Skip to main content

Advertisement

Log in

The role of leptin→STAT3 signaling in neuroendocrine function: an integrative perspective

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The hormone leptin is secreted by adipose tissue in proportion to fat mass to signal the repletion of body energy stores to the neuroendocrine system. Leptin acts on neurons in the hypothalamus and elsewhere in the brain to decrease appetite and regulate the activity of the thyroid, adrenal, growth, gonadal, and lactational axes. Conversely, absence of leptin signaling initiates the neuroendocrine starvation response. Leptin mediates these effects by activating the long form (LRb) of its receptor. One LRb signal, STAT3, has recently been shown to play a critical role in the regulation of body weight and some elements of neuroendocrine function (thyroid, adrenal, lactation), although the participation of STAT3 in the gonadal and growth axes is negligible. We discuss these findings in the context of the hypothalamic neuroendocrine system as it is presently understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AgRP :

Agouti-related peptide

ARC :

Arcuate nucleus

CRH :

Corticotropin-releasing hormone

ERK :

Extracellular signal regulated kinase

GH :

Growth hormone

GHRH :

Growth hormone releasing hormone

GnRH :

Gonadotropin-releasing hormone

LR :

Leptin receptor

MCR :

Melanocortin receptor

MSH :

Melanocyte stimulating hormone

NPY :

Neuropeptide Y

POMC :

Pro-opiomelanocortin

PVH :

Paraventricular hypothalamus

SH :

Src homology

SHP :

Src homology 2 containing phosphatase

SOCS :

Suppressor of cytokine signaling

STAT :

Signal transducer and activator of transcription

TRH :

Thyrotropin-releasing hormone

VMH :

Ventromedial hypothalamus

References

  1. MacDougald OA, Hwang CS, Fan H, Lane MD (1995) Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3–L1 adipocytes. Proc Natl Acad Sci U S A 92:9034–9037

    CAS  PubMed  Google Scholar 

  2. Rentsch J, Chiesi M (1996) Regulation of ob gene mRNA levels in cultured adipocytes. FEBS Lett 379:55–59

    CAS  PubMed  Google Scholar 

  3. Slieker LJ, Sloop KW, Surface PL, Kriauciunas A, LaQuier F, Manetta J, Bue-Valleskey J, Stephens TW (1996) Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP. J Biol Chem 271:5301–5304

    Article  CAS  PubMed  Google Scholar 

  4. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    CAS  Google Scholar 

  5. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1:1311–1314

    CAS  PubMed  Google Scholar 

  6. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    CAS  PubMed  Google Scholar 

  7. Licinio J, Mantzoros C, Negrao AB, Cizza G, Wong ML, Bongiorno PB, Chrousos GP, Karp B, Allen C, Flier JS, Gold PW (1997) Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat Med 3:575–579

    CAS  PubMed  Google Scholar 

  8. Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M, Scherbaum WA (1997) Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland: leptin inhibits cortisol release directly. Diabetes 46:1235–1238

    CAS  PubMed  Google Scholar 

  9. Grunfeld C, Zhao C, Fuller J, Pollack A, Moser A, Friedman J, Feingold KR (1996) Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J Clin Invest 97:2152–2157

    CAS  PubMed  Google Scholar 

  10. Sarraf P, Frederich RC, Turner EM, Ma G, Jaskowiak NT, Rivet DJ, III, Flier JS, Lowell BB, Fraker DL, Alexander HR (1997) Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med 185:171–175

    CAS  PubMed  Google Scholar 

  11. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    CAS  PubMed  Google Scholar 

  12. Elmquist JK, Maratos-Flier E, Saper CB, Flier JS (1998) Unraveling the central nervous system pathways underlying responses to leptin. Nature Neuroscience 1:445–449

    Article  CAS  PubMed  Google Scholar 

  13. Ahima RS, Prabakaran D, Mantzoros CS, Qu D, Lowell BB, Maratos-Flier E, Flier JS (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382:250–252

    Google Scholar 

  14. Rahmouni K, Haynes WG, Morgan DA, Mark AL (2003) Intracellular mechanisms involved in leptin regulation of sympathetic outflow. Hypertension 41:763–767

    Article  CAS  PubMed  Google Scholar 

  15. Montague CT, Farooqi IS, Whitehead JP, Soos MS, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Early AR, Barnett AH, Prins JB, O’Rahilly S (1997) Congenital leptin deficiency is associated with severe early onset obesity in humans. Nature 387:903–908

    CAS  PubMed  Google Scholar 

  16. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, leBouc Y, Froguel P, Guy-Grand B (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392:398–401

    Google Scholar 

  17. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, Depaoli AM, O’Rahilly S (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110:1093–1103

    Article  CAS  PubMed  Google Scholar 

  18. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    CAS  PubMed  Google Scholar 

  19. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature 379:632–635

    Article  CAS  PubMed  Google Scholar 

  20. Wang MY, Zhou YT, Newgard CB, Unger RH (1996) A novel leptin receptor isoform in rat. Growth Regul 392:87–90

    Article  CAS  Google Scholar 

  21. Mercer JG, Moar KM, Hoggard N, Strosberg AD, Froguel P, Bailleul B (2000) B219/OB-R 5’-UTR and leptin receptor gene-related protein gene expression in mouse brain and placenta: tissue-specific leptin receptor promoter activity. J Neuroendocrinol 12:649–655

    Article  CAS  PubMed  Google Scholar 

  22. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia LA, Leibel RL (1996) Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271:994–996

    Google Scholar 

  23. Ge H, Huang L, Pourbahrami T, Li C (2002) Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem 277:45898–45903

    Article  CAS  PubMed  Google Scholar 

  24. Tartaglia LA (1997) The leptin receptor. J Biol Chem 272:6093–6096

    CAS  PubMed  Google Scholar 

  25. Chua SC Jr, Koutras IK, Han L, Liu SM, Kay J, Young SJ, Chung WK, Leibel RL (1997) Fine structure of the murine leptin receptor gene: splice site suppression is required to form two alternatively spliced transcripts. Genomics 45:264–270

    Article  CAS  PubMed  Google Scholar 

  26. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232

    CAS  PubMed  Google Scholar 

  27. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB (1998) Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395:535–547

    Article  CAS  PubMed  Google Scholar 

  28. Kowalski TJ, Liu SM, Leibel RL, Chua SC Jr (2001) Transgenic complementation of leptin-receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene. Diabetes 50:425–435

    CAS  PubMed  Google Scholar 

  29. Bjorbaek C, Elmquist JK, Michl P, Ahima RS, van Bueren A, McCall AL, Flier JS (1998) Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 139:3485–3491

    CAS  PubMed  Google Scholar 

  30. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17:305–311

    Article  CAS  PubMed  Google Scholar 

  31. Inui A (1999) Feeding and body-weight regulation by hypothalamic neuropeptides-mediation of the actions of leptin. Trends Neurosci 22:62–67

    Article  CAS  PubMed  Google Scholar 

  32. Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG (2002) Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143:239–246

    CAS  PubMed  Google Scholar 

  33. Elmquist JK, Ahima RS, Maratos-Flier E, Flier JS, Saper CB (1997) Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 138:839–842

    CAS  PubMed  Google Scholar 

  34. Roth J (1998) Diabetes and obesity. Diabetes Metab Rev 13:1–2

    Article  Google Scholar 

  35. Gura T (1999) Obesity research. Leptin not impressive in clinical trial. Science 286:881–882

    CAS  PubMed  Google Scholar 

  36. Taga T, Kishimoto T (1997) gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    CAS  PubMed  Google Scholar 

  37. Ihle J N, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11:69–74

    Article  CAS  PubMed  Google Scholar 

  38. Taniguchi T (1995) Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251–255

    CAS  PubMed  Google Scholar 

  39. Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, Myers MG Jr (2002) Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 277:41547–41555

    Article  CAS  PubMed  Google Scholar 

  40. Devos R, Guisez Y, Van der Heyden J, White DW, Kalai M, Fountoulakis M, Plaetinck G (1997) Ligand-independent dimerization of the extracellular domain of the leptin receptor and determination of the stoichiometry of leptin binding. J Biol Chem 272:18304–18310

    Article  CAS  PubMed  Google Scholar 

  41. Couturier C, Jockers R (2003) Activation of the leptin receptor by a ligand-induced conformational change of constitutive receptor dimers. J Biol Chem 278:26604–26611

    Article  CAS  PubMed  Google Scholar 

  42. White DW, Kuropatwinski KK, Devos R, Baumann H, Tartaglia LA (1997) Leptin receptor (OB-R) signaling. J Biol Chem 272:4065–4071

    Article  CAS  PubMed  Google Scholar 

  43. Banks AS, Davis SM, Bates SH, Myers MG Jr (2000) Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275:14563–14572

    Article  CAS  PubMed  Google Scholar 

  44. Bjorbaek C, Uotani S, da Silva B, Flier JS (1997) Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 272:32686–32695

    CAS  PubMed  Google Scholar 

  45. Koch CA, Anderson DJ, Moran MF, Ellis CA, Pawson T (1991) SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674

    Google Scholar 

  46. Songyang Z, Shoelson SE, Chaudhuri M, Gish GD, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, Neel BG, Birge RB, Fajardo JE, Chou MM, Hanafusa H, Schaffhausen B, Cantley LC (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    CAS  PubMed  Google Scholar 

  47. Haan S, Hemmann U, Hassiepen U, Schaper F, Schneider-Mergener J, Wollmer A, Heinrich PC, Grotzinger J (1999) Characterization and binding specificity of the monomeric STAT3-SH2 domain. J Biol Chem 274:1342–1348

    Article  CAS  PubMed  Google Scholar 

  48. Bjorbaek C, Buchholz RM, Davis SM, Bates SH, Pierroz DD, Gu H, Neel BG, Myers MG Jr, Flier JS (2001) Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem 276:4747–4755

    Article  CAS  PubMed  Google Scholar 

  49. Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1:619–625

    CAS  PubMed  Google Scholar 

  50. Bjorbak C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, Myers MG Jr (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 275:40649–40657

    Article  CAS  PubMed  Google Scholar 

  51. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG Jr, Schwartz MW (2001) Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 413:794–795

    Article  CAS  Google Scholar 

  52. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, Seeley RJ, Schwartz MW (2003) Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52:227–231

    CAS  PubMed  Google Scholar 

  53. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    CAS  PubMed  Google Scholar 

  54. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    Article  CAS  PubMed  Google Scholar 

  55. Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385:165–168

    CAS  PubMed  Google Scholar 

  56. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Baskin DG, Schwartz MW (1997) Melanocortin receptors in leptin effects. Nature 390:349

    Article  CAS  Google Scholar 

  57. Erickson JC, Hollopeter G, Palmiter RD (1996) Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274:1704–1707

    CAS  PubMed  Google Scholar 

  58. Bates SH, Stearns WH, Schubert M, Tso AWK, Wang Y, Banks AS, Dundon TA, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG Jr (2003) STAT3 signaling is required for leptin regulation of energy balance but not reproduction. Nature 421:856–859

    Article  CAS  PubMed  Google Scholar 

  59. Jureus A, Cunningham MJ, McClain ME, Clifton DK, Steiner RA (2000) Galanin-like peptide (GALP) is a target for regulation by leptin in the hypothalamus of the rat. Endocrinology 141:2703–2706

    CAS  PubMed  Google Scholar 

  60. Hisano S, Fukui Y, Chikamori-Aoyama M, Aizawa T, Shibasaki T (1993) Reciprocal synaptic relations between CRF-immunoreactive- and TRH-immunoreactive neurons in the paraventricular nucleus of the rat hypothalamus. Brain Res 620:343–346

    Article  CAS  PubMed  Google Scholar 

  61. Burton KA, Kabigting EB, Clifton DK, Steiner RA (1992) Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology 131:958–963

    CAS  PubMed  Google Scholar 

  62. LaPaglia N, Steiner J, Kirsteins L, Emanuele M, Emanuele N (1998) Leptin alters the response of the growth hormone releasing factor-growth hormone-insulin-like growth factor-I axis to fasting. J Endocrinol 159:79–83

    CAS  PubMed  Google Scholar 

  63. Tannenbaum GS, Gurd W, Lapointe M (1998) Leptin is a potent stimulator of spontaneous pulsatile growth hormone (GH) secretion and the GH response to GH-releasing hormone. Endocrinology 139:3871–3875

    CAS  PubMed  Google Scholar 

  64. Yu WH, Kimura M, Walczewska A, Karanth S, McCann SM (1997) Role of leptin in hypothalamic-pituitary function. Proc Natl Acad Sci U S A 94:1023–1028

    Article  CAS  PubMed  Google Scholar 

  65. Mounzih K, Qiu J, Ewart-Toland A, Chehab FF (1998) Leptin is not necessary for gestation and parturition but regulates maternal nutrition via a leptin resistance state. Endocrinology 139:5259–5262

    CAS  PubMed  Google Scholar 

  66. Malik NM, Carter ND, Murray JF, Scaramuzzi RJ, Wilson CA, Stock MJ (2001) Leptin requirement for conception, implantation, and gestation in the mouse. Endocrinology 142:5198–5202

    CAS  PubMed  Google Scholar 

  67. Chan YY, Clifton DK, Steiner RA (1996) Role of NPY neurones in GH-dependent feedback signalling to the brain. Horm Res 45 [Suppl 1]:12–14

    Google Scholar 

  68. Pinkney JH, Goodrick SJ, Katz J, Johnson AB, Lightman SL, Coppack SW, Mohamed-Ali V (1998) Leptin and the pituitary-thyroid axis: a comparative study in lean, obese, hypothyroid and hyperthyroid subjects. Clin Endocrinol (Oxf) 49:583–588

    Google Scholar 

  69. Smith MS, Grove KL (2002) Integration of the regulation of reproductive function and energy balance: lactation as a model. Front Neuroendocrinol 23:225–256

    Article  CAS  PubMed  Google Scholar 

  70. Erickson JC, Hollopeter G, Palmiter RD (1996) Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 274:1704–1707

    CAS  PubMed  Google Scholar 

  71. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141

    CAS  PubMed  Google Scholar 

  72. Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM (1997) Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 138:2569–2576

    CAS  PubMed  Google Scholar 

  73. Harris M, Aschkenasi C, Elias CF, Chandrankunnel A, Nillni EA, Bjoorbaek C, Elmquist JK, Flier JS, Hollenberg AN (2001) Transcriptional regulation of the thyrotropin-releasing hormone gene by leptin and melanocortin signaling. J Clin Invest 107:111–120

    CAS  PubMed  Google Scholar 

  74. Mantzoros CS, Rosen HN, Greenspan SL, Flier JS, Moses AC (1997) Short-term hyperthyroidism has no effect on leptin levels in man. J Clin Endocrinol Metab 82:497–499

    CAS  PubMed  Google Scholar 

  75. Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D, Lasser G, Prunkard DE, Porte D Jr, Woods SC, Seeley RJ, Weigle DS (1996) Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes 45:531–535

    CAS  PubMed  Google Scholar 

  76. Butler AA, Cone RD (2002) The melanocortin receptors: lessons from knockout models. Neuropeptides 36:77–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH DK56731 and DK 57768 and grants from the American Diabetes Association (to M.G.M.) and an American Diabetes Association/European Association for the Study of Diabetes Transatlantic Fellowship (to S.H.B.). We thank Michael Schwartz, M.D. for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Myers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bates, S.H., Myers, M.G. The role of leptin→STAT3 signaling in neuroendocrine function: an integrative perspective. J Mol Med 82, 12–20 (2004). https://doi.org/10.1007/s00109-003-0494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0494-z

Keywords

Navigation