Skip to main content
Log in

Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The role of G protein coupled receptors (GPCRs) in numerous physiological processes that may be disrupted or modified in disease makes them key targets for the development of new therapeutic medicines. A wide variety of resonance energy transfer (RET) techniques such as fluorescence RET and bioluminescence RET have been developed in recent years to detect protein–protein interactions in living cells. Furthermore, these techniques are now being exploited to screen for novel compounds that activate or block GPCRs and to search for new, previously undiscovered signaling pathways activated by well-known pharmacologically classified drugs. The high resolution that can be achieved with these RET methods means that they are well suited to study both intramolecular conformational changes in response to ligand binding at the receptor level and intermolecular interactions involving protein translocation in subcellular compartments resulting from external stimuli. In this review we highlight the latest advances in these technologies to illustrate general principles.

Acceptor photobleaching of a mCerulean-mCitrine fluorescent protein tandem. Images show HEK293 cells transfected with a mCerulean-mCitrine fluorescent protein concatamer prior to selective photo-bleaching of the acceptor in the region marked by a red square. The absence of fluorescence signal in post-bleached images within the region of interest confirms that the acceptor fluorescence has been bleached and irreversibly destroyed. Once this process has taken place the donor returns to its de-quenched state that, in turn, will result in an increase in donor fluorescence intensity being detected within the bleached region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AnFRET:

anisotropy fluorescence resonance energy transfer

apFRET:

acceptor photobleaching fluorescence resonance energy transfer

BRET:

bioluminescence resonance energy transfer

cAMP:

cyclic AMP

CFP:

cyan fluorescent protein

FlAsH:

fluorescein arsenical hairpin binder

FLIM:

fluorescence lifetime imaging microscopy

FRET:

fluorescence resonance energy transfer

GFP:

green fluorescent protein

GPCR:

guanine nucleotide binding protein coupled receptor

G protein:

guanine nucleotide binding protein

HTRF:

homogeneous time-resolved fluorescence resonance energy transfer

PA-GFP:

UV photoactivatable green fluorescent protein

PQ-FRET:

photoquenching fluorescence resonance energy transfer

RET:

resonance energy transfer

Rluc:

Renilla luciferase

SBT:

spectral bleed-through

YFP:

yellow fluorescent protein

References

  1. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289:739–745

    Article  CAS  Google Scholar 

  2. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Nature 450:383–387

    Article  CAS  Google Scholar 

  3. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) Science 322:1211–1217

    Article  CAS  Google Scholar 

  4. Lefkowitz RJ (2007) Acta Physiol (Oxf) 190:9–19

    Article  CAS  Google Scholar 

  5. Milligan G (2009) Curr Opin Pharmacol 10:23–29

    Article  CAS  Google Scholar 

  6. Park PS, Filipek S, Wells JW, Palczewski K (2004) Biochemistry 43:15643–15656

    Article  CAS  Google Scholar 

  7. Topiol S, Sabio M (2009) Biochem Pharmacol 78:11–20

    Article  CAS  Google Scholar 

  8. Vogel SS, Thaler C, Koushik SV (2006) Sci STKE re2

  9. Shaner NC, Steinbach PA, Tsien RY (2005) Nat Meth 2:905–909

    Article  CAS  Google Scholar 

  10. Pfleger KD, Dalrymple MB, Dromey JR, Eidne KA (2007) Biochem Soc Trans 35:764–766

    Article  CAS  Google Scholar 

  11. Herrick-Davis K, Weaver BA, Grinde E, Mazurkiewicz JE (2006) J Biol Chem 281:27109–27116

    Article  CAS  Google Scholar 

  12. Förster J (1948) Wien Klin Wochenschr 60:692

    Google Scholar 

  13. Pollok BA, Heim R (1999) Trends Cell Biol 9:57–60

    Article  CAS  Google Scholar 

  14. Tsien RY (1998) Annu Rev Biochem 67:509–544

    Article  CAS  Google Scholar 

  15. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Nat Rev Mol Cell Biol 3:906–918

    Article  CAS  Google Scholar 

  16. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Nat Biotechnol 22:1567–1572

    Article  CAS  Google Scholar 

  17. Kenakin T (1995) Trends Pharmacol Sci 16:232–238

    Article  CAS  Google Scholar 

  18. Kenakin T (2007) Trends Pharmacol Sci 28:407–415

    Article  CAS  Google Scholar 

  19. Wieland K, Zuurmond HM, Krasel C, Ijzerman AP, Lohse MJ (1996) Proc Natl Acad Sci USA 93:9276–9281

    Article  CAS  Google Scholar 

  20. Ward SD, Hamdan FF, Bloodworth LM, Wess J (2002) J Biol Chem 277:2247–2257

    Article  CAS  Google Scholar 

  21. Vilardaga JP, Bunemann M, Krasel C, Castro M, Lohse MJ (2003) Nat Biotechnol 21:807–812

    Article  CAS  Google Scholar 

  22. Vilardaga JP, Steinmeyer R, Harms GS, Lohse MJ (2005) Nat Chem Biol 1:25–28

    Article  CAS  Google Scholar 

  23. Rochais F, Vilardaga JP, Nikolaev VO, Bunemann M, Lohse MJ, Engelhardt S (2007) J Clin Invest 117:229–235

    Article  CAS  Google Scholar 

  24. Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Nat Biotechnol 23:1308–1314

    Article  CAS  Google Scholar 

  25. Zurn A, Zabel U, Vilardaga JP, Schindelin H, Lohse MJ, Hoffmann C (2009) Mol Pharmacol 75:534–541

    Article  CAS  Google Scholar 

  26. Conn PJ, Christopoulos A, Lindsley CW (2009) Nat Rev Drug Discov 8:41–54

    Article  CAS  Google Scholar 

  27. Maier-Peuschel M, Frolich N, Dees C, Hommers LG, Hoffmann C, Nikolaev VO, Lohse MJ (2010) J Biol Chem 285:8793–8800

    Article  CAS  Google Scholar 

  28. Ilien B, Franchet C, Bernard P, Morisset S, Weill CO, Bourguignon JJ, Hibert M, Galzi JL (2003) J Neurochem 85:768–778

    Article  CAS  Google Scholar 

  29. Okazaki M, Ferrandon S, Vilardaga JP, Bouxsein ML, Potts JT Jr, Gardella TJ (2008) Proc Natl Acad Sci USA 105:16525–16530

    Article  CAS  Google Scholar 

  30. Ilien B, Glasser N, Clamme JP, Didier P, Piemont E, Chinnappan R, Daval SB, Galzi JL, Mely Y (2009) J Biol Chem 284:19533–19543

    Article  CAS  Google Scholar 

  31. Janetopoulos C, Jin T, Devreotes P (2001) Science 291:2408–2411

    Article  CAS  Google Scholar 

  32. Elzie CA, Colby J, Sammons MA, Janetopoulos C (2009) J Cell Sci 122:2597–2603

    Article  CAS  Google Scholar 

  33. Azpiazu I, Gautam N (2004) J Biol Chem 279:27709–27718

    Article  CAS  Google Scholar 

  34. Chisari M, Saini DK, Cho JH, Kalyanaraman V, Gautam N (2009) PLoS ONE 4:e7797

    Article  Google Scholar 

  35. Bunemann M, Frank M, Lohse MJ (2003) Proc Natl Acad Sci USA 100:16077–16082

    Article  Google Scholar 

  36. Hein P, Frank M, Hoffmann C, Lohse MJ, Bunemann M (2005) EMBO J 24:4106–4114

    Article  CAS  Google Scholar 

  37. Miyawaki A (2003) Dev Cell 4:295–305

    Article  CAS  Google Scholar 

  38. Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G (2007) Mol Pharmacol 71:1015–1029

    Article  CAS  Google Scholar 

  39. Rizzo MA, Piston DW (2005) Biophys J 88:L14–L16

    Article  CAS  Google Scholar 

  40. Herrick-Davis K, Grinde E, Mazurkiewicz JE (2004) Biochemistry 43:13963–13971

    Article  CAS  Google Scholar 

  41. Demarco IA, Periasamy A, Booker CF, Day RN (2006) Nat Meth 3:519–524

    Article  CAS  Google Scholar 

  42. Patterson GH, Lippincott-Schwartz J (2002) Science 297:1873–1877

    Article  CAS  Google Scholar 

  43. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Nat Rev Mol Cell Biol 6:885–891

    Article  CAS  Google Scholar 

  44. Panetta R, Greenwood MT (2008) Drug Discov Today 13:1059–1066

    Article  CAS  Google Scholar 

  45. Overton MC, Blumer KJ (2000) Curr Biol 10:341–344

    Article  CAS  Google Scholar 

  46. Cornea A, Janovick JA, Maya-Nunez G, Conn PM (2001) J Biol Chem 276:2153–2158

    Article  CAS  Google Scholar 

  47. Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, Beck-Sickinger AG (2003) J Biol Chem 278:10562–10571

    Article  CAS  Google Scholar 

  48. Stanasila L, Perez JB, Vogel H, Cotecchia S (2003) J Biol Chem 278:40239–40251

    Article  CAS  Google Scholar 

  49. Milligan G, Wilson S, Lopez-Gimenez JF (2005) J Mol Neurosci 26:161–168

    Article  CAS  Google Scholar 

  50. Dziedzicka-Wasylewska M, Faron-Gorecka A, Gorecki A, Kusemider M (2008) Pharmacol Rep 60:581–587

    CAS  Google Scholar 

  51. Milligan G, Bouvier M (2005) FEBS J 272:2914–2925

    Article  CAS  Google Scholar 

  52. Galperin E, Verkhusha VV, Sorkin A (2004) Nat Meth 1:209–217

    Article  CAS  Google Scholar 

  53. van Rijn RM, Chazot PL, Shenton FC, Sansuk K, Bakker RA, Leurs R (2006) Mol Pharmacol 70:604–615

    Article  Google Scholar 

  54. Canals M, Burgueno J, Marcellino D, Cabello N, Canela EI, Mallol J, Agnati L, Ferre S, Bouvier M, Fuxe K, Ciruela F, Lluis C, Franco R (2004) J Neurochem 88:726–734

    Article  CAS  Google Scholar 

  55. Ramsay D, Carr IC, Pediani J, Lopez-Gimenez JF, Thurlow R, Fidock M, Milligan G (2004) Mol Pharmacol 66:228–239

    Article  CAS  Google Scholar 

  56. Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) Chem Biol 15:128–136

    Article  CAS  Google Scholar 

  57. Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L, Trinquet E, Pin JP (2008) Nat Meth 5:561–567

    Article  CAS  Google Scholar 

  58. Coulon V, Audet M, Homburger V, Bockaert J, Fagni L, Bouvier M, Perroy J (2008) Biophys J 94:1001–1009

    Article  CAS  Google Scholar 

  59. Pfleger KD, Eidne KA (2006) Nat Meth 3:165–174

    Article  CAS  Google Scholar 

  60. Pfleger KD, Dromey JR, Dalrymple MB, Lim EM, Thomas WG, Eidne KA (2006) Cell Signal 18:1664–1670

    Article  CAS  Google Scholar 

  61. De A, Ray P, Loening AM, Gambhir SS (2009) FASEB J 23:2702–2709

    Article  CAS  Google Scholar 

  62. Goin JC, Nathanson NM (2006) J Biol Chem 281:5416–5425

    Article  CAS  Google Scholar 

  63. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M (2002) J Biol Chem 277:44925–44931

    Article  CAS  Google Scholar 

  64. Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R (2002) J Biol Chem 277:21522–21528

    Article  CAS  Google Scholar 

  65. Yoshioka K, Saitoh O, Nakata H (2002) FEBS Lett 523:147–151

    Article  CAS  Google Scholar 

  66. Kamiya T, Saitoh O, Yoshioka K, Nakata H (2003) Biochem Biophys Res Commun 306:544–549

    Article  CAS  Google Scholar 

  67. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbe-Jullie C, Bouvier M, Marullo S (2002) J Biol Chem 277:34666–34673

    Article  CAS  Google Scholar 

  68. Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE (2003) Endocr Rev 24:765–781

    Article  CAS  Google Scholar 

  69. Gales C, Rebois RV, Hogue M, Trieu P, Breit A, Hebert TE, Bouvier M (2005) Nat Meth 2:177–184

    Article  CAS  Google Scholar 

  70. Galés C, Van Durm JJ, Schaak S, Pontier S, Percherancier Y, Audet M, Paris H, Bouvier M (2006) Nat Struct Mol Biol 13:778–786

    Article  Google Scholar 

  71. Lefkowitz RJ, Whalen EJ (2004) Curr Opin Cell Biol 16:162–168

    Article  CAS  Google Scholar 

  72. Rajagopal S, Kim J, Ah S, Craig S, Lam CM, Gerard NP, Gerard C, Lefkowitz RJ (2010) Proc Natl Acad Sci USA 107:628–632

    Article  Google Scholar 

  73. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Annu Rev Physiol 69:483–510

    Article  CAS  Google Scholar 

  74. Barak LS, Ferguson SS, Zhang J, Caron MG (1997) J Biol Chem 272:27497–27500

    Article  CAS  Google Scholar 

  75. Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS, Abood ME (2009) J Biol Chem 284:29817–29827

    Article  CAS  Google Scholar 

  76. Oakley RH, Hudson CC, Cruickshank RD, Meyers DM, Payne RE Jr, Rhem SM, Loomis CR (2002) Assay Drug Dev Technol 1:21–30

    Article  CAS  Google Scholar 

  77. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Proc Natl Acad Sci USA 97:3684–3689

    Article  CAS  Google Scholar 

  78. Kamal M, Marquez M, Vauthier V, Leloire A, Froguel P, Jockers R, Couturier C (2009) Biotechnol J 4:1337–1344

    Article  CAS  Google Scholar 

  79. Kocan M, See HB, Seeber RM, Eidne KA, Pfleger KD (2008) J Biomol Screen 13:888–898

    Article  CAS  Google Scholar 

  80. Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, Bouvier M (2003) Mol Endocrinol 17:677–691

    Article  CAS  Google Scholar 

  81. Devost D, Zingg HH (2004) J Neuroendocrinol 16:372–377

    Article  CAS  Google Scholar 

  82. Masri B, Salahpour A, Didriksen M, Ghisi V, Beaulieu JM, Gainetdinov RR, Caron MG (2008) Proc Natl Acad Sci USA 105:13656–13661

    Article  CAS  Google Scholar 

  83. Berque-Bestel I, Lezoualc'h F, Jockers R (2008) Curr Drug Discov Technol 5:312–318

    Article  CAS  Google Scholar 

  84. Milligan G, Smith NJ (2007) Trends Pharmacol Sci 28:615–620

    Article  CAS  Google Scholar 

  85. George SR, O'Dowd BF, Lee SP (2002) Nat Rev Drug Discov 1:808–820

    Article  CAS  Google Scholar 

  86. Milligan G, Canals M, Pediani JD, Ellis J, Lopez-Gimenez JF (2006) Ernst Schering Found Symp Proc 145–161

  87. Saenz del Burgo L, Milligan G (2010) Expert Opin Drug Discov 5:461–474

    Article  Google Scholar 

  88. Violin JD, Zhang J, Tsien RY, Newton AC (2003) J Cell Biol 161:899–909

    Article  CAS  Google Scholar 

  89. Violin JD, Newton AC (2003) IUBMB Life 55:653–660

    Article  CAS  Google Scholar 

  90. van der Krogt GN, Ogink J, Ponsioen B, Jalink K (2008) PLoS ONE 3:e1916

    Article  Google Scholar 

  91. Meyer BH, Segura JM, Martinez KL, Hovius R, George N, Johnsson K, Vogel H (2006) Proc Natl Acad Sci USA 103:2138–2143

    Article  CAS  Google Scholar 

  92. Gurevich VV, Gurevich EV (2008) Trends Neurosci 31:74–81

    Article  CAS  Google Scholar 

  93. Whorton MR, Jastrzebska B, Park PS, Fotiadis D, Engel A, Palczewski K, Sunahara RK (2008) J Biol Chem 283:4387–4394

    Article  CAS  Google Scholar 

  94. Hamdan FF, Percherancier Y, Breton B, Bouvier M (2006) Curr Protoc Neurosci Unit 5.23

  95. Ayoub MA, Pfleger KD (2010) Curr Opin Pharmacol 10:44–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Biotechnology and Biosciences Research Council (grant BB/E006302/1) and the Medical Research Council (grant G0900050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Milligan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Curto, E., Pediani, J.D. & Milligan, G. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors. Anal Bioanal Chem 398, 167–180 (2010). https://doi.org/10.1007/s00216-010-3823-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3823-4

Keywords

Navigation