Skip to main content

Advertisement

Log in

The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60(8):2140–2145

    CAS  PubMed  Google Scholar 

  2. Ried K, Finnis M, Hobson L, Mangelsdorf M, Dayan S, Nancarrow JK, Woollatt E, Kremmidiotis G, Gardner A, Venter D, Baker E, Richards RI (2000) Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 9(11):1651–1663

    CAS  PubMed  Google Scholar 

  3. Chang NS, Pratt N, Heath J, Schultz L, Sleve D, Carey GB, Zevotek N (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem 276(5):3361–3370

    CAS  PubMed  Google Scholar 

  4. Salah Z, Aqeilan R, Huebner K (2010) WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol 6(2):249–259

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Aqeilan RI, Croce CM (2007) WWOX in biological control and tumorigenesis. J Cell Physiol 212(2):307–310

    CAS  PubMed  Google Scholar 

  6. Del Mare S, Salah Z, Aqeilan RI (2009) WWOX: its genomics, partners, and functions. J Cell Biochem 108(4):737–745

    PubMed  Google Scholar 

  7. Aqeilan RI, Trapasso F, Hussain S, Costinean S, Marshall D, Pekarsky Y, Hagan JP, Zanesi N, Kaou M, Stein GS, Lian JB, Croce CM (2007) Targeted deletion of Wwox reveals a tumor suppressor function. Proc Natl Acad Sci USA 104(10):3949–3954

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Aqeilan RI, Hassan MQ, de Bruin A, Hagan JP, Volinia S, Palumbo T, Hussain S, Lee SH, Gaur T, Stein GS, Lian JB, Croce CM (2008) The WWOX tumor suppressor is essential for post-natal survival and normal bone metabolism. J Biol Chem 283(31):21629–21639

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Aqeilan RI, Hagan JP, de Bruin A, Rawahneh M, Salah Z, Gaudio E, Siddiqui H, Volinia S, Alder H, Lian JB, Stein GS, Croce CM (2009) Targeted ablation of the WW domain-containing oxidoreductase tumor suppressor leads to impaired steroidogenesis. Endocrinology 150(3):1530–1535

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Ludes-Meyers JH, Kil H, Nunez MI, Conti CJ, Parker-Thornburg J, Bedford MT, Aldaz CM (2007) WWOX hypomorphic mice display a higher incidence of B-cell lymphomas and develop testicular atrophy. Genes Chromosomes Cancer 46(12):1129–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Abdeen SK, Salah Z, Maly B, Smith Y, Tufail R, Abu-Odeh M, Zanesi N, Croce CM, Nawaz Z, Aqeilan RI (2011) Wwox inactivation enhances mammary tumorigenesis. Oncogene 30(36):3900–3906

    CAS  PubMed  Google Scholar 

  12. Aqeilan RI, Hagan JP, Aqeilan HA, Pichiorri F, Fong LY, Croce CM (2007) Inactivation of the Wwox gene accelerates forestomach tumor progression in vivo. Cancer Res 67(12):5606–5610

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ludes-Meyers JH, Kil H, Parker-Thornburg J, Kusewitt DF, Bedford MT, Aldaz CM (2009) Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. PLoS ONE 4(11):e7775

    PubMed Central  PubMed  Google Scholar 

  14. Abdeen SK, Del Mare S, Hussain S, Abu-Remaileh M, Salah Z, Hagan J, Rawahneh M, Pu XA, Russell S, Stein JL, Stein GS, Lian JB, Aqeilan RI (2013) Conditional inactivation of the mouse Wwox tumor suppressor gene recapitulates the null phenotype. J Cell Physiol 228(7):1377–1382

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Glover TW (1998) Instability at chromosomal fragile sites. Recent Results Cancer Res 154:185–199

    CAS  PubMed  Google Scholar 

  16. Glover TW (2006) Common fragile sites. Cancer Lett 232(1):4–12

    CAS  PubMed  Google Scholar 

  17. Tsantoulis PK, Kotsinas A, Sfikakis PP, Evangelou K, Sideridou M, Levy B, Mo L, Kittas C, Wu XR, Papavassiliou AG, Gorgoulis VG (2008) Oncogene-induced replication stress preferentially targets common fragile sites in preneoplastic lesions. A genome-wide study. Oncogene 27(23):3256–3264

    CAS  PubMed  Google Scholar 

  18. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870

    CAS  PubMed  Google Scholar 

  19. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA Jr, Kastrinakis NG, Levy B, Kletsas D, Yoneta A, Herlyn M, Kittas C, Halazonetis TD (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913

    CAS  PubMed  Google Scholar 

  20. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    CAS  PubMed  Google Scholar 

  21. Debatisse M, Le Tallec B, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet 28(1):22–32

    CAS  PubMed  Google Scholar 

  22. Ozeri-Galai E, Bester AC, Kerem B (2012) The complex basis underlying common fragile site instability in cancer. Trends Genet 28(6):295–302

    CAS  PubMed  Google Scholar 

  23. Le Tallec B, Dutrillaux B, Lachages AM, Millot GA, Brison O, Debatisse M (2011) Molecular profiling of common fragile sites in human fibroblasts. Nat Struct Mol Biol 18(12):1421–1423

    PubMed  Google Scholar 

  24. Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep. 4(3):420–428

    PubMed  Google Scholar 

  25. Hosseini SA, Horton S, Saldivar JC, Miuma S, Stampfer MR, Heerema NA, Huebner K (2013) Common chromosome fragile sites in human and murine epithelial cells and FHIT/FRA3B loss-induced global genome instability. Genes Chromosomes Cancer 52(11):1017–1029

    CAS  PubMed  Google Scholar 

  26. Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627

    CAS  PubMed  Google Scholar 

  27. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, McHenry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature. 463(7283):899–905

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C, Widaa S, Hinton J, Fahey C, Fu B, Swamy S, Dalgliesh GL et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463(7283):893–898

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Chang NS, Hsu LJ, Lin YS, Lai FJ, Sheu HM (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 13(1):12–22

    CAS  PubMed  Google Scholar 

  30. Aqeilan RI, Pekarsky Y, Herrero JJ, Palamarchuk A, Letofsky J, Druck T, Trapasso F, Han SY, Melino G, Huebner K, Croce CM (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci USA 101(13):4401–4406

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gourley C, Paige AJ, Taylor KJ, Ward C, Kuske B, Zhang J, Sun M, Janczar S, Harrison DJ, Muir M, Smyth JF, Gabra H (2009) WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin alpha3. Cancer Res 69(11):4835–4842

    CAS  PubMed  Google Scholar 

  32. Abu-Remaileh M, Aqeilan RI (2014) Tumor suppressor WWOX regulates glucose metabolism via HIF1alpha modulation. Cell Death Differ

  33. Dayan S, O’Keefe LV, Choo A, Richards RI (2013) Common chromosomal fragile site FRA16D tumor suppressor WWOX gene expression and metabolic reprogramming in cells. Genes Chromosomes Cancer 52(9):823–831

    CAS  PubMed  Google Scholar 

  34. Abu-Odeh M, Salah S, Herbel C, Hofmann TG, Aqeilan RI (2014) WWOX, the common fragile site FRA16D gene product, regulates ATM activation and the DNA damage response. Proc Natl Acad Sci USA (in press)

  35. Gardenswartz A, Aqeilan RI (2014) WW domain-containing oxidoreductase’s role in myriad cancers: clinical significance and future implications. Exp Biol Med 239(3):253–263

    Google Scholar 

  36. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, Hauck WW, McCue P, Huebner K (2004) The fragile genes FHIT and WWOX are inactivated coordinately in invasive breast carcinoma. Cancer 100(8):1605–1614

    CAS  PubMed  Google Scholar 

  37. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, McCue P, Huebner K (2005) Concordant loss of fragile gene expression early in breast cancer development. Pathol Int 55(8):471–478

    CAS  PubMed  Google Scholar 

  38. Qin HR, Iliopoulos D, Semba S, Fabbri M, Druck T, Volinia S, Croce CM, Morrison CD, Klein RD, Huebner K (2006) A role for the WWOX gene in prostate cancer. Cancer Res 66(13):6477–6481

    CAS  PubMed  Google Scholar 

  39. Aqeilan RI, Kuroki T, Pekarsky Y, Albagha O, Trapasso F, Baffa R, Huebner K, Edmonds P, Croce CM (2004) Loss of WWOX expression in gastric carcinoma. Clin Cancer Res 10(9):3053–3058

    CAS  PubMed  Google Scholar 

  40. Donati V, Fontanini G, Dell’Omodarme M, Prati MC, Nuti S, Lucchi M, Mussi A, Fabbri M, Basolo F, Croce CM, Aqeilan RI (2007) WWOX expression in different histological types and subtypes of non-small cell lung cancer. Clinical Cancer Res 13(3):884–891

    CAS  Google Scholar 

  41. Yendamuri S, Kuroki T, Trapasso F, Henry AC, Dumon KR, Huebner K, Williams NN, Kaiser LR, Croce CM (2003) WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Res 63(4):878–881

    CAS  PubMed  Google Scholar 

  42. Kuroki T, Yendamuri S, Trapasso F, Matsuyama A, Aqeilan RI, Alder H, Rattan S, Cesari R, Nolli ML, Williams NN, Mori M, Kanematsu T, Croce CM (2004) The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin Cancer Res 10(7):2459–2465

    CAS  PubMed  Google Scholar 

  43. Nakayama S, Semba S, Maeda N, Aqeilan RI, Huebner K, Yokozaki H (2008) Role of the WWOX gene, encompassing fragile region FRA16D, in suppression of pancreatic carcinoma cells. Cancer Sci 99(7):1370–1376

    CAS  PubMed  Google Scholar 

  44. Kurek KC, Del Mare S, Salah Z, Abdeen S, Sadiq H, Lee SH, Gaudio E, Zanesi N, Jones KB, DeYoung B, Amir G, Gebhardt M, Warman M, Stein GS, Stein JL, Lian JB et al (2010) Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression. Cancer Res 70(13):5577–5586

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Yang J, Cogdell D, Yang D, Hu L, Li H, Zheng H, Du X, Pang Y, Trent J, Chen K, Zhang W (2010) Deletion of the WWOX gene and frequent loss of its protein expression in human osteosarcoma. Cancer Lett 291(1):31–38

    CAS  PubMed  Google Scholar 

  46. Ishii H, Mimori K, Inageta T, Murakumo Y, Vecchione A, Mori M, Furukawa Y (2005) Components of DNA damage checkpoint pathway regulate UV exposure-dependent alterations of gene expression of FHIT and WWOX at chromosome fragile sites. Mol Cancer Res MCR 3(3):130–138

    CAS  Google Scholar 

  47. Fu J, Qu Z, Yan P, Ishikawa C, Aqeilan RI, Rabson AB, Xiao G (2011) The tumor suppressor gene WWOX links the canonical and noncanonical NF-kappaB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 117(5):1652–1661

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Iliopoulos D, Guler G, Han SY, Johnston D, Druck T, McCorkell KA, Palazzo J, McCue PA, Baffa R, Huebner K (2005) Fragile genes as biomarkers: epigenetic control of WWOX and FHIT in lung, breast and bladder cancer. Oncogene 24(9):1625–1633

    CAS  PubMed  Google Scholar 

  49. Mahajan NP, Whang YE, Mohler JL, Earp HS (2005) Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65(22):10514–10523

    CAS  PubMed  Google Scholar 

  50. Kuroki T, Trapasso F, Shiraishi T, Alder H, Mimori K, Mori M, Croce CM (2002) Genetic alterations of the tumor suppressor gene WWOX in esophageal squamous cell carcinoma. Cancer Res 62(8):2258–2260

    CAS  PubMed  Google Scholar 

  51. Driouch K, Prydz H, Monese R, Johansen H, Lidereau R, Frengen E (2002) Alternative transcripts of the candidate tumor suppressor gene, WWOX, are expressed at high levels in human breast tumors. Oncogene 21(12):1832–1840

    CAS  PubMed  Google Scholar 

  52. Golan-Gerstl R, Cohen M, Shilo A, Suh SS, Bakacs A, Coppola L, Karni R (2011) Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 71(13):4464–4472

    CAS  PubMed  Google Scholar 

  53. Watanabe A, Hippo Y, Taniguchi H, Iwanari H, Yashiro M, Hirakawa K, Kodama T, Aburatani H (2003) An opposing view on WWOX protein function as a tumor suppressor. Cancer Res 63(24):8629–8633

    CAS  PubMed  Google Scholar 

  54. Gao G, Kasperbauer JL, Tombers NM, Wang V, Mayer K, Smith DI (2014) A selected group of large common fragile site genes have decreased expression in oropharyngeal squamous cell carcinomas. Genes Chromosomes Cancer 53(5):392–401

    CAS  PubMed  Google Scholar 

  55. Aldaz CM, Ferguson BW, Abba MC (2014) WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochim Biophys Acta

  56. Del Mare S, Kurek KC, Stein GS, Lian JB, Aqeilan RI (2011) Role of the WWOX tumor suppressor gene in bone homeostasis and the pathogenesis of osteosarcoma. Am J Cancer Res 1(5):585–594

    PubMed Central  PubMed  Google Scholar 

  57. Berger AH, Pandolfi PP (2011) Haplo-insufficiency: a driving force in cancer. J Pathol 223(2):137–146

    CAS  PubMed  Google Scholar 

  58. Abdeen SK, Salah Z, Khawaled S, Aqeilan RI (2013) Characterization of WWOX inactivation in murine mammary gland development. J Cell Physiol 228(7):1391–1396

    CAS  PubMed  Google Scholar 

  59. Ferguson BW, Gao X, Kil H, Lee J, Benavides F, Abba MC, Aldaz CM (2012) Conditional Wwox deletion in mouse mammary gland by means of two Cre recombinase approaches. PLoS ONE 7(5):e36618

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29(4):418–425

    CAS  PubMed  Google Scholar 

  61. Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LF, Peterse JL, Berns A, Jonkers J (2007) Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci USA 104(29):12111–12116

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359(6393):295–300

    CAS  PubMed  Google Scholar 

  63. Salah Z, Alian A, Aqeilan RI (2012) WW domain-containing proteins: retrospectives and the future. Front Biosci 17:331–348

    CAS  Google Scholar 

  64. Sudol M, Recinos CC, Abraczinskas J, Humbert J, Farooq A (2005) WW or WoW: the WW domains in a union of bliss. IUBMB Life 57(12):773–778

    CAS  PubMed  Google Scholar 

  65. Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, Sudol M, Croce CM (2005) WW domain-containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res 65(15):6764–6772

    CAS  PubMed  Google Scholar 

  66. Aqeilan RI, Donati V, Gaudio E, Nicoloso MS, Sundvall M, Korhonen A, Lundin J, Isola J, Sudol M, Joensuu H, Croce CM, Elenius K (2007) Association of Wwox with ErbB4 in breast cancer. Cancer Res 67(19):9330–9336

    CAS  PubMed  Google Scholar 

  67. Abu-Odeh M, Bar-Mag T, Huang H, Kim T, Salah Z, Abdeen SK, Sudol M, Reichmann D, Sidhu S, Kim PM, Aqeilan RI (2014) Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J Biol Chem 289(13):8865–8880

    CAS  PubMed  Google Scholar 

  68. McDonald CB, Buffa L, Bar-Mag T, Salah Z, Bhat V, Mikles DC, Deegan BJ, Seldeen KL, Malhotra A, Sudol M, Aqeilan RI, Nawaz Z, Farooq A (2012) Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors. J Mol Biol 422(1):58–74

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Bouteille N, Driouch K, Hage PE, Sin S, Formstecher E, Camonis J, Lidereau R, Lallemand F (2009) Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 28:2569–2580

    CAS  PubMed  Google Scholar 

  70. Levrero M, De Laurenzi V, Costanzo A, Gong J, Melino G, Wang JY (1999) Structure, function and regulation of p63 and p73. Cell Death Differ 6(12):1146–1153

    CAS  PubMed  Google Scholar 

  71. Melino G, De Laurenzi V, Vousden KH (2002) p73: friend or foe in tumorigenesis. Nat Rev Cancer 2(8):605–615

    CAS  PubMed  Google Scholar 

  72. Salah Z, Bar-mag T, Kohn Y, Pichiorri F, Palumbo T, Melino G, Aqeilan RI (2013) Tumor suppressor WWOX binds to ΔNp63α and sensitizes cancer cells to chemotherapy. Cell Death Dis 4:e

    Google Scholar 

  73. Espanel X, Sudol M (2001) Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J Biol Chem 276(17):14514–14523

    CAS  PubMed  Google Scholar 

  74. Chang NS, Doherty J, Ensign A (2003) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem 278(11):9195–9202

    CAS  PubMed  Google Scholar 

  75. Ferguson BW, Gao X, Zelazowski MJ, Lee J, Jeter CR, Abba MC, Aldaz CM (2013) The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding. BMC Cancer 13:593

    PubMed Central  PubMed  Google Scholar 

  76. Heldin CH, Vanlandewijck M, Moustakas A (2012) Regulation of EMT by TGFbeta in cancer. FEBS Lett 586(14):1959–1970

    CAS  PubMed  Google Scholar 

  77. Moustakas A, Heldin CH (2012) Induction of epithelial-mesenchymal transition by transforming growth factor beta. Semin Cancer Biol 22(5–6):446–454

    CAS  PubMed  Google Scholar 

  78. O’Keefe LV, Colella A, Dayan S, Chen Q, Choo A, Jacob R, Price G, Venter D, Richards RI (2011) Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species. Hum Mol Genet 20(3):497–509

    PubMed Central  PubMed  Google Scholar 

  79. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    CAS  PubMed  Google Scholar 

  80. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    CAS  PubMed  Google Scholar 

  81. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  PubMed  Google Scholar 

  82. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    CAS  PubMed  Google Scholar 

  83. Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8(4 Suppl):S62–67

    CAS  PubMed  Google Scholar 

  84. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228

    CAS  PubMed  Google Scholar 

  85. Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19(2):238–245

    CAS  PubMed  Google Scholar 

  86. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745

    CAS  PubMed  Google Scholar 

  87. Shiloh Y (2001) ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 11(1):71–77

    CAS  PubMed  Google Scholar 

  88. Falck J, Coates J, Jackson SP (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434(7033):605–611

    CAS  PubMed  Google Scholar 

  89. Letessier A, Millot GA, Koundrioukoff S, Lachages AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470(7332):120–123

    CAS  PubMed  Google Scholar 

  90. Dereli-Oz A, Versini G, Halazonetis TD (2011) Studies of genomic copy number changes in human cancers reveal signatures of DNA replication stress. Mol Oncol 5(4):308–314

    PubMed  Google Scholar 

  91. Miuma S, Saldivar JC, Karras JR, Waters CE, Paisie CA, Wang Y, Jin V, Sun J, Druck T, Zhang J, Huebner K (2013) Fhit deficiency-induced global genome instability promotes mutation and clonal expansion. PLoS ONE 8(11):e80730

    PubMed Central  PubMed  Google Scholar 

  92. Saldivar JC, Miuma S, Bene J, Hosseini SA, Shibata H, Sun J, Wheeler LJ, Mathews CK, Huebner K (2012) Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet 8(11):e1003077

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Thavathiru E, Ludes-Meyers JH, MacLeod MC, Aldaz CM (2005) Expression of common chromosomal fragile site genes, WWOX/FRA16D and FHIT/FRA3B is downregulated by exposure to environmental carcinogens, UV, and BPDE but not by IR. Mol Carcinog 44(3):174–182

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Lai FJ, Cheng CL, Chen ST, Wu CH, Hsu LJ, Lee JY, Chao SC, Sheen MC, Shen CL, Chang NS, Sheu HM (2005) WOX1 is essential for UVB irradiation-induced apoptosis and down-regulated via translational blockade in UVB-induced cutaneous squamous cell carcinoma in vivo. Clin Cancer Res 11(16):5769–5777

    CAS  PubMed  Google Scholar 

  95. Santini S, Stagni V, Giambruno R, Fianco G, Di Benedetto A, Mottolese M, Pellegrini M, Barila D (2013) ATM kinase activity modulates ITCH E3-ubiquitin ligase activity. Oncogene 33:1113–1123

    PubMed Central  PubMed  Google Scholar 

  96. Abu Remaileh M, Aqeilan RI (2014) Tumor suppressor WWOX regulates glucose metabolism via HIF1α modulation. Cell Death Differ (in press)

  97. Brueckner LM, Hess EM, Schwab M, Savelyeva L (2013) Instability at the FRA8I common fragile site disrupts the genomic integrity of the KIAA0146, CEBPD and PRKDC genes in colorectal cancer. Cancer Lett 336(1):85–95

    CAS  PubMed  Google Scholar 

  98. Wan L, Han J, Liu T, Dong S, Xie F, Chen H, Huang J (2013) Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc Natl Acad Sci USA 110(26):10646–10651

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Zhu Y, McAvoy S, Kuhn R, Smith DI (2006) RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 25(20):2901–2908

    CAS  PubMed  Google Scholar 

  100. Ludes-Meyers JH, Kil H, Bednarek AK, Drake J, Bedford MT, Aldaz CM (2004) WWOX binds the specific proline-rich ligand PPXY: identification of candidate interacting proteins. Oncogene 23(29):5049–5055

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Aqeilan RI, Palamarchuk A, Weigel RJ, Herrero JJ, Pekarsky Y, Croce CM (2004) Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res 64(22):8256–8261

    CAS  PubMed  Google Scholar 

  102. Gaudio E, Palamarchuk A, Palumbo T, Trapasso F, Pekarsky Y, Croce CM, Aqeilan RI (2006) Physical association with WWOX suppresses c-Jun transcriptional activity. Cancer Res 66(24):11585–11589

    CAS  PubMed  Google Scholar 

  103. Jin C, Ge L, Ding X, Chen Y, Zhu H, Ward T, Wu F, Cao X, Wang Q, Yao X (2006) PKA-mediated protein phosphorylation regulates ezrin–WWOX interaction. Biochem Biophys Res Commun 341(3):784–791

    CAS  PubMed  Google Scholar 

  104. Bouteille N, Driouch K, Hage PE, Sin S, Formstecher E, Camonis J, Lidereau R, Lallemand F (2009) Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 28(28):2569–2580

    CAS  PubMed  Google Scholar 

  105. Salah Z, Bar-mag T, Kohn Y, Pichiorri F, Palumbo T, Melino G, Aqeilan RI (2013) Tumor suppressor WWOX binds to DeltaNp63alpha and sensitizes cancer cells to chemotherapy. Cell Death Dis 4:e480

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Chang NS, Doherty J, Ensign A, Schultz L, Hsu LJ, Hong Q (2005) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem 280(52):43100–43108

    CAS  PubMed  Google Scholar 

  107. Lin HP, Chang JY, Lin SR, Lee MH, Huang SS, Hsu LJ, Chang NS (2011) Identification of an in vivo MEK/WOX1 complex as a master switch for apoptosis in T cell leukemia. Genes Cancer 2(5):550–562

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Sze CI, Su M, Pugazhenthi S, Jambal P, Hsu LJ, Heath J, Schultz L, Chang NS (2004) Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer’s disease. J Biol Chem 279(29):30498–30506

    CAS  PubMed  Google Scholar 

  109. Wang HY, Juo LI, Lin YT, Hsiao M, Lin JT, Tsai CH, Tzeng YH, Chuang YC, Chang NS, Yang CN, Lu PJ (2012) WW domain-containing oxidoreductase promotes neuronal differentiation via negative regulation of glycogen synthase kinase 3beta. Cell Death Differ 19(6):1049–1059

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami I. Aqeilan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqeilan, R.I., Abu-Remaileh, M. & Abu-Odeh, M. The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability. Cell. Mol. Life Sci. 71, 4589–4599 (2014). https://doi.org/10.1007/s00018-014-1724-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1724-y

Keywords

Navigation