article  PubMed  CAS  Google Scholar 

  • Sui JL, Petit-Jacues J, Logothetis DE (1998) Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phophatidylinositol phosphates. Proceedings of the National Academy of Sciences USA 95:1307–1312.

    Article  CAS  Google Scholar 

  • Surprenant A, North RA (1988) Mechanism of synaptic inhibition by noradrenaline acting at α2-adrenoceptors. Proceedings of the Royal Society B234:85–114

    Article  CAS  Google Scholar 

  • Sutton KG, Dolphin AC, Scott RH (1993) Inhibition of voltage-activated Ca2+ currents from cultured sensory neurones by spermine, argiotoxin-636 and a synthetic arginine polyamine. Molecular Neuropharmacology 3:37–43.

    CAS  Google Scholar 

  • Taglialatela M, Ficker E, Wible BA, Brown AM (1995) C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO Journal 14:5532–5541.

    PubMed  CAS  Google Scholar 

  • Taglialatela M, Wible BA, Caporaso R, Brown AM (1994) Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264:844–847

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Morishige K-I, Jahangir A, Yamada M, Findlay I, Koyama H, Kurachi Y (1994) Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain. Journal of Biological Chemistry 269:23274–23279.

    PubMed  CAS  Google Scholar 

  • Takano K, Asano S, Yamashita N (1994) Activation of G protein-coupled K+ channels by dopamine in human GH-producing cells. American Journal of Physiology 266:E318–E325

    PubMed  CAS  Google Scholar 

  • Takano K, Stanfield PR, Nakajima S, Nakajima Y (1995) Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neurons. Neuron 14:999–1008

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Yasufuku-Takano J, Kozasa T, Nakajima S, Nakajima Y (1997) Different G proteins mediate somatostatin-induced inward rectifier K+ currents in murine brain and endocrine cells. Journal of Physiology 502:559–567

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Yasufuku-Takano J, Kozasa T, Singer WD, Nakajima S, Nakajima Y (1996) Gq/11 and PLC-β1 mediate substance P-induced inhibition of an inward rectifier K+ channel in brain neurons. Journal of Neurophysiology 76:2131–2136

    PubMed  CAS  Google Scholar 

  • Takao K, Yoshii M, Kanda A, Kokubun S, Nukada T (1994) A region of the muscarinic-gated atrial K+ channel critical for activation by G protein βγ subunits. Neuron 13:747–755

    Article  PubMed  CAS  Google Scholar 

  • Takumi T, Ishii T, Horio Y, Morishige K-I, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakahishi S, Kurachi Y (1995) A novel ATP-dependent inward rectifier potassium channels expressed predominantly in glial cells. Journal of Biological Chemistry 270:16339–16346.

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Yang X-C. (1994). Cloning a novel human brain inward rectifier potassium channel and its functional expression in Xenopus oocytes. FEBS Letters 348:239–243

    Article  PubMed  CAS  Google Scholar 

  • Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at shaker locus of drosophila. Science 237:770–775

    Article  PubMed  CAS  Google Scholar 

  • Thomas RC (1972) Electrogenic sodium pump in nerve and muscel cells. Physiological Reviews 52:563–594

    PubMed  CAS  Google Scholar 

  • Thompson GA, Leyland MJ, Ashmole I, Sutcliffe MJ, Stanfield PR (2000). Residues beyond the selectivity filter of the K+ channel Kir2.1 regulate permeation and block by external Rb+ and Cs+. Journal of Physiology 526:231–240.

    Article  PubMed  CAS  Google Scholar 

  • Tinker A, Jan YN, Jan, LY (1996). Regions responsible for the assembly of inwardly rectifying potassium channels. Cell 87:857–868.

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Brandt GS, Li M, Shapovalov G, Slimko E, Karschin A, Dougherty DA, Lester HA (2001) Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel. Journal of General Physiology 117:103–118.

    Article  PubMed  CAS  Google Scholar 

  • Töpert C, Döring F, Wischmeyer E, Karschin C, Brockhaus J, Ballanyi K, Derst C, Karschin A (1998). Kir2.4: A novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. Journal of Neuroscience 18:4096–4105.

    PubMed  Google Scholar 

  • Trautwein W, Dudel J (1958) Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflügers Archiv 266:324–334

    Article  PubMed  CAS  Google Scholar 

  • Trussell LO, Jackson MB (1985) Adenosine-activated potassium conductance in cultured striatal neurons. Proceedings of the National Academy of Sciences USA 82:4857–4861

    Article  CAS  Google Scholar 

  • Trussell LO, Jackson MB (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. Journal of Neuroscience 7:3306–3316

    PubMed  CAS  Google Scholar 

  • Tsaur M-L, Menzel S, Lai F-P, Espinosa III R, Concannon P, Spielman RS, Hanis CL, Cox NJ, Le Beau MM, German MS, Jan LY, Bell GI, Stoffel M (1995) Isolation of a cDNA clone encoding a K(ATP) channel-like protein expressed in insulin-secreting cells, localization of the human gene to chromosome band 21q22.1, and linkage studies with NIDDM. Diabetes 44:592–596.

    Article  PubMed  CAS  Google Scholar 

  • Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM (1998) Molecular determinants of KATP channel inhibition by ATP. EMBO Journal 17:3290–3296.

    Article  PubMed  CAS  Google Scholar 

  • Tucker SJ, Pessia M, Adelman JP (1996) Muscarine-gated K+ channel: subunit stoichiometry and structural domains essential for G protein stimulation. American Journal of Physiology 271:H379–H385

    PubMed  CAS  Google Scholar 

  • Uchimura N, North RA (1990) Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones. Journal of Physiology 422:369–380

    PubMed  CAS  Google Scholar 

  • Vandenberg CA (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proceedings of the National Academy USA 84:2560–2564.

    Article  CAS  Google Scholar 

  • Velimirovic BM, Gordon EA, Lim NF, Navarro B, Clapham DE (1996) The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K+ channel. FEBS Letters 379:31–37

    Article  PubMed  CAS  Google Scholar 

  • Velimirovic B, Koyano K, Nakajima S, and Nakajima, Y. (1991) Substance P, somatostatin and met-enkephalin regulate the same K-channel in cultured noradrenergic neurons from the locus coeruleus. Society for Neuroscience Abstracts, 17:1474.

    Google Scholar 

  • Velimirovic BM, Koyano K, Nakajima S, Nakajima Y (1995) Opposing mechanisms of regulation of a G-protein-coupled inward rectifier K+ channel in rat brain neurons. Proceedings of the National Academy of Sciences USA 92:1590–1594

    Article  CAS  Google Scholar 

  • Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Giα1β1Y2. Cell 83:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Wallinga W, Meijer SL, Alberink MJ, Vliek M, Wienk ED, Ypey DL (1999) Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. European Biophysics Journal 28:317–329.

    Article  PubMed  CAS  Google Scholar 

  • Wang HS, McKinnon D (1996) Modulation of inwardly rectifying currents in rat sympathetic neurones by muscarinic receptors. Journal of Physiology 492.2:467–478

    Google Scholar 

  • Wang W, Giebisch G (1991) Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proceedings of the National Academy of Sciences USA 88:9722–9725

    Article  CAS  Google Scholar 

  • Warmke JW, Ganetsky B (1994). A family of potassium channel genes related to eag in Drosophila and mammals. Proceedings of the National Academy USA 91: 3438–3442.

    Article  CAS  Google Scholar 

  • Watson S, Arkinstall S (1994) The G-protein linked receptor facts book Academic Press, London. 427pp.

    Google Scholar 

  • Wei J, Hodes ME, Piva R, Wang Y, Wang Y, Ghetti B, Dlouhy SR (1998). Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics 51:379–390.

    Article  PubMed  CAS  Google Scholar 

  • Weidmann S (1951). Effect of current flow on the membrane potential of cardiac muscle. Journal of Physiology 115:227–236.

    PubMed  CAS  Google Scholar 

  • Weiger T, Hermann A (1994). Polyamines block Ca2+-activated K+ channels in pituitary tumor cells (GH3). Journal of Membrane Biology 140:133–142.

    PubMed  CAS  Google Scholar 

  • Wells JA (1990). Additivity of mutational effects of proteins. Biochemistry 29: 8509–8517.

    Article  PubMed  CAS  Google Scholar 

  • Wessel R, Kristan Jr WB, Kleinfeld D (1999). Supralinear summation of synaptic inputs by an invertegbrate neuron: dendritic gain is mediated by an ‘inward rectifier” K+ current. Journal of Neuroscience 19:5875–5888.

    PubMed  CAS  Google Scholar 

  • Wible BA, Taglialatela M, Ficker E, Brown AM (1994). Gating of inwardly rectfying K+ channels localized to a single negatively charged residue. Nature 371:246–249.

    Article  PubMed  CAS  Google Scholar 

  • Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiologycal Reviews 75:865–885

    CAS  Google Scholar 

  • Wickman KD, Iñiguez-Lluhi JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, Gilman AG, Clapham DE (1994) Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel. Nature 368:255–257

    Article  PubMed  CAS  Google Scholar 

  • Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, Colmers WF, Pan ZZ (1988a) Voltage-and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. Journal of Neuroscience 8:3499–3506

    PubMed  CAS  Google Scholar 

  • Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels on mammalian central neurones. Nature 299:74–77

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, North RA, Tokimasa T (1988b) Inward rectification of resting and opiateactivated potassium currents in rat locus coeruleus neurons. Journal of Neurosci ence 8:4299–4306

    CAS  Google Scholar 

  • Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cellular Signalling 9:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Wilson GF, Chiu SY (1990) Ion channels in axon and Schwann cell membranes at paranodes of mammalian myelinated fibers studied with patch clamp. Journal of Neuroscience 10:3263–3274

    PubMed  CAS  Google Scholar 

  • Wimpey TL, Chavkin C (1991) Opioids activate both an inward rectifier and a novel voltage-gated potassiu conductance in the hippocampal formation. Neuron 6:281–289

    Article  PubMed  CAS  Google Scholar 

  • Wischmeyer E, Döring F, Karschin A (1998). Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation. Journal of Biological Chemistry 273:34063–34068.

    Article  PubMed  CAS  Google Scholar 

  • Wischmeyer E, Döring F, Wischmeyer E, Spauschus A, Thomzig A, Veh R, Karschin A (1997) Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels. Molecular and Cellular Neuroscience 9:194–206.

    Article  PubMed  CAS  Google Scholar 

  • Wischmeyer E, Karschin A (1996). Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K+ channels by direct protein kinase A-mediated phosphorylation. Proceedings of the National Academy of Sciences USA 93:5819–5823.

    Article  CAS  Google Scholar 

  • Womack KB, Gordon SE, He F, Wensel TG, Lu C-C, Hilgemann DW (2000). Do phosphatidylinositides modulate vertebrate phototransduction? Journal of Neuroscience 20:2792–2799.

    PubMed  CAS  Google Scholar 

  • Wu D, Jiang H, Katz A, and Simon MI (1993) Identification of critical regions on phospholipase C-β1 required for activation of G-proteins. Journal of Biological Chemistry 268:3704–3709.

    PubMed  CAS  Google Scholar 

  • Xie L-H, Horie M, Takano M (1999) Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4, 5-bisphosphate metabolism. Proceedings of the National Academy of Sciences USA 96:15292–15297.

    Article  CAS  Google Scholar 

  • Yakubovich D, Pastushenko V, Bitler A, Dessauer CW, Dascal N (2000) Slow modal gating of single G protein-activated K+ channels expressed in Xenopus oocytes. Journal of Physiology 524:737–755.

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Inanobe A, Kurachi Y (1998) G protein regulation of potassium ion channels. Pharmacological Reviews 50:723–757.

    PubMed  CAS  Google Scholar 

  • Yamada M, Kurachi Y (1995) Spermine gates inward-rectifying muscarinic but not ATP-sensitive K+ channels in rabbit atrial myocytes. Journal of Biological Chemistry 270:9289–9294.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita N, Shibuya N, Ogata E (1988) Requirement of GTP on somatostatin-induced K+ current in human pituitary tumor cells. Proceedings of the National Academy of Sciences USA 85:4924–4928

    Article  CAS  Google Scholar 

  • Yang J, Jan YN, Jan LY (1995a). Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Jan YN, Jan LY (1995b). Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15:1441–1447.

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Yu M, Jan YM, Jan LY (1997). Stabilisation of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel. Proceedings of the National Academy USA 94:1568–1572.

    Article  CAS  Google Scholar 

  • Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C (2000). Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1–Kir5.1 channels by CO2 and pH. Journal of General Physiology 116:33–45.

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Philipson LH, Kugler JL, Tokuyama Y, Davis EM, Le Beau MM, Nelson DJ, Bell GI, Takeda J (1994) Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA. Molecular Pharmacology 45:854–860.

    PubMed  CAS  Google Scholar 

  • Yasuda H, Lindorfer MA, Woodfork KA, Fletcher JE, Garrison JC (1996) Role of the prenyl group on the G protein γ subunit in coupling trimeric G proteins to A1 adenosine receptors. Journal of Biological Chemistry 271:18588–18595

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein GK. Science 235: 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Yi BA, Lin Y-F, Jan YN, Jan LY (2001). Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29:657–667.

    Article  PubMed  CAS  Google Scholar 

  • Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000). Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circulation Research 87:160–166.

    PubMed  CAS  Google Scholar 

  • Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL (2001). The consequences of disrupting cardiac inwardly rectifying K+ current (I K1) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. Journal of Physiology 533:697–710.

    Article  PubMed  CAS  Google Scholar 

  • Zerangue N, Schwappach B, Jan YN, Jan LY (1999). A new ER trafficking s signal regulates the subunit stoichiometry of plasma membrane KATP channels. Journal of Physiology 22:537–548.

    CAS  Google Scholar 

  • Zhainazarov AB, Ache BW (1999). Effects of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate on a Na+-gated nonselective cation channel. Journal of Neuroscience 19:2929–2937.

    PubMed  CAS  Google Scholar 

  • Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nature Cell Biology 1: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.H. and Simonds, W.F. (2000). Copurification of brain G-protein b5 with RGS6 and RGS7. Journal of Neuroscience 20:RC59, 1–5.

    Google Scholar 

  • Zhou H, Chepilko S, Schutt W, Choe H, Palmer LG, Sackin H (1996). Mutations in the pore region of ROMK enhance Ba2+ block. American Journal of Physiology 271: C1949–C1956.

    PubMed  CAS  Google Scholar 

  • Zhou H, Tate SS, Palmer LG (1994) Primary structure and functional properties of an epithelial K channel. American Journal of Physiology 266:C809–C824

    PubMed  CAS  Google Scholar 

  • Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001). Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661.

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Chanchevalap S, Cui N, Jiang C (1999a). Effects of intra-and extracellular acidifications on single channel Kir2.3 currents. Journal of Physiology 516:699–710.

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Liu C, Qu Z, Chanchevalap S, Xu H, Jiang C (2000). CO2 inhibits specific inward rectifier K+ channels by decreases in intra-and extracellular pH. Journal of Biological Chemistry 274:11643–11646.

    Article  Google Scholar 

  • Zhu G, Qu Z, Cui N, Jiang C (1999b). Suppression of Kir2.3 activity by protein kinase C phosphorylation of the channel protein at threonine 53. Journal of Biological Chemistry 274:11643–11646.

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Wu X, Wu MB, Chan KW, Logothetis DE, Thornhill WB (2001). Cloning and characterization of G protein-gated inward rectifier K+ channel (GIRK1) isoforms from heart and brain. Journal of Molecular Neuroscience 16:21–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this chapter

Cite this chapter

Stanfield, P.R., Nakajima, S., Nakajima, Y. (2002). Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0116431

Download citation

  • DOI: https://doi.org/10.1007/BFb0116431

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43520-4

  • Online ISBN: 978-3-540-36783-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics