Skip to main content
Log in

Biomarkers for the detection of necroptosis

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Necroptosis has been extensively studied recently, and the receptor-interacting kinase 3 (RIP3 or RIPK3) and its substrate, the pseudokinase mixed lineage kinase domain-like protein, have been discovered to be core components of this process. Classical necroptosis requires RIP1 (or RIPK1) for the activation of RIP3 through the induction of RIP1/RIP3 necrosomes. Increasing evidence from genetic and pharmacological studies has been expanding the view that necroptosis plays important roles in the etiology and/or progression of many human diseases, such as pancreatitis, ischemic injury, and neurodegenerative diseases, among others. Ongoing progress in translational research about necroptosis has highlighted the increasingly important need for the identification of biomarkers for use in disease diagnosis, monitoring, and drug development. This review presents a discussion of the current status of biomarkers that can be used to detect necroptosis both in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Zhou W, Yuan J (2014) Necroptosis in health and diseases. Semin Cell Dev Biol 35:14–23

    Article  PubMed  Google Scholar 

  2. Sun L, Wang X (2014) A new kind of cell suicide: mechanisms and functions of programmed necrosis. Trends Biochem Sci 39:587–593

    Article  CAS  PubMed  Google Scholar 

  3. Jouan-Lanhouet S et al (2014) Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 35:2–13

    Article  CAS  PubMed  Google Scholar 

  4. He S et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  CAS  PubMed  Google Scholar 

  5. Cho YS et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang DW et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  CAS  PubMed  Google Scholar 

  7. Sun L et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    Article  CAS  PubMed  Google Scholar 

  8. Zhao J et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109:5322–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He S et al (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 108:20054–20059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaiser WJ et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robinson N et al (2012) Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium. Nat Immunol 13:954–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Upton JW, Kaiser WJ, Mocarski ES (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe 7:302–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X et al (2014) Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci USA 111:15438–15443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang Z, Wu SQ, Liang Y (2015) RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17:229–242

    Article  CAS  PubMed  Google Scholar 

  15. Holler N et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  CAS  PubMed  Google Scholar 

  16. Degterev A et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  CAS  PubMed  Google Scholar 

  17. Declercq W, Vanden Berghe T, Vandenabeele P (2009) RIP kinases at the crossroads of cell death and survival. Cell 138:229–232

    Article  CAS  PubMed  Google Scholar 

  18. Sun X et al (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem 277:9505–9511

    Article  CAS  PubMed  Google Scholar 

  19. Hitomi J et al (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moquin DM, McQuade T, Chan FK (2013) CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8:e76841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai Z et al (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65

    Article  CAS  PubMed  Google Scholar 

  22. Wang H et al (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54:133–146

    Article  CAS  PubMed  Google Scholar 

  23. Chen X et al (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24:105–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Upton JW, Kaiser WJ, Mocarski ES (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11:290–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kelliher MA et al (1998) The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity 8:297–303

    Article  CAS  PubMed  Google Scholar 

  26. Degterev A et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  CAS  PubMed  Google Scholar 

  27. Wu J et al (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linkermann A et al (2012) Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81:751–761

    Article  CAS  PubMed  Google Scholar 

  29. Oerlemans MI et al (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol 107:270

    Article  PubMed  Google Scholar 

  30. Luedde M et al (2014) RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res 103:206–216

    Article  CAS  PubMed  Google Scholar 

  31. Trichonas G et al (2010) Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci USA 107:21695–21700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Welz PS et al (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477:330–334

    Article  CAS  PubMed  Google Scholar 

  33. Gunther C et al (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477:335–339

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pierdomenico M et al (2014) Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am J Gastroenterol 109:279–287

    Article  CAS  PubMed  Google Scholar 

  35. Lin J et al (2013) A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep 3:200–210

    Article  CAS  PubMed  Google Scholar 

  36. Meng L, Jin W, Wang X (2015) RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci USA 112:11007–11012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramachandran A et al (2013) Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58:2099–2108

    Article  CAS  PubMed  Google Scholar 

  38. Roychowdhury S et al (2013) Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57:1773–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duprez L et al (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35:908–918

    Article  CAS  PubMed  Google Scholar 

  40. Murakami Y et al (2012) Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc Natl Acad Sci USA 109:14598–14603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Murakami Y et al (2014) Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ 21:270–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Re DB et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ofengeim D et al (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berger SB et al (2014) Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J Immunol 192:5476–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berger SB et al (2015) Characterization of GSK′963: a structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov 1:15009

    Article  Google Scholar 

  46. Fauster A et al (2015) A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis 6:e1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen W et al (2013) Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem 288:16247–16261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li JX et al (2014) The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis 5:e1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Najjar M et al (2015) Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1. Cell Rep 10:1850–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li D et al (2015) A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA 112:5017–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hildebrand JM et al (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA 111:15072–15077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors want to thank Dr. Xiaodong Wang for his continuous support. This work was supported by National Basic Science 973 Grants (2013CB910102 to S.H., 2013CB530805 to Z.S. and 2012CB837502 to S.H.), the National Natural Science Foundation of China (31222036, 31471303, 81571385), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Beijing Nova Program (Z121102002512076) to H.S and Special Research Foundation of State Key Laboratory of Medical Genomics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudan He or Zhirong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Huang, S. & Shen, Z. Biomarkers for the detection of necroptosis. Cell. Mol. Life Sci. 73, 2177–2181 (2016). https://doi.org/10.1007/s00018-016-2192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2192-3

Keywords

Navigation