Skip to main content
Log in

Disease progression, drug action and Parkinson’s disease: Why time cannot be ignored

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

α:

Slope of linear disease status curve

Ce:

Effect compartment concentration

CeSS :

Steady state effect site concentration at the start of each levodopa infusion derived from endogenous dopamine and previous exogenous levodopa administration

C0pnss:

Non-steady state levodopa concentration in plasma

C0snss:

Non-steady state component of the slow equilibration effect compartment

D max :

Maximum levodopa induced response above baseline

Dvtpk:

Duration of uniform diurnal input.

EC50:

Concentration at which 50% of maximum response is produced.

E max :

Maximum tapping rates that a drug can produce.

Hill:

Hill coefficient which determine the steepness of the concentration–response curve.

RDiurnal :

Ratio of diurnal input to constant input of endogenous dopamine

Rsynd:

Rate of levodopa equivalent dopamine synthesis in the dopa synthesis effect compartment during the diurnal input period

S0:

Baseline status

Teqd:

Equilibration half-life of the dopa synthesis effect compartment

Teqf:

Equilibration half-life of the fast equilibration effect compartment

Teqs:

Equilibration half-life of the slow equilibration effect compartment

References

  1. Nutt JG, Holford NHG (1996) The response to levodopa in Parkinson’s disease: Imposing pharmacological law and order. Ann Neurol 39:561–573

    Article  PubMed  CAS  Google Scholar 

  2. Chan PL, Nutt JG, Holford NH (2005) Importance of within subject variation in levodopa pharmacokinetics: a 4 year cohort study in Parkinson’s disease. J Pharmacokinet Pharmacodyn 32(3–4):307–331, Aug

    Article  PubMed  CAS  Google Scholar 

  3. Chan PL, Nutt JG, Holford NH (2005) Pharmacokinetic and pharmacodynamic changes during the first four years of levodopa treatment in Parkinson’s disease. J Pharmacokinet Pharmacodyn 32(3–4):459–484, Aug

    Article  PubMed  CAS  Google Scholar 

  4. Chan PL, Nutt JG, Holford NH (2007) Levodopa slows progression of Parkinson’s disease. External validation by clinical trial simulation. Pharm Res 24(4):791–802, Apr

    Article  PubMed  CAS  Google Scholar 

  5. Chan PLS, Nutt JG, Holford NHG (2004) Modeling the short and long duration responses to exogenous levodopa and to endogenous levodopa production in Parkinson’s disease. J Pharmacokinet Pharmacodyn 31(3):243–268

    Article  CAS  Google Scholar 

  6. Holford NHG, Chan PL, Nutt JG, Kieburtz K, Shoulson I (2006) Disease progression and pharmacodynamics in Parkinson disease - evidence for functional protection with levodopa and other treatments. J Pharmacokinet Pharmacodyn 33(3):281–311, Jun

    Article  PubMed  CAS  Google Scholar 

  7. Holford NHG, Sheiner LB (1981) Understanding the dose–effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet 6(6):429–453

    Article  PubMed  CAS  Google Scholar 

  8. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356, Jul 19

    Article  PubMed  CAS  Google Scholar 

  9. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20(4):415–455, Dec

    Article  PubMed  CAS  Google Scholar 

  10. Cotzias GC, Van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276(7):374–379

    Article  PubMed  CAS  Google Scholar 

  11. Cotzias GE, Papavasiliou PS, Gellene R (1969) Modification of parkinsonism–chronic treatment with L-dopa. N Engl J Med 280(7):337–345

    Article  PubMed  CAS  Google Scholar 

  12. Fahn S, Calne DB (1978) Considerations in the management of parkinsonism. Neurology 28(1):5–7, Jan

    PubMed  CAS  Google Scholar 

  13. Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32(6):804–812, Dec

    Article  PubMed  CAS  Google Scholar 

  14. Spina MB, Cohen G (1989) Dopamine turnover and glutathione oxidation: implications for Parkinson disease. Proc Natl Acad Sci USA 86(4):1398–1400, Feb

    Article  PubMed  CAS  Google Scholar 

  15. The Parkinson Study Group (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321:1364–1371

    Article  Google Scholar 

  16. The Parkinson Study Group (1989) DATATOP: A multicenter controlled clinical trial in early Parkinson’s disease. Arch Neurol 46:1052–1060

    Google Scholar 

  17. Schulzer M, Mak E, Calne DB (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic. Ann Neurol 32(6):795–798

    Article  PubMed  CAS  Google Scholar 

  18. Fahn S (1999) Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs Later L-DOPA. Arch Neurol 56(5):529–535

    Article  PubMed  CAS  Google Scholar 

  19. Jonsson EN, Sheiner LB (2002) More efficient clinical trials through use of scientific model-based statistical tests. Clin Pharmacol Ther 72(6):603–614, Dec

    Article  PubMed  Google Scholar 

  20. Hauser RA, Holford NHG (2002) Quantitative description of loss of clinical benefit following withdrawal of levodopa-carbidopa and bromocriptine in early Parkinson’s disease. Mov Disord 17(5):961–968

    Article  PubMed  Google Scholar 

  21. Nelson MV, Berchou RC, Lewitt PA, Kareti D, Kesaree N, Schlick P et al (1989) Pharmacokinetic and pharmacodynamic modeling of L-dopa plasma concentrations and clinical effects in Parkinson’s disease after Sinemet. Clin Neuropharmacol 12(2):91–97

    Article  PubMed  CAS  Google Scholar 

  22. Nutt JG, Woodward WR, Carter JH, Gancher ST (1992) Effect of long-term therapy on the pharmacodynamics of levodopa. Relation to On–Off phenomenon. Arch Neurol 49:1123–1130

    PubMed  CAS  Google Scholar 

  23. Contin M, Riva R, Matinelli P, Baruzzi A (1992) Kinetic-dynamic relationship of oral levodopa: Possible biphasic response after sequential doses in Parkinson’s disease. Mov Disord 7(3):244–248

    Article  PubMed  CAS  Google Scholar 

  24. Contin M, Riva R, Martinelli P, Baruzzi A (1993) Pharmacodynamic modeling of oral levodopa: Clinical application in Parkinson’s disease. Neurology 43:367–371

    PubMed  CAS  Google Scholar 

  25. Triggs EJ, Charles BG, Contin M, Martinelli P, Cortelli P, Riva R et al (1996) Population pharmacokinetics and pharmacodynamics of oral levodopa in parkinsonian patients. Eur J Clin Pharmacol 51:59–67

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Nutt is supported by NIH RO1-NS21062 and Veterans Administration Parkinson’s Disease Research, Education and Clinical Center (PADRECC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Holford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holford, N., Nutt, J.G. Disease progression, drug action and Parkinson’s disease: Why time cannot be ignored. Eur J Clin Pharmacol 64, 207–216 (2008). https://doi.org/10.1007/s00228-007-0427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0427-9

Keywords

Navigation