Skip to main content

Advertisement

Log in

Intracranial self-stimulation in FAST and SLOW mice: effects of alcohol and cocaine

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Sensitivity to the stimulant and rewarding effects of alcohol may be genetically correlated traits that predispose individuals to develop an alcohol use disorder.

Objective

This study aimed to examine the effects of alcohol and cocaine on intracranial self-stimulation (ICSS) in FAST and SLOW mice, which were selectively bred for extremes in alcohol stimulation.

Methods

Male FAST and SLOW mice were conditioned to respond for reinforcement by direct electrical stimulation of the medial forebrain bundle (i.e., brain stimulation reward). ICSS responses were determined immediately before and after oral gavage with water or alcohol (0.3–2.4 g/kg) or intraperitoneal injection with saline or cocaine (1.0–30.0 mg/kg). In separate FAST and SLOW mice, the locomotor effects of these treatments were measured in activity chambers.

Results

Alcohol dose-dependently lowered the threshold for self-stimulation (θ 0) and the frequency that maintained 50% of maximal responding (EF50) in FAST mice but did not significantly affect these parameters in SLOW mice. The largest effects of alcohol were after the 1.7- and 2.4-g/kg doses and were about 40% compared to water injection. Alcohol did not affect MAX response rates, but dose-dependently stimulated locomotor activity in FAST mice. Cocaine lowered thresholds equally in FAST and SLOW mice, although cocaine-stimulated locomotor activity was higher in the FAST than in the SLOW mice.

Conclusions

Selective breeding for alcohol locomotor stimulation also renders the mice more sensitive to the effects of alcohol, but not cocaine, on ICSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arvanitogiannis A, Shizgal P (2008) The reinforcement mountain: allocation of behavior as a function of the rate and intensity of rewarding brain stimulation. Behav Neurosci 122:1126–1138

    Article  PubMed  Google Scholar 

  • Bain GT, Kornetsky C (1989) Ethanol oral self-administration and rewarding brain stimulation. Alcohol 6:499–503

    Article  PubMed  CAS  Google Scholar 

  • Bauco P, Wise RA (1994) Potentiation of lateral hypothalamic and midline mesencephalic brain stimulation reinforcement by nicotine: examination of repeated treatment. J Pharmacol Exp Ther 271:294–301

    PubMed  CAS  Google Scholar 

  • Beckstead MJ, Phillips TJ (2009) Mice selectively bred for high- or low-alcohol-induced locomotion exhibit differences in dopamine neuron function. J Pharmacol Exp Ther 329:342–349

    Article  PubMed  CAS  Google Scholar 

  • Belknap JK, Belknap ND, Berg JH, Coleman R (1977) Preabsorptive vs. postabsorptive control of ethanol intake in C57BL/6J and DBA/2J mice. Behav Genet 7:413–425

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom HC, Palmer AA, Wood RD, Burkhart-Kasch S, McKinnon CS, Phillips TJ (2003) Reverse selection for differential response to the locomotor stimulant effects of ethanol provides evidence for pleiotropic genetic influence on locomotor response to other drugs of abuse. Alcohol Clin Exp Res 27:1535–1547

    Article  PubMed  CAS  Google Scholar 

  • Boehm SL 2nd, Reed CL, McKinnon CS, Phillips TJ (2002) Shared genes influence sensitivity to the effects of ethanol on locomotor and anxiety-like behaviors, and the stress axis. Psychopharmacology (Berl) 161:54–63

    Article  CAS  Google Scholar 

  • Broekkamp CL, van Rossum JM (1974) Effects of apomorphine on self-stimulation behavior. Psychopharmacologia 34:71–80

    Article  PubMed  CAS  Google Scholar 

  • Carelli RM (2002) The nucleus accumbens and reward: neurophysiological investigations in behaving animals. Behav Cogn Neurosci Rev 1:281–296

    Article  PubMed  Google Scholar 

  • Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2:2987–2995

    Article  PubMed  CAS  Google Scholar 

  • Cazala P (1976) Effects of d- and l-amphetamine on dorsal and ventral hypothalamic self-stimulation in three inbred strains of mice. Pharmacol Biochem Behav 5:505–510

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC (1989) Genetic animal models in the study of alcoholism. Alcohol Clin Exp Res 13:120–127

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC Jr, Johnson NA, Gray DK, Kosobud A, Young ER (1982) Biphasic effects of ethanol on open-field activity: sensitivity and tolerance in C57BL/6N and DBA/2N mice. J Comp Physiol Psychol 96:440–451

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Young ER, Deutsch CM, Tam BR, Kosobud A (1987) Mice genetically selected for differences in open-field activity after ethanol. Pharmacol Biochem Behav 27:577–581

    Article  PubMed  CAS  Google Scholar 

  • Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672

    Article  PubMed  CAS  Google Scholar 

  • Cunningham CL, Niehus DR, Malott DH, Prather LK (1992) Genetic differences in the rewarding and activating effects of morphine and ethanol. Psychopharmacology (Berl) 107:385–393

    Article  CAS  Google Scholar 

  • Edmonds DE, Gallistel CR (1974) Parametric analysis of brain stimulation reward in the rat: III. Effect of performance variables on the reward summation function. J Comp Physiol Psychol 87:876–883

    Article  PubMed  CAS  Google Scholar 

  • Eiler WJ 2nd, Masters J, McKay PF, Hardy L 3rd, Goergen J, Mensah-Zoe B, Seyoum R, Cook J, Johnson N, Neal-Beliveau B, June HL (2006) Amphetamine lowers brain stimulation reward (BSR) threshold in alcohol-preferring (P) and -nonpreferring (NP) rats: regulation by D-sub-1 and D-sub-2 receptors in the nucleus accumbens. Exp Clin Psychopharmacol 14:361–376

    Article  PubMed  CAS  Google Scholar 

  • Eiler WJ 2nd, Hardy L 3rd, Goergen J, Seyoum R, Mensah-Zoe B, June HL (2007) Responding for brain stimulation reward in the bed nucleus of the stria terminalis in alcohol-preferring rats following alcohol and amphetamine pretreatments. Synapse 61:912–924

    Article  PubMed  CAS  Google Scholar 

  • Elmer GI, Pieper JO, Hamilton LR, Wise RA (2010) Qualitative differences between C57BL/6J and DBA/2J mice in morphine potentiation of brain stimulation reward and intravenous self-administration. Psychopharmacology (Berl) 208:309–321

    Article  CAS  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    Article  PubMed  CAS  Google Scholar 

  • Erblich J, Earleywine M, Erblich B, Bovbjerg DH (2003) Biphasic stimulant and sedative effects of ethanol: are children of alcoholics really different? Addict Behav 28:1129–1139

    Article  PubMed  Google Scholar 

  • Esposito R, Kornetsky C (1977) Morphine lowering of self-stimulation thresholds: lack of tolerance with long-term administration. Science 195:189–191

    Article  PubMed  CAS  Google Scholar 

  • Esposito RU, Motola AH, Kornetsky C (1978) Cocaine: acute effects on reinforcement thresholds for self-stimulation behavior to the medial forebrain bundle. Pharmacol Biochem Behav 8:437–439

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Riday TT, McGuigan MM, Faccidomo S, Hodge CW, Malanga CJ (2010) Alcohol, cocaine, and brain stimulation-reward in C57Bl6/J and DBA2/J mice. Alcohol Clin Exp Res 34:81–89

    Article  PubMed  CAS  Google Scholar 

  • Gilman JM, Ramchandani VA, Davis MB, Bjork JM, Hommer DW (2008) Why we like to drink: a functional magnetic resonance imaging study of the rewarding and anxiolytic effects of alcohol. J Neurosci 28:4583–4591

    Article  PubMed  CAS  Google Scholar 

  • Grahame NJ, Cunningham CL (1997) Intravenous ethanol self-administration in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 21:56–62

    Article  PubMed  CAS  Google Scholar 

  • Grant KA (1994) Emerging neurochemical concepts in the actions of ethanol at ligand-gated ion channels. Behav Pharmacol 5:383–404

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Parsons LH, Koob GF, Markou A (1999) RU 24969, a 5-HT1A/1B agonist, elevates brain stimulation reward thresholds: an effect reversed by GR 127935, a 5-HT1B/1D antagonist. Psychopharmacology (Berl) 141:242–250

    Article  CAS  Google Scholar 

  • Hernandez G, Breton YA, Conover K, Shizgal P (2010) At what stage of neural processing does cocaine act to boost pursuit of rewards? PLoS One 5:e15081

    Article  PubMed  CAS  Google Scholar 

  • Holstein SE, Pastor R, Meyer PJ, Phillips TJ (2005) Naloxone does not attenuate the locomotor effects of ethanol in FAST, SLOW, or two heterogeneous stocks of mice. Psychopharmacology (Berl) 182:277–289

    Article  CAS  Google Scholar 

  • Holstein SE, Dobbs L, Phillips TJ (2009) Attenuation of the stimulant response to ethanol is associated with enhanced ataxia for a GABAA but not a GABAB receptor agonist. Alcohol Clin Exp Res 33:108–120

    Article  PubMed  CAS  Google Scholar 

  • Huston-Lyons D, Kornetsky C (1992) Effects of nicotine on the threshold for rewarding brain stimulation in rats. Pharmacol Biochem Behav 41:755–759

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev 31:6–41

    Article  PubMed  CAS  Google Scholar 

  • Johnson PM, Hollander JA, Kenny PJ (2008) Decreased brain reward function during nicotine withdrawal in C57BL6 mice: evidence from intracranial self-stimulation (ICSS) studies. Pharmacol Biochem Behav 90:409–415

    Article  PubMed  CAS  Google Scholar 

  • Kamens HM, Phillips TJ (2008) A role for neuronal nicotinic acetylcholine receptors in ethanol-induced stimulation, but not cocaine- or methamphetamine-induced stimulation. Psychopharmacology (Berl) 196:377–387

    Article  CAS  Google Scholar 

  • Kaplan RF, Hesselbrock VM, O’Connor S, DePalma N (1988) Behavioral and EEG responses to alcohol in nonalcoholic men with a family history of alcoholism. Prog Neuropsychopharmacol Biol Psychiatry 12:873–885

    Article  PubMed  CAS  Google Scholar 

  • Katsidoni V, Apazoglou K, Panagis G (2011) Role of serotonin 5-HT2A and 5-HT2C receptors on brain stimulation reward and the reward-facilitating effect of cocaine. Psychopharmacology (Berl) 213:337–354

    Article  CAS  Google Scholar 

  • Kenny PJ, Markou A (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacology 31:1203–1211

    PubMed  CAS  Google Scholar 

  • Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26:5894–5900

    Article  PubMed  CAS  Google Scholar 

  • King AC, Houle T, de Wit H, Holdstock L, Schuster A (2002) Biphasic alcohol response differs in heavy versus light drinkers. Alcohol Clin Exp Res 26:827–835

    Article  PubMed  CAS  Google Scholar 

  • King AC, de Wit H, McNamara PJ, Cao D (2011) Rewarding, stimulant, and sedative alcohol responses and relationship to future binge drinking. Arch Gen Psychiatry 68:389–399

    Article  PubMed  Google Scholar 

  • Kornetsky C, Bain G (1992) Brain-stimulation reward: a model for the study of the rewarding effects of abused drugs. NIDA Res Monogr 124:73–93

    PubMed  CAS  Google Scholar 

  • Lepore M, Liu X, Savage V, Matalon D, Gardner EL (1996) Genetic differences in delta 9-tetrahydrocannabinol-induced facilitation of brain stimulation reward as measured by a rate-frequency curve-shift electrical brain stimulation paradigm in three different rat strains. Life Sci 58(25):PL365–PL372

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, June HL (1994) Synergistic effects of ethanol and cocaine on brain stimulation reward. J Exp Anal Behav 61:223–229

    Article  PubMed  CAS  Google Scholar 

  • Liebman JM (1983) Discriminating between reward and performance: a critical review of intracranial self-stimulation methodology. Neurosci Biobehav Rev 7:45–72

    Article  PubMed  CAS  Google Scholar 

  • Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724

    Article  PubMed  CAS  Google Scholar 

  • Lukas SE, Mendelson JH (1988) Electroencephalographic activity and plasma ACTH during ethanol-induced euphoria. Biol Psychiatry 23:141–148

    Article  PubMed  CAS  Google Scholar 

  • Macphail EM (1967) Positive and negative reinforcement from intracranial stimulation in pigeons. Nature 213:947–948

    Article  PubMed  CAS  Google Scholar 

  • Malanga CJ, Riday TT, Carlezon WA Jr, Kosofsky BE (2008) Prenatal exposure to cocaine increases the rewarding potency of cocaine and selective dopaminergic agonists in adult mice. Biol Psychiatry 63:214–221

    Article  PubMed  CAS  Google Scholar 

  • Matthews K, Baldo BA, Markou A, Lown O, Overstreet DH, Koob GF (1996) Rewarding electrical brain stimulation: similar thresholds for Flinders Sensitive Line Hypercholinergic and Flinders Resistant Line Hypocholinergic rats. Physiol Behav 59:1155–1162

    Article  PubMed  CAS  Google Scholar 

  • McBride WJ, Li TK (1998) Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit Rev Neurobiol 12:339–369

    PubMed  CAS  Google Scholar 

  • Mcclearn GE, Rodgers DA (1959) Differences in alcohol preference among inbred strains of mice. Q J Stud Alcohol 20:691–695

    Google Scholar 

  • Meyer PJ, Phillips TJ (2003) Sensitivity to ketamine, alone or in combination with ethanol, is altered in mice selectively bred for sensitivity to ethanol’s locomotor effects. Alcohol Clin Exp Res 27:1701–1709

    Article  PubMed  CAS  Google Scholar 

  • Meyer PJ, Meshul CK, Phillips TJ (2009) Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine. Genes Brain Behav 8:346–355

    Article  PubMed  CAS  Google Scholar 

  • Miliaressis E, Rompre PP, Laviolette P, Philippe L, Coulombe D (1986) The curve-shift paradigm in self-stimulation. Physiol Behav 37:85–91

    Article  PubMed  CAS  Google Scholar 

  • Moolten M, Kornetsky C (1990) Oral self-administration of ethanol and not experimenter-administered ethanol facilitates rewarding electrical brain stimulation. Alcohol 7:221–225

    Article  PubMed  CAS  Google Scholar 

  • Morean ME, Corbin WR (2010) Subjective response to alcohol: a critical review of the literature. Alcohol Clin Exp Res 34:385–395

    Article  PubMed  Google Scholar 

  • Newlin DB, Thomson JB (1990) Alcohol challenge with sons of alcoholics: a critical review and analysis. Psychol Bull 108:383–402

    Article  PubMed  CAS  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  • Palmer AA, Phillips TJ (2002) Effect of forward and reverse selection for ethanol-induced locomotor response on other measures of ethanol sensitivity. Alcohol Clin Exp Res 26:1322–1329

    Article  PubMed  CAS  Google Scholar 

  • Palmer AA, Miller MN, McKinnon CS, Phillips TJ (2002) Sensitivity to the locomotor stimulant effects of ethanol and allopregnanolone is influenced by common genes. Behav Neurosci 116:126–137

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates (2nd ed). Academic Press, San Diego

  • Phillips TJ, Burkhart-Kasch S, Terdal ES, Crabbe JC (1991) Response to selection for ethanol-induced locomotor activation: genetic analyses and selection response characterization. Psychopharmacology (Berl) 103:557–566

    Article  CAS  Google Scholar 

  • Phillips TJ, Burkhart-Kasch S, Gwiazdon CC, Crabbe JC (1992) Acute sensitivity of FAST and SLOW mice to the effects of abused drugs on locomotor activity. J Pharmacol Exp Ther 261:525–533

    PubMed  CAS  Google Scholar 

  • Phillips TJ, Dickinson S, Burkhart-Kasch S (1994) Behavioral sensitization to drug stimulant effects in C57BL/6J and DBA/2J inbred mice. Behav Neurosci 108:789–803

    Article  PubMed  CAS  Google Scholar 

  • Phillips TJ, Shen EH, McKinnon CS, Burkhart-Kasch S, Lessov CN, Palmer AA (2002) Forward, relaxed, and reverse selection for reduced and enhanced sensitivity to ethanol’s locomotor stimulant effects in mice. Alcohol Clin Exp Res 26:593–602

    PubMed  CAS  Google Scholar 

  • Ranaldi R, Bauco P, McCormick S, Cools AR, Wise RA (2001) Equal sensitivity to cocaine reward in addiction-prone and addiction-resistant rat genotypes. Behav Pharmacol 12:527–534

    Article  PubMed  CAS  Google Scholar 

  • Risinger FO, Malott DH, Prather LK, Niehus DR, Cunningham CL (1994) Motivational properties of ethanol in mice selectively bred for ethanol-induced locomotor differences. Psychopharmacology (Berl) 116:207–216

    Article  CAS  Google Scholar 

  • Robinson JE, Fish EW, Krouse MC, Thorsell A, Heilig M, Malanga CJ (2011) Potentiation of brain stimulation reward by morphine: effects of neurokinin-1 receptor antagonism. Psychopharmacology (Berl). doi:10.1007/s00213-011-2469-z

  • Rompre PP, Wise RA (1989) Opioid-neuroleptic interaction in brainstem self-stimulation. Brain Res 477:144–151

    Article  PubMed  CAS  Google Scholar 

  • Schaefer GJ, Michael RP (1992) Interactions between alcohol and nicotine on intracranial self-stimulation and locomotor activity in rats. Drug Alcohol Depend 30:37–47

    Article  PubMed  CAS  Google Scholar 

  • Schuckit MA (1999) New findings in the genetics of alcoholism. JAMA 281:1875–1876

    Article  PubMed  CAS  Google Scholar 

  • Schuckit MA, Smith TL, Kalmijn J, Danko GP (2005) A cross-generational comparison of alcohol challenges at about age 20 in 40 father-offspring pairs. Alcohol Clin Exp Res 29:1921–1927

    Article  PubMed  Google Scholar 

  • Schulteis G, Markou A, Cole M, Koob GF (1995) Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci USA 92:5880–5884

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24

    Article  PubMed  Google Scholar 

  • Shelton KL, Grant KA (2002) Discriminative stimulus effects of ethanol in C57BL/6J and DBA/2J inbred mice. Alcohol Clin Exp Res 26:747–757

    Article  PubMed  CAS  Google Scholar 

  • Shen EH, Phillips TJ (1998) MK-801 potentiates ethanol’s effects on locomotor activity in mice. Pharmacol Biochem Behav 59:135–143

    Article  PubMed  CAS  Google Scholar 

  • Shen EH, Dorow JD, Huson M, Phillips TJ (1996) Correlated responses to selection in FAST and SLOW mice: effects of ethanol on ataxia, temperature, sedation, and withdrawal. Alcohol Clin Exp Res 20:688–696

    Article  PubMed  CAS  Google Scholar 

  • Sidman M, Brady JV, Boren JJ, Conrad DG, Schulman A (1955) Reward schedules and behavior maintained by intracranial self-stimulation. Science 122:830–831

    Article  PubMed  CAS  Google Scholar 

  • Smith RC, Parker ES, Noble EP (1975) Alcohol and affect in dyadic social interaction. Psychosom Med 37:25–40

    PubMed  CAS  Google Scholar 

  • Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196:155–167

    Article  PubMed  Google Scholar 

  • Stellar JR, Corbett D (1989) Regional neuroleptic microinjections indicate a role for nucleus accumbens in lateral hypothalamic self-stimulation reward. Brain Res 477:126–143

    Article  PubMed  CAS  Google Scholar 

  • Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci USA 83:4071–4075

    Article  PubMed  CAS  Google Scholar 

  • Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr (2004) Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology (Berl) 172:463–470

    Article  CAS  Google Scholar 

  • Vrtunski P, Murray R, Wolin LR (1973) The effect of alcohol on intracranially reinforced response. Q J Stud Alcohol 34:718–725

    PubMed  CAS  Google Scholar 

  • Wahlsten D, Metten P, Phillips TJ, Boehm SL 2nd, Burkhart-Kasch S, Dorow J, Doerksen S, Downing C, Fogarty J, Rodd-Henricks K, Hen R, McKinnon CS, Merrill CM, Nolte C, Schalomon M, Schlumbohm JP, Sibert JR, Wenger CD, Dudek BC, Crabbe JC (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54:283–311

    Article  PubMed  Google Scholar 

  • Waller MB, Murphy JM, McBride WJ, Lumeng L, Li TK (1986) Effect of low dose ethanol on spontaneous motor activity in alcohol-preferring and nonpreferring lines of rats. Pharmacol Biochem Behav 24:617–623

    Article  PubMed  CAS  Google Scholar 

  • Williams AF (1966) Social drinking, anxiety, and depression. J Pers Soc Psychol 3:689–693

    Article  PubMed  CAS  Google Scholar 

  • Williams-Hemby L, Porrino LJ (1997) I. Functional consequences of intragastrically administered ethanol in rats as measured by the 2-[14C]deoxyglucose method. Alcohol Clin Exp Res 21:1573–1580

    PubMed  CAS  Google Scholar 

  • Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1998) Drug-activation of brain reward pathways. Drug Alcohol Depend 51:13–22

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (2002) Brain reward circuitry: insights from unsensed incentives. Neuron 36:229–240

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Zacharko RM, Gilmore W, MacNeil G, Kasian M, Anisman H (1990) Stressor induced variations of intracranial self-stimulation from the mesocortex in several strains of mice. Brain Res 533:353–357

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the following support for this research: grants AA 018335 to CJM, AA007573 to the Bowles Center of Alcohol Studies and funding from the Department of Veterans Affairs, and NIAAA P60 AA010760 to TJP. The authors are indebted to Megan McGuigan for facilitating the transfer of mice from the Portland VA to the UNC animal facility, Kelly Psilos for her assistance with histology, Dr. Sara Faccidomo for technical assistance with the activity monitors, and Dr. Sarah Holstein for her helpful comments and observations regarding the FAST/SLOW phenotype.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Fish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fish, E.W., Robinson, J.E., Krouse, M.C. et al. Intracranial self-stimulation in FAST and SLOW mice: effects of alcohol and cocaine. Psychopharmacology 220, 719–730 (2012). https://doi.org/10.1007/s00213-011-2523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2523-x

Keywords

Navigation