Skip to main content

Advertisement

Log in

Urinary 6β-hydroxycortisol: a validated test for evaluating drug induction or drug inhibition mediated through CYP3A in humans and in animals

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

6β-Hydroxycortisol (6β-OHF) urinary excretion has, for a long time, been considered a marker of drug induction and, more recently, of drug inhibition in humans and in laboratory animals, but its specificity is still under debate. In this work, we review 277 papers devoted to 6β-OHF urinary excretion. We have evaluated factors that could modify 6β-OHF excretion and, thus, could explain contradictory results. We have examined the effect of the analytical techniques on physiological values. Intra- and inter-individual variability and the effect of circadian rhythms on urinary excretion of 6β-OHF as well as cortisol and 17-hydroxycorticosteroids have been evaluated. We also give an overview of drugs that induce, inhibit or have no effect on 6β-OHF. For inducing and inhibiting drugs, we calculated the ranges of variation of 6β-OHF excretion from the results indicated in the different papers. This work was done for well-known inducers, such as anticonvulsants, but also for other inducing or inhibiting drugs found in the literature. The time-course of variation in 6β-OHF excretion when different drugs are co-administered was also investigated. The potential relationship between cytochrome P 450 3A4 (CYP3A4) polymorphism and 6β-OHF excretion was studied. Finally, the interest of 6β-OHF urinary excretion was compared with that of other tests proposed to measure CYP3A4 activity. This review demonstrates that 6β-OHF urinary excretion is a good test to evaluate drug-metabolising enzyme inducing or inhibiting properties of drugs when the subjects are their own controls, but this test is not reliable enough to measure actual CYP3A4 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. Urinary 17-OHCS group: all the urinary steroids possessing a function 17,21 dihydroxy-20 cetone, i.e. di and tetrahydroxy derivatives of cortisol, cortisone and 11 deoxycortisol. This old nomenclature is no more in use as each of these compounds is now specifically measured.

  2. Cytochrome P 448 is the old name of a family of cytochromes whose absorbance peak of the complex with carbon oxide shifted from 450 nm to 448 nm. In modern nomenclature, it refers mainly, but not exclusively, to CYP1A.

References

  1. Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19:317–366

    CAS  PubMed  Google Scholar 

  2. Breckenridge A (1975) Clinical implications of enzyme induction. In: Parke DV (ed) Enzyme induction. Plenum Press, London, pp 273–301

  3. Park BK, Breckenridge AM (1981) Clinical implications of enzyme induction and enzyme inhibition. Clin Pharmacokin 6:1–24

    CAS  Google Scholar 

  4. Okey AB, Roberts EA, Harper PA, Denison MS (1986) Induction of drug-metabolizing enzymes: mechanisms and consequences. Clin Biochem 19:132–141

    CAS  PubMed  Google Scholar 

  5. Park BK, Kitteringham NR (1988) Relevance and means of assessing induction and inhibition of drug metabolism in man. In: Gibson GG (ed) Progress in drug metabolism. Taylor and Francis, London, pp 1–60

  6. Watkins PB, Wrighton SA, Maurel P, Schuetz EG, Mendez-Picon G, Parker GA et al (1985) Protein identification of an inducible form of cytochrome P 450 in human liver. Proc Natl Acad Sci U S A 82:6310–6314

    CAS  PubMed  Google Scholar 

  7. Watkins PB, Murray SA, Winkelman LG, Heuman DM, Wrighton SA, Guzelian PS (1989) Erythromycin breath test as an assay of glucocorticoid-inducible liver cytochromes P 450. Studies in rats and patients. J Clin Invest 83:688–697

    CAS  PubMed  Google Scholar 

  8. Burstein S, Dorfman RI, Nadel EM (1954) 6β-hydroxycortisol—a new steroid in human urine. Arch Biochem Biophys 53:307–308

    CAS  Google Scholar 

  9. Thummel KE, Wilkinson GR (1998) In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 38:389–430

    Article  CAS  Google Scholar 

  10. Ohnhaus EE, Park BK (1979) Measurement of urinary 6-β-hydroxycortisol excretion as an in vivo parameter in the clinical assessment of the microsomal enzyme-inducing capacity of antipyrine, phenobarbitone and rifampicin. Eur J Clin Pharmacol 15:139–145

    CAS  PubMed  Google Scholar 

  11. Park BK (1981) Assessment of urinary 6β-hydroxycortisol as an in vivo index of mixed-function oxygenase activity. Br J Clin Pharmacol 12:97–102

    CAS  PubMed  Google Scholar 

  12. Streetman DS, Bertino JS Jr, Nafziger AN (2000) Phenotyping of drug-metabolizing enzymes in adults: a review of in vivo cytochrome P 450 phenotyping probes. Pharmacogenetics 10:187–216

    CAS  PubMed  Google Scholar 

  13. Morita K, Konishi H, Shimakawa H (1992) Fluconazole: a potent inhibitor of cytochrome P 450-dependent drug-metabolism in mice and humans in vivo. Comparative study with ketoconazole. Chem Pharm Bull (Tokyo) 40:1247–11251

    Google Scholar 

  14. Brockmeyer NH, Tillmann I, Mertins L, Barthel B, Goos M (1997) Pharmacokinetic interaction of fluconazole and zidovudine in HIV-positive patients. Eur J Med Res 2:377–383

    CAS  PubMed  Google Scholar 

  15. Cohn GL, Upton V, Bondy PK (1961) The in vivo conversion of cortisol-4-C14 to 6β-hydroxycortisol-4-C14 by the human cirrhotic liver. J Clin Endocrinol Metab 21:1328–1331

    CAS  PubMed  Google Scholar 

  16. Lipman MM, Katz FH, Jailer JW (1969) An alternate pathway for cortisol metabolism: 6β-hydroxycortisol production by human tissue slices. J Clin Endocrinol Metab 22:268–272

    Google Scholar 

  17. Miyabo S, Kishida S, Hisada T (1973) Metabolism and conjugation of cortisol by various dog tissues in vitro. J Steroid Biochem 4:567–576

    Article  CAS  PubMed  Google Scholar 

  18. Katz FH, Lipman MM, Frantz AG, Jailer JW (1962) The physiologic significance of 6β-hydroxycortisol in human corticoid metabolism. J Clin Endocrinol 22:71–77

    CAS  Google Scholar 

  19. Fukushima DK, Bradlow HL, Hellman L (1971) Effects of o,p’-DDD on cortisol and 6β-hydroxycortisol secretion and metabolism in man. J Clin Endocrinol 32:192–200

    CAS  Google Scholar 

  20. Frantz AG, Katz FH, Jailer JW (1961) 6β-hydroxycortisol and other polar corticosteroids: measurement and significance in human urine. J Clin Endocrinol Metab 21:1290–1303

    CAS  PubMed  Google Scholar 

  21. Dixon R, Pennington GW (1969) 6β-hydroxycortisol metabolism in man. Steroids 13:529–538

    Article  CAS  PubMed  Google Scholar 

  22. Burstein S, Kimball HL, Klaiber EL, Gut M (1967) Metabolism of 2α- and 6β-hydroxycortisol in man: determination of production rates of 6β-hydroxycortisol with and without phenobarbital administration. J Clin Endocrinol 27:491–499

    CAS  Google Scholar 

  23. Ged C, Rouillon JM, Pichard L, Combalbert J, Bressot N, Bories P et al (1989) The increase in urinary excretion of 6β-hydroxycortisol as a marker of human hepatic cytochrome P 450 IIIA induction. Br J Clin Pharmacol 28:373–387

    Google Scholar 

  24. De Wildt SN, Kearns LH, Leeder JS, Van Den Anker JN (1999) Cytochrome P 450 3A: ontogeny and drug disposition. Clin Pharmacokinet 37:485–505

    CAS  PubMed  Google Scholar 

  25. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27:383–391

    CAS  PubMed  Google Scholar 

  26. Guenguerich P (1999) Cytochrome P 450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 39:1–17

    PubMed  Google Scholar 

  27. Hines RH, McCarver DG (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300:355–360

    Article  CAS  PubMed  Google Scholar 

  28. Abel SM, Maggs JL, Back DJ, Park BK (1992) Cortisol metabolism by human liver in vitro. I. Metabolite identification and inter-individual variability. J Steroid Biochem Mol Biol 43:713–719

    Article  CAS  PubMed  Google Scholar 

  29. Abel SM, Back DJ (1993) Cortisol metabolism in vitro. III. Inhibition of microsomal 6β-hydroxylase and cytosolic 4-ene-reductase. J Steroid Biochem Mol Biol 46:827–832

    Article  CAS  PubMed  Google Scholar 

  30. Lemoine A, Azoulay D, Dennison A, Kiffel L, Pichard L, Furlan V et al (1994) FK 506 renal toxicity and lack of detectable cytochrome P 450 3A in the liver graft of a patient undergoing liver transplantation. Hepatology 20:1472–1477

    CAS  PubMed  Google Scholar 

  31. Kolars JC, Lown KS, Schmiedlin-Ren P, Ghosh M, Fang C, Wrighton SA et al (1994) CYP3A gene expression in human gut epithelium. Pharmacogenetics 4:247–259

    CAS  PubMed  Google Scholar 

  32. Schuetz EG, Schuetz JD, Grogan WM, Narray-Fejes-Toth A, Fejes-Toth G, Raucy J et al (1992) Expression of cytochrome P 450 3A in amphibian, rat, and human kidney. Arch Biochem Biophys 294:206–214

    CAS  PubMed  Google Scholar 

  33. Werk EE, MacGee J, Sholiton LJ (1964) Altered cortisol metabolism in advanced cancer and other terminal illnesses: excretion of 6-hydroxycortisol. Metabolism 13:1425–1438

    CAS  PubMed  Google Scholar 

  34. Corti P, Murratzu C, Sciarra GF, Corbini GF (1985) Dosaggio densitometrico del 6β-idrossi-cortisolo nelle urine. Boll Chim Farm 124:483–489

    CAS  PubMed  Google Scholar 

  35. Yamaji T, Motohashi K, Murakawa S, Ibayashi H (1969) Urinary excretion of 6β-hydroxycortisol in states of altered thyroid function. J Clin Endocrinol 29:801–806

    CAS  Google Scholar 

  36. Thrasher K, Werk EE, Choi Y, Sholiton LJ, Meyer W, Olinger C (1969) The measurement, excretion, and source of urinary 6β-hydroxycortisol in humans. Steroids 14:455–468

    CAS  PubMed  Google Scholar 

  37. Berman ML, Green OC (1971) Acute stimulation of cortisol metabolism by pentobarbital in man. Anesthesiology 34:365–369

    CAS  PubMed  Google Scholar 

  38. Pal SB (1980) A fluorimetric method for the determination of urinary 6β-hydroxycortisol in humans. J Steroid Biochem 13:1373–1377

    Article  CAS  PubMed  Google Scholar 

  39. Poland A, Smith D, Kuntzman R, Jacobson M, Conney AH (1970) Effect of intensive occupational exposure to DDT on phenylbutazone and cortisol metabolism in human subjects. Clin Pharmacol Ther 11:724–732

    CAS  PubMed  Google Scholar 

  40. Werk EE, MacGee J, Sholiton LJ (1964) Effect of diphenylhydantoin on cortisol metabolism in man. J Clin Invest 43:1824–1835

    CAS  PubMed  Google Scholar 

  41. Ghosh PC, Pennington GW (1969) A comparison of gas-liquid chromatography with colorimetric mathods for the estimation of extremely polar unconjugated corticosteroids in urine. Steroids 3:247–255

    Article  Google Scholar 

  42. Kishida S, Fukushima DK (1977) Radioimmunoassay of 6β-hydroxycortisol in human plasma and urine. Steroids 30:741–749

    CAS  PubMed  Google Scholar 

  43. Park BK (1978) A direct radioimmunoassay for 6β-hydroxycortisol in human urine. J Steroid Biochem 9:963–966

    Article  CAS  PubMed  Google Scholar 

  44. Nahoul K, Adeline J, Paysant F, Scholler R (1982) Radioimmunoassay of plasma and urine 6β-hydroxycortisol: levels in healthy adults and in hypercortisolemic states. J Steroid Biochem 17:343–350

    Article  CAS  PubMed  Google Scholar 

  45. Park BK, Rowe PH, Osborne M, Dean PDG (1976) Preparation of antisera specific for 6β-hydroxycortisol. Febs Lett 68:237–239

    Article  CAS  PubMed  Google Scholar 

  46. Bowler-Wong SJ, Hay DM, Lorscheider FL (1981) A protein-binding radioassay for 6 beta-hydroxycortisol: detection in pregnancy urine and amniotic fluid. Am J Obstet Gynecol 139:243–249

    CAS  PubMed  Google Scholar 

  47. Roots I, Holbe R, Hövermann W, Nigam S, Heinemeyer G, Hildebrandt AG (1979) Quantitative determination by HPLC of urinary 6β-hydroxycortisol, an indicator of enzyme induction by rifampicin and antiepileptic drugs. Eur J Clin Pharmacol 16:63–71

    CAS  PubMed  Google Scholar 

  48. Corti P, Lencioni E, Sciarra GF, Murratzu G (1983) Indagini cromatografiche in TLC e HPLC sul 6-β-idrossi-cortisolo in miscela con composti a struttura steroidea. Boll Chim Farm 122:297–307

    CAS  PubMed  Google Scholar 

  49. Ono T, Tanida K, Shibata H, Konishi H, Shimakawa H (1986) High-performance liquid chromatographic determination of 6β-hydroxycortisol in urine. Chem Pharm Bull (Tokyo) 34:2522–2527

    Google Scholar 

  50. Lodovici M, Dolara P, Bavazzano P, Colzi A, Pistolesi V (1981) A new method for the determination of 6-beta-OH-cortisol in human urine. Clin Chim Acta 114:107–110

    Article  CAS  PubMed  Google Scholar 

  51. Dumont E, Sclavons M, Desager JP (1984) Use of an internal standard to assay 6β-hydroxycortisol in urine. J Liquid Chromatogr 7:2051–2057

    CAS  Google Scholar 

  52. Homma M, Beckerman K, Hayashi S, Jayewardene AL, Oka K, Gambertoglio JG et al (2000) Liquid chromatographic determination of urinary 6β-hydroxycortisol to assess cytochrome P 450 3A activity in HIV positive pregnant women. J Pharm Biomed Anal 23:629–635

    Article  CAS  PubMed  Google Scholar 

  53. Goto J, Shamsa F, Nambara T (1983) Studies on steroids CLXXXII. Determination of 6β-hydroxycortisol in urine by high-performance liquid chromatography with fluorescence detection. J Liquid Chromatogr 6:1977–1985

    CAS  Google Scholar 

  54. Bienvenu T, Rey E, Pons G, D’Athis P, Olive G (1991) A simple non-invasive procedure for the investigation of cytochrome P 450 IIIA-dependent enzymes in humans. Int J Clin Pharmacol Ther Toxicol 29:441–445

    CAS  PubMed  Google Scholar 

  55. Bidart M, Lesgards G (1995) Direct injection analysis of 6β-hydroxycortisol and cortisol in urine by HPLC-UV with on-line ISRP precolumn. J Liquid Chromatogr 18:725–738

    CAS  Google Scholar 

  56. Lykkesfeldt J, Loft S, Poulsen HE (1994) Simultaneous determination of urinary free cortisol and 6β-hydroxycortisol by high-performance liquid chromatography to measure human CYP3A activity. J Chromatogr B Biomed Appl 660:23–29

    CAS  PubMed  Google Scholar 

  57. Inoue S, Inokuma M, Harada T, Shibutani Y, Yoshitake T, Charles B et al (1994) Simultaneous high-performance liquid chromatographic determination of 6 β-hydroxycortisol and cortisol in urine with fluorescence detection and its application for estimating hepatic drug-metabolizing enzyme induction. J Chromatogr B Biomed Appl 661:15–23

    Article  CAS  PubMed  Google Scholar 

  58. Shibata N, Hayakawa T, Takata K, Hoshino N, Minouchi T, Yamaji A (1998) Simultaneous determination of glucocorticoids in plasma or urine by high-performance chromatography with precolumn fluorimetric derivatization by 9-anthroyl nitrile. J Chromatogr B Biomed Sci Appl 706:191–199

    Article  CAS  PubMed  Google Scholar 

  59. Joellenbeck L, Qian Z, Zarba A, Groopman JD (1992) Urinary 6β-hydroxycortisol/cortisol ratios measured by high-performance liquid chromatography for use as a biomarker for the human cytochrome P 450 3A4. Cancer Epidemiol Biomarkers Prev 1:567–572

    CAS  PubMed  Google Scholar 

  60. Hosoda H, Sakai Y, Nambara T (1981) A direct enzyme immunoassay of 6β-hydroxycortisol in human urine. Chem Pharm Bull (Tokyo) 29:170–175

    Google Scholar 

  61. Zhiri A, Wellman-Bednawska M, Siest G (1986) ELISA of 6-beta-hydroxycortisol in human urine: diurnal variations and effects of antiepileptic therapy. Clin Chim Acta 157:267–276

    Article  CAS  PubMed  Google Scholar 

  62. Patel SB, Khatkhatay I, Desai MP, Betrabet SS, Toddywalla VS (1994) A sensitive ELISA for 6β-hydroxycortisol in urine using enzyme penicillinase (β-lactamase). J Steroid Biochem Mol Biol 48:293–296

    Article  CAS  PubMed  Google Scholar 

  63. Yeung JHK, Wong JKL, Park BK (1997) Development of a screening method for anti-6β-hydroxycortisol antibody using an enzyme-linked immunosorbent assay (ELISA) and its applications. Meth Find Exp Clin Pharmacol 19:79–86

    CAS  Google Scholar 

  64. Yeung JHK, Wong JKL, Park BK (1997) Development of a monoclonal antibody to 6β-hydroxycortisol and its application in an enzyme-linked immunosorbent assay (ELISA) for 6 β-hydroxycortisol in urine. J Pharmacol Toxicol Methods 38:71–79

    Article  CAS  PubMed  Google Scholar 

  65. Freche JP, Decolin D, Siest JP, Batt AM, Panis-Rouzier R, Siest G (1989) Variation chez l’homme de l’excrétion du 6-β-hydroxycortisol après administration d’un nouveau dérivé de l’isoquinoléine, PK-11195 (52028 RP). Thérapie 44:327–330

    Google Scholar 

  66. Horsmans Y, Desager JP, Harvengt C (1992) Absence of CYP3A genetic polymorphism assessed by urinary excretion of 6β-hydroxycortisol in 102 healthy subjects on rifampicin. Pharmacol Toxicol 71:258–261

    CAS  PubMed  Google Scholar 

  67. Schrenzel J, Dayer P, Leeman T, Weidekamm E, Portmann R, Lew DP (1993) Influence of rifampin on fleroxacin pharmacokinetics. Antimicrob Agents Chemother 37:2132–2138

    CAS  PubMed  Google Scholar 

  68. Rost KL, Brösicke H, Heinemeyer G, Roots I (1994) Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology 20:1204–1212

    CAS  PubMed  Google Scholar 

  69. Pellizzoni C, Poggesi I, Jorgensen NP, Edwards DMF, Paus E, Strolin Benedetti M (1996) Pharmacokinetics of reboxetine in healthy volunteers. Single against repeated oral doses and lack of enzymatic alterations. Biopharm Drug Dispos 17:623–633

    Google Scholar 

  70. Ng MCY, Young RP, Critchley JAJH, Leung NWY, Lau JWT, Li AKC (1996) Urinary 6β-hydroxycortisol excretion in Hong Kong Chinese patients with hepatocellular carcinoma and other chronic liver diseases. Cancer 77:1427–1433

    Article  CAS  PubMed  Google Scholar 

  71. Tomlinson B, Young RP, Ng MCY, Anderson PJ, Kay R, Critchley JAJH (1996) Selective liver enzyme induction by carbamazepine and phenytoin in Chinese epileptics. Eur J Clin Pharmacol 50:411–415

    Article  CAS  PubMed  Google Scholar 

  72. Seidegard J, Dahlström K, Kullberg A (1998) Effect of grapefruit juice on urinary 6β-hydroxycortisol/cortisol excretion. Clin Exp Pharmacol Physiol 25:379–381

    Google Scholar 

  73. Weber C, Schmitt R, Birnboeck H, Hopfgartner G, Eggers H, Meyers J et al (1999) Multiple-dose pharmacokinetics, safety, and tolerability of bosentan, an endothelin receptor antagonist, in healthy human male volunteers. J Clin Pharmacol 39:703–714

    Article  CAS  PubMed  Google Scholar 

  74. Hsieh KP, Lin YY, Cheng CL, Lai Ml, Lin MS, Siest JP et al (2001) Novel mutations of CYP3A4 in Chinese. Drug Metab Dispos 29:268–273

    CAS  PubMed  Google Scholar 

  75. Ishibashi M, Takayama H, Nakagawa Y, Harima N (1988) Diethylhydrogensilyl-cyclic diethylsilylene derivatives in gas chromatography/mass spectrometry of hydroxylated steroids. V. Analysis of cortisol and 6β-hydroxycortisol in human urine. Chem Pharm Bull (Tokyo) 36:845–848

    Google Scholar 

  76. Palermo M, Gomez-Sanchez C, Roitman E, Shackleton CHL (1996) Quantitation of cortisol and related 3-oxo-4-ene steroids in urine using gas chromatography/mass spectrometry with stable isotope-labeled internal standards. Steroids 61:583–589

    Article  CAS  PubMed  Google Scholar 

  77. Furuta T, Matsuzawa M, Shibasaki H, Kasuya Y (2000) Simultaneous determination of 6β- and 6α-hydroxycortisols and 6β-hydroxycortisone in human urine by stable isotope dilution mass spectrometry. J Chromatogr B 738:367–376

    Article  CAS  Google Scholar 

  78. Luceri F, Fattori S, Luceri C, Zorn M, Mannaioni P, Messeri G (2001) Gas chromatography-mass spectrometry measurement of 6beta-OH-cortisol/cortisol ratio in human urine: a specific marker of enzymatic induction. Clin Chem Lab Med 39:1234–1239

    CAS  PubMed  Google Scholar 

  79. Ohno M, Yamaguchi I, Saiki K, Yamamoto I, Azuma J (2000) Specific determination of urinary 6beta-hydroxycortisol and cortisol by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 746:95–101

    Article  CAS  PubMed  Google Scholar 

  80. Tang C, Kassahun K, McIntosh IS, Brunner J, Rodrigues AD (2000) Simultaneous determination of urinary free cortisol and 6β-hydroxycortisol by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry and its application for estimating hepatic CYP3A induction. J Chromatogr 742:303–313

    Article  CAS  Google Scholar 

  81. Ohnhaus EE, Bürgi H, Burger A, Studer H (1981) The effect of antipyrine, phenobarbitol and rifampicin on thyroid hormone metabolism in man. Eur J Clin Invest 11:381–387

    CAS  PubMed  Google Scholar 

  82. Zhiri A, Mayer HA, Michaux V, Wellman-Bednawska M, Siest G (1986) 6β-hydroxycortisol in serum and urine as determined by enzyme immunoassay on microtitre plates. Clin Chem 32:2094–2097

    CAS  Google Scholar 

  83. Gerber-Taras E, Park BK, Ohnhaus EE (1981) The estimation of 6β-hydroxycortisol in urine—a comparison of two methods: high performance liquid chromatography and radioimmunoassay. J Clin Chem Clin Biochem 19:525–527

    CAS  PubMed  Google Scholar 

  84. Ohno M, Yamaguchi I, Ito T, Saiki K, Yamamoto I, Azuma J (2000) Circadian variation of the urinary 6β-hydroxycortisol to cortisol ratio that would reflect hepatic CYP3A activity. Eur J Clin Pharmacol 55:861–865

    Article  CAS  PubMed  Google Scholar 

  85. Lee C (1995) Urinary 6β-hydroxycortisol in humans: analysis, biological variations, and reference ranges. Clin Biochem 28:49–54

    Article  CAS  PubMed  Google Scholar 

  86. Forrester LM, Henderson CJ, Glancey MJ, Back DJ, Park BK, Ball SE et al (1992) Relative expression of cytochrome P 450 isozymes in human liver and association with the metabolism of drugs and xenobiotics. Biochem J 281:359–368

    CAS  PubMed  Google Scholar 

  87. Yamamoto N, Tamura T, Kamyia Y, Sekine I, Kunitoh H, Saijo N (2000) Correlation between docetaxel clearance and estimated cytochrome P 450 activity by urinary metabolite of exogenous cortisol. J Clin Oncol 18:2301–2308

    CAS  PubMed  Google Scholar 

  88. Yamamoto N, Kamiya Y, Nakamura Y, Onodera R, Ito R, Sekine I et al (1999) Good correlation of docetaxel pharmacokinetics (PK) with cytochrome P 450 (CYP3A4) activity, evaluated by exogenous cortisol metabolite in urine (abstract). Am Assoc Clin Oncol 18

  89. Barton RN, Horan MA, Weijers JWM, Sakkee AN, Roberts NA, Van Bezooijen CFA (1993) Cortisol production rate and the urinary excretion of 17-hydroxycorticosteroids, free cortisol, and 6β-hydroxycortisol in healthy elderly men and women. J Gerontol 48:M213–M218

    CAS  PubMed  Google Scholar 

  90. Inagaki K, Inagaki M, Kataoka T, Sekido I, Gill MA, Nishida M (2002) A wide interindividual variability of urinary 6beta-hydroxycortisol to free cortisol in 487 healthy Japanese subjects in near basal condition. Ther Drug Monit 24:722–727

    Article  CAS  PubMed  Google Scholar 

  91. Beyeler C, Frey BM, Bird HA (1997) Urinary 6β-hydroxycortisol excretion in rheumatoid arthritis. Br J Rheumatol 36:54–58

    Article  CAS  PubMed  Google Scholar 

  92. Frey FJ, Frey BM (1983) Urinary 6β-hydroxyprednisolone excretion indicates enhanced prednisolone catabolism. J Lab Clin Med 101:593–604

    CAS  PubMed  Google Scholar 

  93. Saenger P, Forster E, Kream J (1981) 6β-hydroxycortisol: a noninvasive indicator of enzyme induction. J Clin Endocrinol Metab 52:381–384

    CAS  PubMed  Google Scholar 

  94. Voccia E, Saenger P, Peterson RE, Rauh W, Gottesdiener K, Levine LS et al (1979) 6β-hydroxycortisol excretion in hypercortisolemic states. J Clin Endocrinol Metab 48:467–471

    CAS  PubMed  Google Scholar 

  95. Saenger P, Voccia E, Gunczler P, Rauh W, New MI (1978) 6β-hydroxycortisol (6OHF) as indicator of altered cortisol (F) metabolism. Ped Res 12:1092

    Google Scholar 

  96. Nakamura J, Yakata M (1985) Age- and sex-related differences in urinary excretion of 6β-hydroxycortisol in humans. Clin Chim Acta 152:193–197

    Article  CAS  PubMed  Google Scholar 

  97. Dolara P, Lodovici M, Salvadori M, Zaccara G, Muscas GC (1987) Urinary 6-beta-OH-cortisol and paracetamol metabolites as a probe for assessing oxidation and conjugation of chemicals in humans. Pharmacol Res Commun 19:261–273

    CAS  PubMed  Google Scholar 

  98. Patel SB, Toddywalla VS, Betrabet SS, Kulkarni RD, Kombo I, Saxena BN (1996) Age-related changes in urinary 6β-hydroxycortisol in normal infants. Indian Pediatr 33:398–401

    CAS  PubMed  Google Scholar 

  99. Toddywalla VS, Patel SB, Betrabet SS, Kulkarni RD, Kombo I, Saxena BN (1995) Can chronic maternal drug therapy alter the nursing infant’s hepatic drug metabolizing enzyme pattern? J Clin Pharmacol 35:1025–1029

    CAS  PubMed  Google Scholar 

  100. Vauzelle-Kervroedan F, Rey E, Pariente-Khayat A, Bienvenu T, Badoual J, Olive G et al (1996) Non-invasive in vivo study of the maturation of CYP IIIA in neonates and infants. Eur J Clin Pharmacol 51:69–72

    Article  CAS  PubMed  Google Scholar 

  101. Nakamura H, Hirai M, Ohmori S, Ohsone Y, Obonai T, Sugita K et al (1998) Changes in urinary 6β-hydroxycortisol/cortisol ratio after birth in human neonates. Eur J Clin Pharmacol 53:343–346

    Article  CAS  PubMed  Google Scholar 

  102. Nakamura H, Hasegawa A, Kimura M, Yamagata SI, Nakasa H, Osada H et al (1999) Comparison of urinary 6β-hydroxycortisol/cortisol ratio between neonates and their mothers. Br J Clin Pharmacol 47:31–34

    Article  CAS  PubMed  Google Scholar 

  103. Burstein AH, Reiss WG, Kantor E, Anderson GD (1998) Cytochrome P 450 3A4 activity in premenopausal and postmenopausal women based on 6β-hydroxycortisol:cortisol ratios. Pharmacotherapy 18:1271–1276

    CAS  PubMed  Google Scholar 

  104. Lin Y, Anderson GD, Kantor E, Ojemann LM, Wilensky AJ (1999) Differences in the urinary excretion of 6β-hydroxycortisol/cortisol between Asian and Caucasian women. J Clin Pharmacol 39:578–582

    Article  CAS  PubMed  Google Scholar 

  105. Frantz AG, Katz FH, Jailer JW (1960) 6β-hydroxycortisol: high levels in human urine in pregnancy and toxemia. Proc Soc Exp Biol Med 105:41–43

    CAS  PubMed  Google Scholar 

  106. Ohkita C, Goto M (1990) Increased 6β-hydroxycortisol excretion in pregnant women: implication of drug-metabolizing enzyme induction. DICP Ann Pharmacother 24:814–816

    CAS  Google Scholar 

  107. Cumming DC, Love EJ, Lorscheider FL (1981) 6β-hydroxycortisol levels in maternal urine of pregnancies complicated by prematurity. Am J Obstet Gynecol 139:250–253

    CAS  PubMed  Google Scholar 

  108. Hunter DJS, Keane P, Walker WHC, YoungLai EV (1984) Variations in urinary levels of free 6β-hydroxycortisol, cortisol, and estrogens in late pregnancy. Gynecol Obstet Invest 18:83–87

    CAS  PubMed  Google Scholar 

  109. Saenger P (1983) 6β-hydroxycortisol in random urine samples as an indicator of enzyme induction. Clin Pharmacol Ther 34:818–821

    CAS  PubMed  Google Scholar 

  110. YoungLai EV, Hunter DJS (1987) Diurnal variation in the excretion of 6β-hydroxycortisol and estriol at 32 weeks gestation. Gynecol Obstet Invest 23:157–159

    CAS  PubMed  Google Scholar 

  111. McCune J, Lindley C, Sawyer W, Williamson K, Kashuba A, Pieper J (1998) Comparison of 24-hour and morning 6βOHcortisol: cortisol ratio in men, women on oral contraceptives (OC) and women not on OC. Clin Pharmacol Ther 63:219

    Google Scholar 

  112. Nakamura J, Yakata M (1989) Assessing adrenocortical activity by determining levels of urinary free cortisol and urinary 6β-hydroxycortisol. Acta Endocrinol (Copenh) 120:277–283

    Google Scholar 

  113. Tran JQ, Kovacs SJ, McIntosh TS, Davis HM, Martin DE (1999) Morning spot and 24-hour urinary 6β-hydroxycortisol to cortisol ratios: intraindividual variability and correlation under basal conditions and conditions of CYP3A4 induction. J Clin Pharmacol 39:487–494

    CAS  PubMed  Google Scholar 

  114. Nakamura J, Yakata M (1985) Determination of urinary cortisol and 6β-hydroxycortisol by high performance liquid chromatography. Clin Chim Acta 149:215–224

    Article  CAS  PubMed  Google Scholar 

  115. Özdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L et al (2000) Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 10:373–388

    CAS  PubMed  Google Scholar 

  116. Rebbeck TR, Jaffe JM, Walker AH, Wein AJ, Malkowicz SB (1998) Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J Natl Cancer Inst 90:1225–1229

    CAS  PubMed  Google Scholar 

  117. Walker AH, Jaffe JM, Gunasegaram S, Cummings SA, Huang CS, Chern HD et al (1998) Characterization of an allelic variant in the nifedipine-specific element CYP3A4: ethnic distribution and implications for prostate cancer risk. Hum Mutat 12:289

    CAS  Google Scholar 

  118. Van Schaik RHN, De Wildt SN, Van Iperen NM, Uitterlinden AG, Van der Anker JN, Lindemans J (2000) CYP3A4-V polymorphism detection by PCR-restriction fragment length polyporphism analysis and its allelic frequency among 199 Dutch Caucasians. Clin Chem 46:1834–1836

    PubMed  Google Scholar 

  119. Wandel C, Witte JS, Hall JM, Stein CM, Wood AJJ, Wilkinson GR (2000) CYP3A activity in African American an European American men: population differences and functional effect of CYP3A4*1B5’-promoter region polymorphism. Clin Pharmacol 68:82–91

    CAS  PubMed  Google Scholar 

  120. Rivory LP, Qin H, Clarke SJ, Eris J, Duggin G, Ray E et al (2000) Frequency of cytochrome P 450 3A4 variant genotype in transplant population and lack of association with ciclosporin clearance. Eur J Clin Pharmacol 56:395–398

    Google Scholar 

  121. Sata F, Sapone A, Elizondo G, Stocker P, Miller VP, Zheng W et al (2000) CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 67:48–56

    CAS  PubMed  Google Scholar 

  122. Weslind A, Lofberg L, Tindberg N, Andersson TB, Ingelman-Sundberg M (1999) Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5’-upstream regulatory region. Biochem Biophys Res Commun 259:201–205

    CAS  PubMed  Google Scholar 

  123. Van Schaik RHN, De Wildt SN, Brosens R, Van Fessem M, Van der Anker JN, Lindemans J (2001) The CYP3A4*3 allele: is it really rare? Clin Chem 47:1104–1106

    PubMed  Google Scholar 

  124. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S et al (2002) Common allelic variants of cytochrome P 450 3A4 and their prevalence in different populations. Pharmacogenetics 12:121–132

    Article  CAS  PubMed  Google Scholar 

  125. Park BK, Eichelbaum M, Ohnhaus EE (1982) 6β-hydroxycortisol excretion in relation to polymorphic N-oxidation of sparteine. Br J Clin Pharmacol 13:737–740

    CAS  PubMed  Google Scholar 

  126. Eichelbaum M, Mineshita S, Ohnhaus EE, Zekorn C (1986) The influence of enzyme induction on polymorphic sparteine oxidation. Br J Clin Pharmacol 22:49–53

    CAS  PubMed  Google Scholar 

  127. Leclercq V, Desager JP, Horsmans Y, Van Nieuwenhuyze Y, Harvengt C (1989) Influence of rifampicin, phenobarbital and cimetidine on mixed function monooxygenase in extensive and poor metabolizers of debrisoquine. Int J Clin Pharmacol Ther Toxicol 27:593–598

    CAS  PubMed  Google Scholar 

  128. Timbrell JA, Park BK, Harland SJ (1985) A study of the effects of rifampicin on isoniazid metabolism in human volunteer subjects. Hum Toxicol 4:279–285

    CAS  PubMed  Google Scholar 

  129. Price DE, Mehta A, Park BK, Hay A, Feely MP (1986) The effect of low-dose phenobarbitone on three indices of hepatic microsomal enzyme induction. Br J Clin Pharmacol 22:744–747

    CAS  PubMed  Google Scholar 

  130. Desager JP, Dumont E, Harvengt C (1987) The urinary 6β-hydroxycortisol excretion in man on inducers and inhibitors of the hepatic mixed function oxidase. Pharmacol Ther 33:197–199

    Article  CAS  PubMed  Google Scholar 

  131. Ohnhaus EE, Breckenridge AM, Park BK (1989) Urinary excretion of 6β-hydroxycortisol and the time course measurement of enzyme induction in man. Eur J Clin Pharmacol 36:39–46

    CAS  PubMed  Google Scholar 

  132. Challiner M, Park BK, Odum J, Orton TC (1981) The effect of 3-methylcholanthrene on urinary 6β-hydroxycortisol excretion and hepatic enzyme activity in the marmoset monkey (Callithrix jacchus). Biochem Pharmacol 30:2131–2134

    Article  CAS  PubMed  Google Scholar 

  133. Breckenridge A, Orme M, Thorgeirsson S, Davies DS, Brooks RV (1971) Drug interactions with warfarin: studies with dichloralphenazone, chloral hydrate and phenazone (antipyrine). Clin Sci 40:351–364

    CAS  PubMed  Google Scholar 

  134. Ohnhaus EE, Kirchhof B, Peheim DVM (1979) Effect of enzyme induction on plasma lipids using antipyrine, phenobarbital, and rifampicin. Clin Pharmacol Ther 25:591–597

    CAS  PubMed  Google Scholar 

  135. Ohnhaus EE, Park BK, Colombo JP, Heizmann P (1979) The effect of enzyme induction on diazepam metabolism in man. Br J Clin Pharmacol 6:557–563

    Google Scholar 

  136. Ohnhaus EE, Noelpp UB, Ramos MR (1985) Liver blood flow and enzyme induction in man. Hepato-gastroenterol 32:61–64

    Google Scholar 

  137. Ohnhaus EE, Brockmeyer N, Dylewicz P, Habicht H (1987) The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 42:148–156

    CAS  PubMed  Google Scholar 

  138. Bammel A, Van der Mee K, Ohnhaus EE, Kirch W (1992) Divergent effects of different enzyme-inducing agents on endogenous and exogenous testosterone. Eur J Clin Pharmacol 42:641–644

    CAS  PubMed  Google Scholar 

  139. Rapeport WG, McInnes GT, Thompson GG, Forrest G, Park BK, Brodie MJ (1983) Hepatic enzyme induction and leucocyte delta-aminolaevulinic acid synthase activity: studies with carbamazepine. Br J Clin Pharmacol 16:133–137

    CAS  PubMed  Google Scholar 

  140. Wietholtz H, Zysset Th, Kreiten K, Kohl D, Büchsel R, Matern S (1989) Effect of phenytoin, carbamazepine, and valproic acid on caffeine metabolism. Eur J Clin Pharmacol 36:401–406

    CAS  PubMed  Google Scholar 

  141. Pirmohamed M, Allott R, Green VJ, Kitteringham NR, Chadwick D, Park BK (1994) Lymphocyte microsomal epoxide hydrolase in patients on carbamazepine therapy. Br J Clin Pharmacol 37:577–581

    CAS  PubMed  Google Scholar 

  142. Lucas RA, Gilfillan DJ, Bergstrom RF (1998) A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol 54:639–643

    Google Scholar 

  143. Brämswig S, Kerksiek A, Sudhop T, Luers C, Von Bergmann K, Berthold HK (2002) Carbamazepine increases atherogenic lipoproteins: mechanism of action in male adults. Am J Physiol Heart Circ Physiol 282:H704–H716

    PubMed  Google Scholar 

  144. Moreland TA, Park BK, Rylance GW (1982) Microsomal enzyme induction in children: the influence of carbamazepine treatment on antipyrine kinetics, 6β-hydroxycortisol excretion and plasma γ-glutamyltranspeptidase activity. Br J Clin Pharmacol 14:861–865

    CAS  PubMed  Google Scholar 

  145. Conney AH, Jacobson M, Schneidman K, Kuntzman R (1965) Induction of liver microsomal cortisol 6β-hydroxylase by diphenylhydantoin or phenobarbital: an explanation for increased excretion of 6-hydroxycortisol in humans treated with these drugs. Life Sci 4:1091–1098

    Article  CAS  PubMed  Google Scholar 

  146. Brooks SM, Werk EE, Ackerman SJ, Sullivan I, Thrasher K (1972) Adverse effects of phenobarbital on corticosteroid metabolism in patients with bronchial asthma. N Engl J Med 286:1125–1128

    CAS  PubMed  Google Scholar 

  147. Hildebrandt AG, Roots I, Speck M, Saalfrank K, Kewitz H (1975) Evaluation of in vivo parameters of drug metabolizing enzyme activity in man after administration of clemastine, phenobarbital or placebo. Eur J Clin Pharmacol 8:327–336

    CAS  PubMed  Google Scholar 

  148. Latham AN, Turner P, Franklin C, Maclay W (1976) Phenobarbitone-induced urinary excretions of D-glucaric acid and 6β-hydroxycortisol in man. Can J Physiol Pharmacol 54:778–782

    CAS  PubMed  Google Scholar 

  149. Park BK, Wilson AC, Kaatz G, Ohnhaus EE (1984) Enzyme induction by phenobarbitone and vitamin K1 disposition in man. Br J Clin Pharmacol 18:94–97

    CAS  PubMed  Google Scholar 

  150. Pinquier JL, Joseph X, Delaforge M, Lejus C, Boucher Jl, De Lauture D et al (1993) Lack of effect of phenobarbital on ex vivo leukocyte oxydative metabolism in healthy volunteers. Fundam Clin Pharmacol 7:311–317

    CAS  PubMed  Google Scholar 

  151. Goldberg MR, Lo MW, Deutsch PJ, Wilson SE, McWilliams EJ, McCrea JB (1996) Phenobarbital minimally alters plasma concentrations of losartan and its active metabolite E-3174. Clin Pharmacol Ther 59:268–274

    CAS  PubMed  Google Scholar 

  152. Thompson GA, St Peter JV, Heise MA, Horowitz ZD, Salyers GC, Charles TT et al (1996) Assessment of doxylamine influence on mixed function oxidase activity upon multiple dose oral administration to normal volunteers. J Pharm Sci 85:1242–1247

    Article  CAS  PubMed  Google Scholar 

  153. Southren AL, Gordon GG, Tochimoto S, Krikun E, Krieger D, Jacobson M et al (1969) Effect of N-phenylbarbital (phetharbital) on the metabolism of testosterone and cortisol in man. J Clin Endocrinol 29:251–256

    CAS  Google Scholar 

  154. Kuntzman R, Jacobson M, Levin W, Conney AH (1968) Stimulatory effect of N-phenobarbital (phetharbital) on cortisol hydroxylation in man. Biochem Pharmacol 17:565–571

    Article  CAS  PubMed  Google Scholar 

  155. Ballinger B, Browning M, O’Malley K, Stevenson IH (1972) Drug-metabolizing capacity in states of drug dependence and withdrawal. Br J Pharmacol 45:638–643

    CAS  PubMed  Google Scholar 

  156. Crowley JJ, Cusack BJ, Jue SG, Koup JR, Park BK, Vestal RE (1988) Aging and drug interactions. II. Effect of phenytoin and smoking on the oxidation of theophylline and cortisol in healthy men. J Pharmacol Exp Ther 245:513–523

    CAS  PubMed  Google Scholar 

  157. Fleishaker JC, Pearson LK, Peters GR (1995) Phenytoin causes a rapid increase in 6 β-hydroxycortisol urinary excretion in humans—a putative measure of CYP3A induction. J Pharm Sci 84:292–294

    CAS  PubMed  Google Scholar 

  158. Fleishaker JC, Pearson LK, Peters GR (1998) Induction of tirilazad clearance by phenytoin. Biopharm Drug Dispos 19:91–96

    Article  CAS  Google Scholar 

  159. Konishi H, Takenaka A, Minouchi T, Yamaji A (2001) Impairment of CYP3A4 capacity in patients receiving danazol therapy: examination on oxidative cortisol metabolism. Horm Metab Res 33:628–630

    Article  CAS  PubMed  Google Scholar 

  160. McColl KE, Thompson GG, El Omar E, Moore MR, Park BK, Brodie MJ (1987) Effect of rifampicin on haem and bilirubin metabolism in man. Br J Clin Pharmacol 23:553–559

    CAS  PubMed  Google Scholar 

  161. Ohnhaus EE, Studer H (1983) A link between liver microsomal enzyme activity and thyroid hormone metabolism in man. Br J Clin Pharmacol 15:71–73

    CAS  PubMed  Google Scholar 

  162. Scott AK, Haynes BP, Schinkel KD, Ohnhaus EE, Park BK (1987) Hepatic enzyme induction and vitamin K1 elimination in man. Eur J Clin Pharmacol 33:93–95

    CAS  PubMed  Google Scholar 

  163. Schulte HM, Mönig H, Benker G, Pagel H, Reinwein D, Ohnhaus EE (1987) Pharmacokinetics of aldosterone in patients with Addison’s disease: effect of rifampicin treatment on glucocorticoid and mineralocorticoid metabolism. Clin Endocrinol 27:655–662

    CAS  Google Scholar 

  164. Perucca E, Grimaldi R, Frigo GM, Sardi A, Mönig H, Ohnhaus EE (1988) Comparative effects of rifabutin and rifampicin on hepatic microsomal enzyme activity in normal subjects. Eur J Clin Pharmacol 34:595–599

    CAS  PubMed  Google Scholar 

  165. Wietholtz H, Zysset T, Marschall HU, Generet K, Matern S (1995) The influence of rifampin treatment on caffeine clearance in healthy man. J Hepatol 22:78–81

    Article  CAS  PubMed  Google Scholar 

  166. Kovarik JM, Hartmann S, Figueiredo J, Rouilly M, Port A, Rordorf C (2002) Effect of rifampin on apparent clearance of everolimus. Ann Pharmacother 36:981–985

    Article  CAS  PubMed  Google Scholar 

  167. Apseloff G, Hilligoss DM, Gardner MJ, Henry EB, Inskeep PB, Gerber N et al (1991) Induction of fluconazole metabolism by rifampin: in vivo study in humans. J Clin Pharmacol 31:358–361

    CAS  PubMed  Google Scholar 

  168. Watkins PB, Turgeon DK, Saenger P, Lown KS, Kolars JC, Hamilton T et al (1992) Comparison of urinary 6β-hydroxycortisol and the erythromycin breath test as measures of hepatic P 450 IIIA (CYP3A) activity. Clin Pharmacol Ther 52:265–273

    CAS  PubMed  Google Scholar 

  169. Borin MT, Chambers JH, Carel BJ, Gagnon S, Freimuth WW (1997) Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 61:544–553

    CAS  PubMed  Google Scholar 

  170. Saima S, Furuie K, Yoshimoto H, Fukuda J, Hayashi T, Echizen H (2002) The effects of rifampicin on the pharmacokinetics and pharmacodynamics of orally administered nilvadipine to healthy subjects. Br J Clin Pharmacol 53:203–206

    Article  CAS  PubMed  Google Scholar 

  171. Spaans E, Van Den Heuvel MW, Schnabel PG, Peeters PA, Chin-Kon-Sung UG, Colbers EP et al (2002) Concomitant use of mirtazapine and phenytoin: a drug–drug interaction study in healthy male subjects. Eur J Clin Pharmacol 58:423–429

    Article  CAS  PubMed  Google Scholar 

  172. Birmingham AT, Coleman AJ, Orme M, Parl BK, Pearson NJ, Short AH et al (1978) Antibacterial activity in serum and urine following oral administration in man of DL473 (a cyclopentyl derivative of rifampicin). Br J Clin Pharmacol 6:455P–456P

    CAS  PubMed  Google Scholar 

  173. Ohnhaus EE, Gerber-Taras E, Park BK (1983) Enzyme-inducing drug combinations and their effects on liver microsomal enzyme activity in man. Eur J Clin Pharmacol 24:247–250

    CAS  PubMed  Google Scholar 

  174. Kovacs SJ, Martin DE, Everitt DE, Patterson SD, Jorkasky DK (1998) Urinary excretion of 6β-hydroxycortisol as an in vivo marker for CYP3A induction: applications and recommendations. Clin Pharmacol Ther 63:617–622

    CAS  PubMed  Google Scholar 

  175. Keung A, Reith K, Eller MG, McKenzie KA, Cheng L, Weir SJ (1999) Enzyme induction observed in healthy volunteers after repeated administration of rifapentine and its lack of effect on steady-state rifapentine pharmacokinetics: part I. Int J Tuberc Lung Dis 3:426–436

    CAS  PubMed  Google Scholar 

  176. Reichel C, Block W, Skodra T, Traber F, Schiedermaier P, Spengler U et al (1997) Relationship between cytochrome P 450 induction by rifampicin, hepatic volume and portal blood flow in man. Eur J Gastroenterol Hepatol 9:975–979

    CAS  PubMed  Google Scholar 

  177. Hoensch HP, Balzer K, Dylewizc P, Kirch W, Goebell H, Ohnhaus EE (1985) Effect of rifampicin treatment on hepatic drug metabolism and serum bile acids in patients with primary biliary cirrhosis. Eur J Clin Pharmacol 28:475–477

    CAS  PubMed  Google Scholar 

  178. Hoener BA (1994) Predicting the hepatic clearance of xenobiotics in humans from in vitro data. Biopharm Drug Dispos 15:295–304

    CAS  PubMed  Google Scholar 

  179. Vital Durand D, Hampden C, Boobis AR, Park BK, Davies DS (1986) Induction of mixed function oxidase activity in man by rifapentine (MDL 473), a long-acting rifamycin derivative. Br J Clin Pharmacol 21:1–7

    PubMed  Google Scholar 

  180. Park BK (1987) In vivo methods to study enzyme induction and enzyme inhibition. Pharmacol Ther 33:109–113

    Article  CAS  PubMed  Google Scholar 

  181. Bammel A, Monig H, Zurborn KH, Ohnhaus EE, Kirch W (1989) Probenecid affects liver metabolism. Schweiz Med Wochenschr 118:1831–1834

    Google Scholar 

  182. Kuntzman R, Jacobson M, Conney AH (1966) Effect of phenylbutazone on cortisol metabolism in man. Pharmacologist 8:195

    Google Scholar 

  183. Bauer S, Stormer E, Kerb A, Brockmöller J, Roots I (2002) Differential effects of Saint John’s Wort (hypericum perforatum) on the urinary excretion of D-glucaric acid and 6beta-hydroxycortisol in healthy volunteers. Eur J Clin Pharmacol 58:581–585

    Article  CAS  PubMed  Google Scholar 

  184. Roby CA, Anderson GD, Kantor E, Dryer DA, Burstein AH (2000) St. John’s Wort: effect on CYP3A4 activity. Clin Pharmacol Ther 67:451–457

    CAS  PubMed  Google Scholar 

  185. Kane GC, Lipsky JJ (2000) Drug-grapefruit juice interactions. Mayo Clin Proc 75:933–942

    CAS  PubMed  Google Scholar 

  186. Fuhr U, Müller-Peltzer H, Kern R, Lopez-Rojas P, Jünemann M, Harder S et al (2002) Effects of grapefruit juice and smoking on verapamil concentrations in steady state. Eur J Clin Pharmacol 58:45–53

    Google Scholar 

  187. Mohri K, Uesawa Y, Sagawa KI (2000) Effects of long-term grapefruit juice ingestion on nifedipine pharmacokinetics: induction of rat hepatic P 450 by grapefruit juice. Drug Metab Dispos 28:482–486

    CAS  PubMed  Google Scholar 

  188. Morita K, Yamakawa M, Minouchi T, Hayashi Y, Hoshino N, Konishi H et al (1989) Ozagrel hydrochloride monohydrate, a thromboxane synthase inhibitor, and its metabolites as inhibitors of hepatic microsomal drug metabolism. Chem Pharm Bull (Tokyo) 37:3351–3354

    Google Scholar 

  189. Tran A, Rey E, Pons G, Rousseau M, D’Athis P, Olive G et al (1997) Influence of stiripentol on cytochrome P 450-mediated metabolic pathways in humans: in vitro and in vivo comparison and calculation of in vivo inhibition constants. Clin Pharmacol Ther 62:490–504

    CAS  PubMed  Google Scholar 

  190. Uzzan B, Nicolas P, Perret G, Vassy R, Tod M, Petitjean O (1991) Effects of troleandomycin and josamycin on thyroid hormone and steroid serum levels, liver function tests and microsomal monooxygenases in healthy volunteers: a double blind placebo-controlled study. Fundam Clin Pharmacol 5:513–526

    CAS  PubMed  Google Scholar 

  191. Back DJ, Tjia JF, Abel SM (1992) Azoles, allylamines and drug metabolism. Br J Dermatol 126:14–18

    PubMed  Google Scholar 

  192. Fleishaker JC, Pearson PG, Wienkers LC, Pearson LK, Peters GR (1996) Biotransformation of tirilazad in humans: 2. Effect of ketoconazole on tirilazad clearance and oral bioavailability. J Pharmacol Exp Ther 277:991–998

    CAS  PubMed  Google Scholar 

  193. Gass RJ, Gal J, Fogle PW, Detmar-Hanna D, Gerber JG (1998) Neither dapsone hydroxylation nor cortisol 6beta-hydroxylation detects the inhibition of CYP3A4 by HIV-1 protease inhibitors. Eur J Clin Pharmacol 54:741–747

    Article  Google Scholar 

  194. Lillibridge JH, Liang BH, Kerr BM, Webber S, Quart B, Shetty BV et al (1998) Characterization of the selectivity and mechanism of human cytochrome P 450 inhibition by the human immunodeficiency virus-protease inhibitor nelfinavir mesylate. Drug Metab Dispos 26:609–616

    CAS  PubMed  Google Scholar 

  195. Boulton DW, Arnaud P, DeVane CL (2001) A single dose of methadone inhibits cytochrome P 450 3A activity in healthy volunteers as assessed by the urinary cortisol ratio. Br J Clin Pharmacol 51:350–354

    Article  CAS  PubMed  Google Scholar 

  196. Micuda S, Hodac M, Sispera L, Parisek P, Pleskot M, Zimova G et al (2001) Influence of amiodarone on urinary excretion of 6β-hydroxycortisol in humans. Physiol Res 50:191–196

    CAS  PubMed  Google Scholar 

  197. Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol. Clin Pharmacol Ther 72:33–43

    Article  CAS  PubMed  Google Scholar 

  198. Karayalçin U, Takeda Y, Miyamori T, Morise T, Takeda R (1991) Effect of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor pravastatin on urinary 6β-hydroxycortisol excretion: a preliminary study. Steroids 56:598–600

    Article  PubMed  Google Scholar 

  199. Kuhnz W, Lofberg B (1995) Urinary excretion of 6β-hydroxycortisol in women during treatment with different oral contraceptive formulations. J Steroid Biochem Mol Biol 55:129–133

    Article  CAS  PubMed  Google Scholar 

  200. Hammerstein J, Daume E, Simon A, Winkler UH, Schindler AE, Back DJ et al (1993) Influence of gestodene and desogestrel as components of low-dose oral contraceptives on the pharmacokinetics of ethinyl estradiol (EE2), on serum CBG and on urinary cortisol and 6β-hydroxycortisol. Contraception 47:263–281

    CAS  PubMed  Google Scholar 

  201. Boissonnat P, De Lorgeril M, Perroux V, Salen P, Batt AM, Barthelemy JC et al (1997) A drug interaction study between ticlopidine and cyclosporin in heart transplant recipients. Eur J Clin Pharmacol 53:39–45

    Article  CAS  PubMed  Google Scholar 

  202. Borin MT, Cox SR, Herman BD, Carel BJ, Anderson RD, Freimuth WW (1997) Effect of fluconazole on the steady-state pharmacokinetics of delavirdine in human immunodeficiency virus-positive patients. Antimicrob Agents Chemother 41:1892–1897

    CAS  PubMed  Google Scholar 

  203. Kirch W, Spahn H, Kitteringham NR, Hutt HJ, Mutschler E, Ohnhaus EE (1984) Interaction between the beta-adrenoceptor blockers metoprolol and atenolol with amitriptyline and their effects on oxidative liver metabolism. Br J Clin Pharmacol 17:65S–68S

    PubMed  Google Scholar 

  204. Fuchs W, Sennewald R, Klotz U (1994) Lansoprazole does not affect the bioavailability of oral contraceptives. Br J Clin Pharmacol 38:376–380

    CAS  PubMed  Google Scholar 

  205. Klotz U, Reimann IW, Ohnhaus EE (1983) Effect of ranitidine on the steady state pharmacokinetics of diazepam. Eur J Clin Pharmacol 24:357–360

    CAS  PubMed  Google Scholar 

  206. Staiger C, Schlicht F, Walter E, Gundert-Remy U, Hildebrandt R, De Vries J et al (1983) Effect of single and multiple doses of sulphinpyrazone on antipyrine metabolism and urinary excretion of 6β-hydroxycortisol. Eur J Clin Pharmacol 25:797–801

    CAS  PubMed  Google Scholar 

  207. Kirch W, Rose I, Klingmann I, Pabst J, Ohnhaus EE (1986) Interaction of bisoprolol with cimetidine and rifampicin. Eur J Clin Pharmacol 31:59–62

    CAS  PubMed  Google Scholar 

  208. Caraco Y, Zylber-Katz E, Granit L, Levy M (1990) Does restriction of caffeine intake affect mixed function oxidase activity and caffeine metabolism? Biopharm Drug Dispos 11:639–643

    CAS  PubMed  Google Scholar 

  209. Vestal RE, Cusack BJ, Mercer GD, Dawson GW, Park BK (1987) Aging and drug interactions. I. Effect of cimetidine and smoking on the oxidation of theophylline and cortisol in healthy men. J Pharmacol Exp Ther 241:488–500

    CAS  PubMed  Google Scholar 

  210. Chamberlain J (1971) The determination of urinary 6-oxygenated cortisol in evaluating liver function. Clin Chim Acta 34:269–271

    Article  CAS  PubMed  Google Scholar 

  211. Dolara P, Lodovici M, Salvadori M, Santoni G, Caderni G, Buiatti E et al (1983) Enzyme induction in humans exposed to styrene. Ann Occup Hyg 27:183–188

    CAS  PubMed  Google Scholar 

  212. Bragt PC, Poppema A (1985) Excretion of 6β-hydroxycortisol (6β-OHF) by workers exposed to styrene. In: Abstracts of the International symposium on clinical and basic aspects of enzyme induction and inhibition. Essen, p 43

  213. Moretti M, Villarini M, Scassellati-Sforzolini G, Monarca S, Libraro M, Fatigoni C et al (1996) Biological monitoring of genotoxic hazard in workers of the rubber industry. Environ Health Perspect 104:543–545

    CAS  PubMed  Google Scholar 

  214. Verplanke AJ, Bloemen LJ, Brouwer EJ, Van Sitter NJ, Boogaard PJ, Herber RF et al (2000) Occupational exposure to cis-1,3-dichoropropene: biological effect monitoring of kidney and liver function. Occup Environ Med 57:745–751

    Article  CAS  PubMed  Google Scholar 

  215. Saenger P, Rosen JF (1981) 6β-hydroxycortisol excretion is a non-invasive and sensitive index of chelatable lead stores in children. In: Brown SS, Davies DS (eds) Organ-directed toxicity. Chemical indices and mechanisms. Pergamon Press, London, pp 297–303

  216. Saenger P, Markowitz ME, Rosen JF (1984) Depressed excretion of 6β-hydroxycortisol in lead-toxic children. J Clin Endocrinol Metab 58:363–367

    CAS  PubMed  Google Scholar 

  217. Touchstone JC, Blakemore WS (1961) Urinary 6β-hydroxycortisol in adrenocortical hyperfunction. J Clin Endocrinol Metab 21:263–270

    CAS  PubMed  Google Scholar 

  218. Borkowski AJ, Marks PA, Katz FH, Lipman MM, Christy NP (1962) An abnormal pathway of steroid metabolism in patients with glucose-6-phosphate dehydrogenase deficiency. J Clin Invest 41:1346–1347

    Google Scholar 

  219. Geubel AP, Pauwels S, Buchet JP, Dumont E, Dive C (1985) Increased cyt P 450-dependent function in healthy HBsAg carriers. Abstracts of the international symposium on clinical and basic aspects of enzyme induction and inhibition. Essen, p 45

  220. Eade OE, Maddison A, Leonard PJ, Wright R (1977) Ratio of urinary 6β-hydroxycortisol to 17-hydroxycorticosteroids in patients with liver disease. Digestion 16:169–174

    CAS  PubMed  Google Scholar 

  221. Wensing G, Mönig H, Ohnhaus EE, Hoensch HP (1991) Pharmacokinetics of encainide in patients with cirrhosis. Cardiovasc Drugs Ther 5:733–739

    CAS  PubMed  Google Scholar 

  222. Wild CP, Yin F, Turner PC, Chemin I, Chapot B, Mendy M et al (2000) Environmental and genetic determinants of aflatoxin-albumin addducts in the Gambia. Int J Cancer 86:1–7

    CAS  PubMed  Google Scholar 

  223. Takeda Y, Miyamori I, Karayalçin U, Takeda R (1991) Influence of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, pravastatin, on corticosteroid metabolism in patients with heterozygous familial hypercholesterolemia. Horm Res 36:75–77

    CAS  PubMed  Google Scholar 

  224. Anderson GD, Awan AB, Adams CA, Temkin NR, Winn HR (1998) Increases in metabolism of valproate and excretion of 6β-hydroxycortisol in patients with traumatic brain injury. Br J Clin Pharmacol 45:101–105

    Article  CAS  PubMed  Google Scholar 

  225. Zheng W, Jin F, Dunning LA, Shu XO, Dai Q, Wen WQ et al (2001) Epidemiological study of urinary 6beta-hydroxycortisol to cortisol ratio and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:237–242

    Article  PubMed  Google Scholar 

  226. Lown K, Kolars J, Turgeon K, Merion R, Wrighton SA, Watkins PB (1992) The erythromycin breath test selectively measures P 450 IIIA in patients with severe liver disease. Clin Pharmacol Ther 51:229–238

    CAS  PubMed  Google Scholar 

  227. Hunt CM, Watkins PB, Saenger P, Stave GM, Barlascini N, Watlington TO et al (1992) Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 51:18–23

    CAS  PubMed  Google Scholar 

  228. Kinirons MT, O’Shea D, Downing TE, Fitzwilliam AT, Joellenbeck L, Groopman JD et al (1993) Absence of correlations among three putative in vivo probes of human cytochrome P 450 3A activity in young healthy men. Clin Pharmacol Ther 54:621–629

    CAS  PubMed  Google Scholar 

  229. Kinirons MT, O’Shea D, Kim RB, Groopman JD, Thummel KE, Wood AJJ et al (1999) Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P 450 3A. Clin Pharmacol Ther 66:224–231

    Google Scholar 

  230. Gotzkowsky SK, Kashuba ADM, Hall W, Kulaway RW, Beck DJ, Rocci ML et al (1999) Poor correlation between 24-hour urinary 6β-hydroxycortisol: cortisol molar ratios (CMR) and plasma midazolam clearance (MDZ CL) as measures of hepatic CYP3A activity (abstract). Clin Pharmacol Ther 65:167

    Google Scholar 

  231. Lin YS, Dowling ALS, Quigley SD, Farin FM, Zhang J, Lamba J et al (2002) Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 62:162–172

    Article  CAS  PubMed  Google Scholar 

  232. Watkins PB (1994) Noninvasive tests of CYP3A enzymes. Pharmacogenetics 4:171–184

    CAS  PubMed  Google Scholar 

  233. Abel SM, Back DJ, Maggs JL, Park BK (1993) Cortisol metabolism in vitro—II. Species difference. J Steroid Biochem Mol Biol 45:445–453

    Article  CAS  PubMed  Google Scholar 

  234. Burstein S, Kimball HL, Bhavnani BR (1963) Urinary corticosteroid excretion patterns in guinea pigs: 2 main phenotypes. Steroids 2:195

    CAS  Google Scholar 

  235. Kiernan TW, Luisada-Opper A, Ertel NH (1981) Hepatic microsomal induction in rat liver: heterogeneity of response. J Clin Pharmacol 21:280–283

    CAS  PubMed  Google Scholar 

  236. Burstein S, Bhavnani BR (1967) Effect of phenobarbital administration on the in vitro hydroxylation of cortisol and on overall substrate and product metabolism in the guinea pig and rat. Endocrinology 80:351–356

    CAS  PubMed  Google Scholar 

  237. Pirmohamed M, Kitteringham NR, Breckenridge AM, Park BK (1992) The effect of enzyme induction on the cytochrome P 450-mediated bioactivation of carbamazepine by mouse liver microsomes. Biochem Pharmacol 44:2307–2314

    CAS  PubMed  Google Scholar 

  238. Challiner MR, Park BK, Odum J, Orton TC, Parker GL (1980) The effects of phenobarbitone on urinary 6β-hydroxycortisol excretion and hepatic enzyme activity in the marmoset monkey (Callithrix jacchus). Biochem Pharmacol 29:3319–3324

    Article  CAS  PubMed  Google Scholar 

  239. Totsuka S, Watanabe T, Koyanagi F, Tanaka K, Yasuda M, Manabe S (1999) Increase in urinary excretion of 6β-hydroxycortisol in common marmosets as a marker of hepatic CYP3A induction. Arch Toxicol 73:203–207

    CAS  PubMed  Google Scholar 

  240. Huber R, Hartmann M, Bliesath H, Luhmann R, Steinijans VW, Zech K (1996) Pharmacokinetics of pantoprazole in man. Int J Clin Pharmacol Ther 34:185–194

    CAS  PubMed  Google Scholar 

  241. Roots I, Ley B, Hildebrandt AG (1977) In vivo parameters of drug metabolism—differences in specificity towards inducing agents. In: Ullrich V, Roots E, Hildebrandt AG, Estabrook RW, Conney AH (eds) Microsomes and drug oxidations. Pergamon Press, Oxford, pp 581–588

  242. Park BK, Challiner MR, Newby S (1983) The effects of phenobarbitone on urinary 6β-hydroxycortisol excretion and hepatic enzyme activity in the guinea-pig. J Steroid Biochem 18:453–457

    Article  CAS  PubMed  Google Scholar 

  243. Abu-Qare AW, Abou-Donia MB (2001) DEET (N,N-diethyl-m-toluamide) alone and in combination with permethrin increased urinary excretion of 6beta-hydroxycortisol in rats, a marker of hepatic CYP3A induction. J Toxicol Environ Health 64:373–384

    Article  CAS  Google Scholar 

  244. Krause W, Träger H, Kühne G, Sauerbrey N, Gräf KJ, Dorow R (1990) Pharmacokinetics and endocrine effects of terguride in healthy subjects. Eur J Clin Pharmacol 38:609–615

    CAS  PubMed  Google Scholar 

  245. Heller FR, Desager JP, Harvengt C (1988) Changes in plasma activities of lipolytic enzymes and lipids of normolipidemic subjects given phenobarbital, a strong microsomal inducer, alone or in combination with fenofibrate. Int J Clin Pharmacol Ther Toxicol 26:138–142

    CAS  PubMed  Google Scholar 

  246. Goldberg DM (1980) Selected aspects of microsomal enzyme induction. In: Goldberg DM, Werner M (eds) Progress in clinical enzymology, Masson Publishing, USA, Inc., New York, pp 20–31

  247. Morita K, Ono T, Shimakawa H (1988) Effects of antimycotics on hepatic steroid metabolism. J Pharmacobiodyn 11:808–815

    CAS  PubMed  Google Scholar 

  248. Walter E, Staiger Ch, De Vries J, Weber E, Bitzer W, Degott M et al (1982) Enhanced drug metabolism after sulfinpyrazone treatment in patients aged 50 to 60 years. Klin Wochenschr 60:1409–1413

    CAS  PubMed  Google Scholar 

  249. Koup JR, Anderson GD, Loi CM (1998) Effect of troglitazone on urinary excretion of 6β-hydroxycortisol. J Clin Pharmacol 38:815–818

    CAS  PubMed  Google Scholar 

  250. Stevenson IH, Browning M, Crooks J, O’Malley K (1972) Changes in human drug metabolism after long-term exposure to hypnotics. Br Med J 4:322–324

    CAS  PubMed  Google Scholar 

  251. Berman ML, Green OC, Calverley RK, Smith NT, Eger EI (1976) Enzyme induction by enflurane in man. Anesthesiology 44:496–500

    CAS  PubMed  Google Scholar 

  252. Morita K, Shibata H, Ono T, Shimakawa H (1986) Inducing effect of feprazone on hepatic drug-metabolizing enzymes in man. Eur J Clin Pharmacol 31:117–118

    CAS  PubMed  Google Scholar 

  253. Heinemeyer G, Roots I, Lestau P, Klaiber HR, Dennhardt R (1986) D-glucaric acid excretion in critical care patients—comparison with 6β-hydroxycortisol excretion and serum γ-glutamyltranspeptidase activity and relation to multiple drug therapy. Br J Clin Pharmacol 21:9-18

    CAS  PubMed  Google Scholar 

  254. O’Malley K, Browning M, Stevenson I, Turnbull MJ (1973) Stimulation of drug metabolism in man by tricyclic antidepressants. Eur J Clin Pharmacol 6:102–106

    CAS  PubMed  Google Scholar 

  255. Horsmans Y, Desager JP, Van den Berge V, Abrassart M, Harvengt C (1993) Effects of simvastatin and pravastatin on 6β-hydroxycortisol excretion, a potential marker of cytochrome P 450 3A Pharmacol Res 28:243–248

    Google Scholar 

  256. Morita K, Konishi H, Ono T, Shimakawa H (1987) A comparison of the inhibitory effects of roxatidine acetate hydrochloride and cimetidine on cytochrome P 450-mediated drug-metabolism in mouse hepatic microsomes and in man in vivo. J Pharmacobiodyn 10:287–295

    CAS  PubMed  Google Scholar 

  257. Feely J, Robertson D, Island DP, Wood AJJ (1982) Cimetidine alters plasma catecholamine levels and cortisol and aldosterone excretion. N Engl J Med 306:1054

    CAS  Google Scholar 

  258. Macphee GJ, Thompson GG, Scobie G, Agnew E, Park BK, Murray T et al (1984) Effects of cimetidine on carbamazepine auto- and hetero-induction in man. Br J Clin Pharmacol 18:411–419

    CAS  PubMed  Google Scholar 

  259. Orme M, Breckenridge A, Brooks RV (1972) Interactions of benzodiazepines with warfarin. Br Med J 3:611–614

    CAS  PubMed  Google Scholar 

  260. Orme M, Back DJ, Ward S, Green S (1991) The pharmacokinetics of ethynylestradiol in the presence and absence of gestodene and desogestrel. Contraception 43:305–316

    CAS  PubMed  Google Scholar 

  261. Rost KL, Mansmann U, Roots I (1997) Urinary 6β-hydroxycortisol and D-glucaric acid excretion rates are not affected by lansoprazole treatment. Int J Clin Pharmacol Ther 35:14–18

    Google Scholar 

  262. Larkin JG, McKee PJW, Forrest G, Beastall GH, Park BK, Lowrie JI et al (1991) Lack of enzyme induction with oxcarbazepine (600 mg daily) in healthy subjects. Br J Clin Pharmacol 31:65–71

    CAS  PubMed  Google Scholar 

  263. Brocks DR, Upward JW, Georgiou P, Stelman G, Doyle E, Allen E et al (1996) The single and multiple dose pharmacokinetics of pranlukast in healthy volunteers. Eur J Clin Pharmacol 51:303–308

    Article  CAS  PubMed  Google Scholar 

  264. Dammann HG, Burkhardt F, Wolf N (1999) The effects of oral rabeprazole on endocrine and gastric secretory function in healthy volunteers. Aliment Pharmacol Ther 13:1195–1203

    CAS  PubMed  Google Scholar 

  265. Ohnhaus EE, Gerber-Taras E (1984) The effect of spironolactone on the liver microsomal enzyme system in patients. Br J Clin Pharmacol 17:485–486

    CAS  PubMed  Google Scholar 

  266. Thompson GG, Small M, Lowe GDO, Forbes CD, Park BK, Scobie G et al (1984) Effect of stanozolol on δ-aminolaevulinic acid synthase and hepatic monooxygenase activity in man and rat. Eur J Clin Pharmacol 26:587–950

    CAS  PubMed  Google Scholar 

  267. Macphee GJ, Mitchell JR, Wiseman L, McLellan AR, Park BK, McInnes GT et al (1988) Effect of sodium valproate on carbamazepine disposition and psychomotor profile in man. Br J Clin Pharmacol 25:59–66

    CAS  PubMed  Google Scholar 

  268. Horsmans Y, Desager JP, Pauwels S, Harvengt C (1991) Lack of effect by nifedipine on hepatic mixed function oxidase in man. Fundam Clin Pharmacol 5:193–201

    CAS  PubMed  Google Scholar 

  269. Back DJ, Purba HS, Park BK, Ward SA, Orme ML (1983) Effect of chloroquine and primaquine on antipyrine metabolism. Br J Clin Pharmacol 16:497–502

    CAS  PubMed  Google Scholar 

  270. Mönig H, Hoffman K, Ohnhaus EE, Schulte HM (1992) Ranitidine treatment and cortisol metabolism in man. Eur J Drug Metab Pharmacokinet 17:9–12

    PubMed  Google Scholar 

  271. Yasui-Furukori N, Kondo T, Kubota T, Otake H, Ohkubo T, Nagasaki T et al (2001) No correlations between the urinary ratio of 6β-hydroxycortisol to free cortisol and pharmacokinetics of alprazolam. Eur J Clin Pharmacol 57:285–288

    Article  CAS  PubMed  Google Scholar 

  272. Svensson US, Ashton M, Trinh NH, Bertilsson L, Dinh XH, Nguyen Nguyen TN et al (1998) Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 64:160–167

    CAS  PubMed  Google Scholar 

  273. Lefevre G, Bindschedler M, Ezzet F, Schaeffer N, Meyer I, Thomsen MS (2000) Pharmacokinetic interaction trial between co-artemether and mefloquine. Eur J Pharm Sci 10:141–151

    Article  CAS  PubMed  Google Scholar 

  274. Pichard-Garcia L, Hyland R, Baulieu J, Fabre JM, Milton A, Maurel P (2000) Human hepatocytes in primary culture predict lack of cytochrome P 450 3A4 induction by eletriptan in vivo. Drug Metab Dispos 28:51–57

    CAS  PubMed  Google Scholar 

  275. Pageaux GP, Le Bricquir Y, Berthou F, Bressot N, Picot MC, Blanc F et al (1998) Effects of interferon-alpha on cytochrome P 450 isoforms 1A2 and 3A activities in patients with chronic hepatitis C. Eur J Gastroenterol Hepatol 10:491–495

    CAS  PubMed  Google Scholar 

  276. Nowak SN, Edwards DJ, Clarke A, Anderson GD, Jaber LA (2002) Pioglitazone: effect on CYP3A4 activity. J Clin Pharmacol 42:1299–1302

    Article  CAS  PubMed  Google Scholar 

  277. Bartoli A, Gatti G, Cipolla G, Barzaghi N, Veliz G, Fattore C et al (1997) A double-blind, placebo-controlled study on the effect of vigabatrin on in vivo parameters of hepatic microsomal enzyme induction and on the kinetics of steroid oral contraceptives in healthy female volunteers. Epilepsia 38:702–707

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to warmly thank G. Sanderink, Aventis, for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Galteau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galteau, M.M., Shamsa, F. Urinary 6β-hydroxycortisol: a validated test for evaluating drug induction or drug inhibition mediated through CYP3A in humans and in animals. Eur J Clin Pharmacol 59, 713–733 (2003). https://doi.org/10.1007/s00228-003-0690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-003-0690-3

Keywords

Navigation