Skip to main content

Advertisement

Log in

Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

When present in the extracellular environment, the nucleoside adenosine protects cells and tissues from excessive inflammation and immune-mediated damage while promoting healing processes. This role has been highlighted experimentally using distinct disease models, including those of colitis, diabetes, asthma, sepsis, and ischemic injury. Adenosine also suppresses immune responses, as in the tumor microenvironment, assisting immune evasion while promoting angiogenesis. The mechanisms involved in adenosine signaling are addressed elsewhere in this issue. Here, the authors specifically address the generation of adenosine from extracellular nucleotides. This process is catalyzed by a series of plasma membrane ectonucleotidases, with the focus in this article on members of the CD39, CD73, and CD38 families and on their role in inflammatory and neoplastic hematological diseases. Pharmacological modulation of adenosine generation by drugs that either have or modulate ectonucleotidase function might be exploited to treat these diverse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, Ernst PB (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177:2765–2769

    PubMed  CAS  Google Scholar 

  2. Nemeth ZH, Bleich D, Csoka B, Pacher P, Mabley JG, Himer L, Vizi ES, Deitch EA, Szabo C, Cronstein BN et al (2007) Adenosine receptor activation ameliorates type 1 diabetes. FASEB J 21:2379–2388

    Article  PubMed  CAS  Google Scholar 

  3. Fan M, Jamal Mustafa S (2006) Role of adenosine in airway inflammation in an allergic mouse model of asthma. Int Immunopharmacol 6:36–45

    Article  PubMed  CAS  Google Scholar 

  4. Csoka B, Nemeth ZH, Rosenberger P, Eltzschig HK, Spolarics Z, Pacher P, Selmeczy Z, Koscso B, Himer L, Vizi ES et al (2010) A2B adenosine receptors protect against sepsis-induced mortality by dampening excessive inflammation. J Immunol 185:542–550

    Article  PubMed  CAS  Google Scholar 

  5. Peart JN, Headrick JP (2007) Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharmacol Ther 114:208–221

    Article  PubMed  CAS  Google Scholar 

  6. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137

    Article  PubMed  CAS  Google Scholar 

  7. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  CAS  Google Scholar 

  8. Cronstein BN (1994) Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76:5–13

    PubMed  CAS  Google Scholar 

  9. Di Virgilio F, Boeynaems JM, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513

    Article  PubMed  Google Scholar 

  10. Burnstock G (2008) Unresolved issues and controversies in purinergic signalling. J Physiol 586:3307–3312

    Article  PubMed  CAS  Google Scholar 

  11. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiol (Oxf) 195:415–447

    Article  CAS  Google Scholar 

  12. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  PubMed  CAS  Google Scholar 

  13. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  14. Linden J (2011) Regulation of leukocyte function by adenosine receptors. Adv Pharmacol 61:95–114

    Article  PubMed  CAS  Google Scholar 

  15. Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002

    PubMed  CAS  Google Scholar 

  16. Colgan SP, Eltzschig HK (2012) Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu Rev Physiol 74:153–175

    Article  PubMed  CAS  Google Scholar 

  17. Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG, Taylor CT (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–165

    Article  PubMed  CAS  Google Scholar 

  18. Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP (2008) Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–155

    Article  PubMed  CAS  Google Scholar 

  19. Regateiro FS, Howie D, Nolan KF, Agorogiannis EI, Greaves DR, Cobbold SP, Waldmann H (2011) Generation of anti-inflammatory adenosine by leukocytes is regulated by TGF-beta. Eur J Immunol 41:2955–2965

    Article  PubMed  CAS  Google Scholar 

  20. Sekar D, Hahn C, Brune B, Roberts E, Weigert A (2012) Apoptotic tumor cells induce IL-27 release from human DCs to activate Treg cells that express CD69 and attenuate cytotoxicity. Eur J Immunol 42:1585–1598

    Article  PubMed  CAS  Google Scholar 

  21. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 107:1547–1552

    Article  PubMed  CAS  Google Scholar 

  22. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol 187:676–683

    Article  PubMed  CAS  Google Scholar 

  23. Hilchey SP, Kobie JJ, Cochran MR, Secor-Socha S, Wang JC, Hyrien O, Burack WR, Mosmann TR, Quataert SA, Bernstein SH (2009) Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J Immunol 183:6157–6166

    Article  PubMed  CAS  Google Scholar 

  24. Serra S, Horenstein AL, Vaisitti T, Brusa D, Rossi D, Laurenti L, D'Arena G, Coscia M, Tripodo C, Inghirami G et al (2011) CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118:6141–6152

    Article  PubMed  CAS  Google Scholar 

  25. Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808:1400–1412

    Article  PubMed  CAS  Google Scholar 

  26. Sun X, Wu Y, Gao W, Enjyoji K, Csizmadia E, Muller CE, Murakami T, Robson SC (2010) CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139:1030–1040

    Article  PubMed  CAS  Google Scholar 

  27. Salvestrini V, Zini R, Rossi L, Gulinelli S, Manfredini R, Bianchi E, Piacibello W, Caione L, Migliardi G, Ricciardi MR et al (2012) Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood 119:217–226

    Article  PubMed  CAS  Google Scholar 

  28. Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352:804–815

    Article  PubMed  CAS  Google Scholar 

  29. Dighiero G, Hamblin TJ (2008) Chronic lymphocytic leukaemia. Lancet 371:1017–1029

    Article  PubMed  CAS  Google Scholar 

  30. Caligaris-Cappio F, Ghia P (2008) Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 26:4497–4503

    Article  PubMed  CAS  Google Scholar 

  31. Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemela J, Laurila JP, Elima K, Jalkanen S, Salmi M (2011) Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol 41:1231–1241

    Article  PubMed  CAS  Google Scholar 

  32. Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Dikov MM, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on proinflammatory adenosine signaling in mast cells. J Immunol 180:7212–7220

    PubMed  CAS  Google Scholar 

  33. Hua X, Kovarova M, Chason KD, Nguyen M, Koller BH, Tilley SL (2007) Enhanced mast cell activation in mice deficient in the A2b adenosine receptor. J Exp Med 204:117–128

    Article  PubMed  CAS  Google Scholar 

  34. Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri KC, Eltzschig HK (2009) Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J 23:473–482

    Article  PubMed  CAS  Google Scholar 

  35. Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, Rosenberger P, Eltzschig HK (2007) Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 178:8127–8137

    PubMed  CAS  Google Scholar 

  36. Eckle T, Grenz A, Laucher S, Eltzschig HK (2008) A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 118:3301–3315

    PubMed  CAS  Google Scholar 

  37. Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K et al (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590

    Article  PubMed  CAS  Google Scholar 

  38. Grenz A, Zhang H, Hermes M, Eckle T, Klingel K, Huang DY, Muller CE, Robson SC, Osswald H, Eltzschig HK (2007) Contribution of E-NTPDase1 (CD39) to renal protection from ischemia–reperfusion injury. FASEB J 21:2863–2873

    Article  PubMed  CAS  Google Scholar 

  39. Grenz A, Zhang H, Eckle T, Mittelbronn M, Wehrmann M, Kohle C, Kloor D, Thompson LF, Osswald H, Eltzschig HK (2007) Protective role of ecto-5′-nucleotidase (CD73) in renal ischemia. J Am Soc Nephrol 18:833–845

    Article  PubMed  CAS  Google Scholar 

  40. Crikis S, Lu B, Murray-Segal LM, Selan C, Robson SC, D'Apice AJ, Nandurkar HH, Cowan PJ, Dwyer KM (2010) Transgenic overexpression of CD39 protects against renal ischemia–reperfusion and transplant vascular injury. Am J Transplant 10:2586–2595

    Article  PubMed  CAS  Google Scholar 

  41. Hart ML, Much C, Gorzolla IC, Schittenhelm J, Kloor D, Stahl GL, Eltzschig HK (2008) Extracellular adenosine production by ecto-5′-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology 135:1739–1750, e1733

    Article  PubMed  CAS  Google Scholar 

  42. Beldi G, Banz Y, Kroemer A, Sun X, Wu Y, Graubardt N, Rellstab A, Nowak M, Enjyoji K, Li X et al (2010) Deletion of CD39 on natural killer cells attenuates hepatic ischemia/reperfusion injury in mice. Hepatology 51:1702–1711

    Article  PubMed  CAS  Google Scholar 

  43. Pommey S, Lu B, McRae J, Stagg J, Hill P, Salvaris E, Robson SC, d'Apice AJ, Cowan PJ, Dwyer KM (2012) Liver grafts from CD39-overexpressing mice are protected from ischemia reperfusion injury due to reduced numbers of resident CD4(+) T cells. Hepatology. doi:10.1002/hep.25985

  44. Hart ML, Henn M, Kohler D, Kloor D, Mittelbronn M, Gorzolla IC, Stahl GL, Eltzschig HK (2008) Role of extracellular nucleotide phosphohydrolysis in intestinal ischemia–reperfusion injury. FASEB J 22:2784–2797

    Article  PubMed  CAS  Google Scholar 

  45. Guckelberger O, Sun XF, Sevigny J, Imai M, Kaczmarek E, Enjyoji K, Kruskal JB, Robson SC (2004) Beneficial effects of CD39/ecto-nucleoside triphosphate diphosphohydrolase-1 in murine intestinal ischemia–reperfusion injury. Thromb Haemost 91:576–586

    PubMed  CAS  Google Scholar 

  46. Ramakers BP, Wever KE, Kox M, van den Broek PH, Mbuyi F, Rongen G, Masereeuw R, van der Hoeven JG, Smits P, Riksen NP et al (2012) How systemic inflammation modulates adenosine metabolism and adenosine receptor expression in humans in vivo. Crit Care Med 40:2609–2616

    Article  PubMed  CAS  Google Scholar 

  47. Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, Maggi E, Pupilli C, Tonelli F, Romagnani S (1997) Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn's disease. Am J Pathol 150:823–832

    PubMed  CAS  Google Scholar 

  48. Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR et al (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med 195:1129–1143

    Article  PubMed  CAS  Google Scholar 

  49. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL (1994) Inhibition of Th1 responses prevents inflammatory bowel disease in SCID mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1:553–562

    Article  PubMed  CAS  Google Scholar 

  50. Zenewicz LA, Antov A, Flavell RA (2009) CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 15:199–207

    Article  PubMed  CAS  Google Scholar 

  51. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  PubMed  CAS  Google Scholar 

  52. McGovern D, Powrie F (2007) The IL23 axis plays a key role in the pathogenesis of IBD. Gut 56:1333–1336

    Article  PubMed  CAS  Google Scholar 

  53. Nielsen OH, Kirman I, Rudiger N, Hendel J, Vainer B (2003) Upregulation of interleukin-12 and −17 in active inflammatory bowel disease. Scand J Gastroenterol 38:180–185

    Article  PubMed  CAS  Google Scholar 

  54. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, Bamba T, Fujiyama Y (2003) Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70

    Article  PubMed  CAS  Google Scholar 

  55. Friedman DJ, Kunzli BM, YI AR, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC (2009) From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 106:16788–16793

    Article  PubMed  CAS  Google Scholar 

  56. Chamouard P, Monneaux F, Richert Z, Voegeli AC, Lavaux T, Gaub MP, Baumann R, Oudet P, Muller S (2009) Diminution of Circulating CD4+CD25 high T cells in naive Crohn's disease. Dig Dis Sci 54:2084–2093

    Article  PubMed  Google Scholar 

  57. Ishikawa D, Okazawa A, Corridoni D, Jia LG, Wang XM, Guanzon M, Xin W, Arseneau KO, Pizarro TT, Cominelli F (2012) Tregs are dysfunctional in vivo in a spontaneous murine model of Crohn's disease. Mucosal Immunol. doi:10.1038/mi.2012.67

  58. Cronstein BN, Montesinos MC, Weissmann G (1999) Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proc Natl Acad Sci U S A 96:6377–6381

    Article  PubMed  CAS  Google Scholar 

  59. Morabito L, Montesinos MC, Schreibman DM, Balter L, Thompson LF, Resta R, Carlin G, Huie MA, Cronstein BN (1998) Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest 101:295–300

    Article  PubMed  CAS  Google Scholar 

  60. Frick JS, MacManus CF, Scully M, Glover LE, Eltzschig HK, Colgan SP (2009) Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J Immunol 182:4957–4964

    Article  PubMed  CAS  Google Scholar 

  61. Chia JS, McRae JL, Cowan PJ, Dwyer KM (2012) The CD39-adenosinergic axis in the pathogenesis of immune and nonimmune diabetes. J Biomed Biotechnol 2012:320495

    Article  PubMed  Google Scholar 

  62. Yang GK, Squires PE, Tian F, Kieffer TJ, Kwok YN, Dale N (2012) Glucose decreases extracellular adenosine levels in isolated mouse and rat pancreatic islets. Islets 4(1):64–70

    Article  CAS  Google Scholar 

  63. Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, LeBrasseur N, Ravid K (2012) The A2b adenosine receptor modulates glucose homeostasis and obesity. PLoS One 7:e40584

    Article  PubMed  CAS  Google Scholar 

  64. Koupenova M, Johnston-Cox H, Vezeridis A, Gavras H, Yang D, Zannis V, Ravid K (2012) A2b adenosine receptor regulates hyperlipidemia and atherosclerosis. Circulation 125:354–363

    Article  PubMed  CAS  Google Scholar 

  65. Mills JH, Kim DG, Krenz A, Chen JF, Bynoe MS (2012) A2A adenosine receptor signaling in lymphocytes and the central nervous system regulates inflammation during experimental autoimmune encephalomyelitis. J Immunol 188:5713–5722

    Article  PubMed  CAS  Google Scholar 

  66. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell'Acqua ML et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    Article  PubMed  CAS  Google Scholar 

  67. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O'Farrelly C, Tubridy N, Mills KH (2009) CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 183:7602–7610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work summarized in this review article was supported by: Clinician Scientist Fellowship from the Medical Research Council (UK); National Institute of Health; R01 HL094400; P01HL107152, P01 HL087203, and P01 AI045897 and Associazione Italiana Ricerca Cancro (IG #12754); Italian Ministries of Health (Bando Giovani Ricercatori 2008) and Education (Bando FIRB Giovani 2008 and Bando PRIN 2009).

Disclosure

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Serena Longhi or Silvia Deaglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longhi, M.S., Robson, S.C., Bernstein, S.H. et al. Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J Mol Med 91, 165–172 (2013). https://doi.org/10.1007/s00109-012-0991-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0991-z

Keywords

Navigation