Skip to main content

Advertisement

Log in

Multiple drug transporters mediate the placental transport of sulpiride

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Sulpiride is a typical antipsychotic drug for the treatment of schizophrenia, depression and other psychological disorders. It has been proven that a small amount of sulpiride could cross the human placenta using an ex vivo placental perfusion model. However, the placental transfer mechanism has not been elucidated. Considering the structure of sulpiride, we speculated that the transporters expressed in placenta might be involved in sulpiride uptake across the blood–placenta barrier. The aim of our study was to determine which transporters contributed to the placental transfer of sulpiride. Our results revealed that sulpiride was a substrate of human organic cation transporter (hOCT) 3, human multidrug resistance protein (hMDR) 1 and human breast cancer resistance protein (hBCRP) using transfected cells expressing respective transporters. In addition, the accumulation of sulpiride in BeWo cells (a human choriocarcinoma cell line) was obviously affected by inhibitors of carnitine/organic cation transporter (OCTN) 2, MDR1 and BCRP. The accumulation of sulpiride in primary human trophoblast cells was obviously affected by inhibitors of OCT3, OCTN1 and OCTN2. The above results indicate that hOCTN1 and hOCTN2 likely contribute to the sulpiride uptake from maternal circulation to trophoblast cells, while hMDR1 and hBCRP mediate the efflux from trophoblast cells to maternal circulation, and hOCT3 probably is involved in the bidirectional transport of sulpiride between the placenta and fetal blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

P app :

Apparent permeability

SLC:

Solute carrier

ABC:

ATP-Binding cassette

MDCK:

Madin–Darby canine kidney

HEK293:

Human embryonic kidney 293

LLC-PK1:

Lilly Laboratories Cell-Porcine Kidney 1

OCT:

Organic cation transporter

OAT:

Organic anion transporter

OCTN:

Carnitine/organic cation transporter

BCRP:

Breast cancer resistance protein

MDR1:

Multidrug resistance protein 1

MRP:

Multidrug resistance-associated protein

CNT:

Concentrative nucleoside transporter

PEPT:

Peptide transporter

OATP:

Organic anion-transporting polypeptide

MPP+ :

1-Methyl-4-phenylpyridiniumiodide

D22:

Decynium-22

6-CF:

6-Carboxyl fluorescein

EGT:

l-Ergothioneine

CsA:

Cyclosporine A

MTX:

Methotrexate

DAC:

Decitabine

PHTCs:

Primary human trophoblast cells

SDS:

Sodium dodecyl sulfonate

References

  • Berveiller P, Degrelle SA, Segond N, Cohen H, Evain-Brion D, Gil S (2015) Drug transporter expression during in vitro differentiation of first-trimester and term human villous trophoblasts. Placenta 36:93–96

    Article  CAS  PubMed  Google Scholar 

  • Bressolle F, Bres J, Blanchin MD, Gomeni R (1984) Sulpiride pharmacokinetics in humans after intramuscular administration at three dose levels. J Pharm Sci 73:1128–1136

    Article  CAS  PubMed  Google Scholar 

  • Bzoskie L, Blount L, Kashiwai K, Humme J, Padbury JF (1997) The contribution of transporter-dependent uptake to fetal catecholamine clearance. Biol Neonate 71:102–110

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Yoo HD, Lee YB (2010) Influence of ABCB1 genetic polymorphisms on the pharmacokinetics of levosulpiride in healthy subjects. Neuroscience 169:378–387

    Article  CAS  PubMed  Google Scholar 

  • Dos SPJ, Tadjerpisheh S, Abu AM et al (2014) The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family. AAPS J 16:1247–1258

    Article  Google Scholar 

  • Einarson A, Boskovic R (2009) Use and safety of antipsychotic drugs during pregnancy. J Psychiatr Pract 15:183–192

    Article  PubMed  Google Scholar 

  • Evseenko DA, Paxton JW, Keelan JA (2006) ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am J Physiol Regul Integr Comp Physiol 290:R1357–R1365

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Mills JB, Davidson RE et al (2008) In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos 36:268–275

    Article  CAS  PubMed  Google Scholar 

  • Fukaya T, Furuhashi N, Kono H, Shinkawa O, Takahashi T, Suzuki M (1983) The effect of sulpiride administration on maternal and fetal plasma prolactin levels, and fetal growth in rats. Tohoku J Exp Med 141:323–326

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy V, Prasad PD (2005) Role of transporters in placental transfer of drugs. Toxicol Appl Pharmacol 207:381–387

    Article  PubMed  Google Scholar 

  • Ghoshooni H, Payandeh MP, Salimi SH, Golmanesh L, Dehpour A, Sahraei H (2011) Milled stress reduces morphine-induced locomotion in F2 NMRI Mice. Iran J Pharm Res 10:347–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gil S, Saura R, Forestier F, Farinotti R (2005) P-glycoprotein expression of the human placenta during pregnancy. Placenta 26:268–270

    Article  CAS  PubMed  Google Scholar 

  • Huang MC, Ho HO, Yeh GC et al (2001) Development of a high-performance liquid chromatographic method for bioanalytical applications with sulpiride. J Chromatogr B Biomed Sci Appl 763:157–163

    Article  CAS  PubMed  Google Scholar 

  • Ikehata M, Ueda K, Iwakawa S (2012) Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines. Biol Pharm Bull 35:301–307

    Article  CAS  PubMed  Google Scholar 

  • Iqbal MM, Aneja A, Rahman A et al (2005) The potential risks of commonly prescribed antipsychotics: during pregnancy and lactation. Psychiatry (Edgmont) 2:36–44

    Google Scholar 

  • Lahjouji K, Elimrani I, Lafond J, Leduc L, Qureshi IA, Mitchell GA (2004) L-Carnitine transport in human placental brush-border membranes is mediated by the sodium-dependent organic cation transporter OCTN2. Am J Physiol Cell Physiol 287:C263–C269

    Article  CAS  PubMed  Google Scholar 

  • Lee N, Hebert MF, Prasad B et al (2013) Effect of gestational age on mRNA and protein expression of polyspecific organic cation transporters during pregnancy. Drug Metab Dispos 41:2225–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zheng X, Yu Q et al (2016) Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin. Sci Transl Med 8:348r–397r

    Google Scholar 

  • Ma L, Qin Y, Shen Z et al (2015) Aristolochic acid I is a substrate of BCRP but not P-glycoprotein or MRP2. J Ethnopharmacol 172:430–435

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Yang X, Jiang T et al (2017) Multiple SLC and ABC transporters contribute to the placental transfer of entecavir. Drug Metab Dispos 45:269–278

    Article  CAS  PubMed  Google Scholar 

  • Mathias AA, Hitti J, Unadkat JD (2005) P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol 289:R963–R969

    Article  CAS  PubMed  Google Scholar 

  • Nandakumaran M, Challier JC, Rey E, Richard MO, Olive G (1984) In vitro transfer of six benzamides in the human placenta. Dev Pharmacol Ther 7(Suppl 1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Prouillac C, Lecoeur S (2010) The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos 38:1623–1635

    Article  CAS  PubMed  Google Scholar 

  • Rawluszko-Wieczorek AA, Horst N, Horbacka K et al (2015) Effect of DNA methylation profile on OATP3A1 and OATP4A1 transcript levels in colorectal cancer. Biomed Pharmacother 74:233–242

    Article  CAS  PubMed  Google Scholar 

  • Sata R, Ohtani H, Tsujimoto M et al (2005) Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther 315:888–895

    Article  CAS  PubMed  Google Scholar 

  • Shuster DL, Bammler TK, Beyer RP et al (2013) Gestational age-dependent changes in gene expression of metabolic enzymes and transporters in pregnant mice. Drug Metab Dispos 41:332–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staud F, Ceckova M (2015) Regulation of drug transporter expression and function in the placenta. Expert Opin Drug Metab Toxicol 11:533–555

    Article  CAS  PubMed  Google Scholar 

  • Staud F, Cerveny L, Ceckova M (2012) Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target 20:736–763

    Article  CAS  PubMed  Google Scholar 

  • Stein H, Oyama K, Martinez A, Chappell B, Padbury J (1993) Plasma epinephrine appearance and clearance rates in fetal and newborn sheep. Am J Physiol 265:R756–R760

    CAS  PubMed  Google Scholar 

  • Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W (2006) Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta 27:602–609

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Wang K, Lei H et al (2014) Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine. Prog Neuropsychopharmacol Biol Psychiatry 49:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tamai I, Yabuuchi H, Nezu J et al (1997) Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett 419:107–111

    Article  CAS  PubMed  Google Scholar 

  • Tchaparian EH, Houghton JS, Uyeda C, Grillo MP, Jin L (2011) Effect of culture time on the basal expression levels of drug transporters in sandwich-cultured primary rat hepatocytes. Drug Metab Dispos 39:2387–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Qian S, Jiang Y et al (2013) The interaction between human breast cancer resistance protein (BCRP) and five bisbenzylisoquinoline alkaloids. Int J Pharm 453:371–379

    Article  CAS  PubMed  Google Scholar 

  • Tomi M, Nishimura T, Nakashima E (2011) Mother-to-fetus transfer of antiviral drugs and the involvement of transporters at the placental barrier. J Pharm Sci 100:3708–3718

    Article  CAS  PubMed  Google Scholar 

  • Tomi M, Eguchi H, Ozaki M et al (2015) Role of OAT4 in uptake of estriol precursor 16alpha-Hydroxydehydroepiandrosterone sulfate into human placental syncytiotrophoblasts from fetus. Endocrinology 156:2704–2712

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Sun S, Wang K et al (2013) Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology 311:225–230

    Article  CAS  PubMed  Google Scholar 

  • Ugele B, St-Pierre MV, Pihusch M, Bahn A, Hantschmann P (2003) Characterization and identification of steroid sulfate transporters of human placenta. Am J Physiol Endocrinol Metab 284:E390–E398

    Article  CAS  PubMed  Google Scholar 

  • Ugele B, Bahn A, Rex-Haffner M (2008) Functional differences in steroid sulfate uptake of organic anion transporter 4 (OAT4) and organic anion transporting polypeptide 2B1 (OATP2B1) in human placenta. J Steroid Biochem Mol Biol 111:1–6

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Sawano T, Terada K, Endo T, Sakata M, Sato J (2002a) Studies on intestinal absorption of sulpiride (1): carrier-mediated uptake of sulpiride in the human intestinal cell line Caco-2. Biol Pharm Bull 25:885–890

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Sawano T, Endo T, Sakata M, Sato J (2002b) Studies on intestinal absorption of sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Biol Pharm Bull 25:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Sawano T, Jinriki T, Sato J (2004) Studies on intestinal absorption of sulpiride (3): intestinal absorption of sulpiride in rats. Biol Pharm Bull 27:77–81

    Article  CAS  PubMed  Google Scholar 

  • Wiesel FA, Alfredsson G, Ehrnebo M, Sedvall G (1980) The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. Eur J Clin Pharmacol 17:385–391

    Article  CAS  PubMed  Google Scholar 

  • Wu X, George RL, Huang W et al (2000) Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta 1466:315–327

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Ma Z, Zhou S et al (2016) Multiple drug transporters are involved in renal secretion of entecavir. Antimicrob Agents Chemother 60:6260–6270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Wang W, Li W et al (2015) Inhibition of 11beta-HSD2 expression by triclosan via induction of apoptosis in human placental syncytiotrophoblasts. J Clin Endocrinol Metab 100:E542–E549

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Liu Z, Ouyang X et al (2008) Distinct neurobehavioral consequences of prenatal exposure to sulpiride (SUL) and risperidone (RIS) in rats. Prog Neuropsychopharmacol Biol Psychiatry 32:387–397

    Article  CAS  PubMed  Google Scholar 

  • Zwart R, Verhaagh S, Buitelaar M, Popp-Snijders C, Barlow DP (2001) Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol Cell Biol 21:4188–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank Prof. Kang Sun and Rujuan Zuo for their help in the isolation of primary human trophoblast cells. This work was supported by National Natural Science Foundation of China [Grant Nos. 81373474, 81302833] and Zhejiang Province Natural Science Foundation of China [Grant No. LY17H310003].

Author information

Authors and Affiliations

Authors

Contributions

Conceived of or designed study: MB, ZM, DS, CZ, YW and HJ. Performed research: MB, ZM, XY, TJ. Analyzed data: MB, ZM and HJ. Wrote the paper: MB, CZ, DS, ZM and HJ.

Corresponding author

Correspondence to Huidi Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The primary human trophoblast cell studies have been approved by the Ethics Committee of Women’s Hospital, School of Medicine, Zhejiang University. And all pregnant women signed their informed consent prior to the experiment.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Ma, Z., Sun, D. et al. Multiple drug transporters mediate the placental transport of sulpiride. Arch Toxicol 91, 3873–3884 (2017). https://doi.org/10.1007/s00204-017-2008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2008-8

Keywords

Navigation