Skip to main content

Advertisement

Log in

Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive transfer of autologous tumor-reactive T cells holds promise as a cancer immunotherapy. In this approach, T cells are harvested from a tumor-bearing host, expanded in vitro and infused back to the same host. Conditioning of the recipient host with a lymphodepletion regimen of chemotherapy or radiotherapy before adoptive T cell transfer has been shown to substantially improve survival and anti-tumor responses of the transferred cells. These effects are further enhanced when the adoptive T cell transfer is followed by vaccination with tumor antigens in combination with a potent immune adjuvant. Although significant progress has been made toward an understanding of the reasons underlying the beneficial effects of lymphodepletion to T cell adoptive therapy, the precise mechanisms remain poorly understood. Recent studies, including ours, would indicate a more central role for antigen presenting cells, in particular dendritic cells. Unraveling the exact role of these important cells in mediation of the beneficial effects of lymphodepletion could provide novel pathways toward the rational design of more effective anti-cancer immunotherapy. This article focuses on how the frequency, phenotype, and functions of dendritic cells are altered during the lymphopenic and recovery phases post-induction of lymphodepletion, and how they affect the anti-tumor responses of adoptively transferred T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abad JD, Wrzensinski C, Overwijk W, De Witte MA, Jorritsma A, Hsu C, Gattinoni L, Cohen CJ, Paulos CM, Palmer DC, Haanen JB, Schumacher TN, Rosenberg SA, Restifo NP, Morgan RA (2008) T-cell receptor gene therapy of established tumors in a murine melanoma model. J Immunother 31:1–6

    CAS  PubMed  Google Scholar 

  2. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    CAS  PubMed  Google Scholar 

  3. Angulo I, de las Heras FG, Garcia-Bustos JF, Gargallo D, Munoz-Fernandez MA, Fresno M (2000) Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood 95:212–220

    CAS  PubMed  Google Scholar 

  4. Angulo I, Jimenez-Diaz MB, Garcia-Bustos JF, Gargallo D, de las Heras FG, Munoz-Fernandez MA, Fresno M (2002) Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production. Cell Immunol 218:46–58

    CAS  PubMed  Google Scholar 

  5. Antony PA, Paulos CM, Ahmadzadeh M, Akpinarli A, Palmer DC, Sato N, Kaiser A, Hinrichs CS, Klebanoff CA, Tagaya Y, Restifo NP (2006) Interleukin-2-dependent mechanisms of tolerance and immunity in vivo. J Immunol 176:5255–5266

    CAS  PubMed  Google Scholar 

  6. Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–2601

    CAS  PubMed  Google Scholar 

  7. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    CAS  PubMed  Google Scholar 

  8. Apostolopoulos V, Popovski V, McKenzie IF (1998) Cyclophosphamide enhances the CTL precursor frequency in mice immunized with MUC1-mannan fusion protein (M-FP). J Immunother 21:109–113

    CAS  PubMed  Google Scholar 

  9. Awwad M, North RJ (1988) Cyclophosphamide (Cy)-facilitated adoptive immunotherapy of a Cy- resistant tumour. Evidence that Cy permits the expression of adoptive T- cell mediated immunity by removing suppressor T cells rather than by reducing tumour burden. Immunology 65:87–92

    CAS  PubMed  Google Scholar 

  10. Belardelli F, Ferrantini M (2002) Cytokines as a link between innate and adaptive antitumor immunity. Trends Immunol 23:201–208

    CAS  PubMed  Google Scholar 

  11. Bellone M (2000) Apoptosis, cross-presentation, and the fate of the antigen specific immune response. Apoptosis 5:307–314

    CAS  PubMed  Google Scholar 

  12. Ben-Hur H, Kossoy G, Kossoy N, Zusman I (2002) Response of the immune system of mammary tumor-bearing rats to cyclophosphamide and soluble low-molecular-mass tumor-associated antigens: the bone marrow and thymus. Int J Mol Med 10:517–521

    CAS  PubMed  Google Scholar 

  13. Ben-Hur H, Kossoy G, Tendler Y, Kossoy N, Zusman I (2002) Effects of cyclophosphamide and soluble tumor-associated antigens on lymphoid infiltration, proliferative activity and rate of apoptosis in chemically-induced rat mammary tumors. In Vivo 16:287–292

    CAS  PubMed  Google Scholar 

  14. Ben-Hur H, Kossoy G, Zandbank J, Zusman I (2002) Response of the immune system of mammary tumor-bearing rats to cyclophosphamide and soluble low-molecular-mass tumor-associated antigens: rate of lymphoid infiltration and distribution of T lymphocytes in tumors. Int J Mol Med 9:425–430

    CAS  PubMed  Google Scholar 

  15. Berenson JR, Einstein AB Jr, Fefer A (1975) Syngeneic adoptive immunotherapy and chemoimmunotherapy of a Friend leukemia: requirement for T cells. J Immunol 115:234–238

    CAS  PubMed  Google Scholar 

  16. Berraondo P, Nouze C, Preville X, Ladant D, Leclerc C (2007) Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res 67:8847–8855

    CAS  PubMed  Google Scholar 

  17. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, Baccarini S, Maccari S, Ramoni C, Belardelli F, Proietti E (2007) Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res 13:644–653

    CAS  PubMed  Google Scholar 

  18. Brode S, Cooke A (2008) Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit Rev Immunol 28:109–126

    CAS  PubMed  Google Scholar 

  19. Carbone FR, Belz GT, Heath WR (2004) Transfer of antigen between migrating and lymph node-resident DCs in peripheral T-cell tolerance and immunity. Trends Immunol 25:655–658

    CAS  PubMed  Google Scholar 

  20. Cavanagh WA, Tjoa BA, Ragde H (2007) Chemotherapy followed by syngeneic dendritic cell injection in the mouse: findings and implications for human treatment. Urology 70:36–41

    PubMed  Google Scholar 

  21. Cohen S, Haimovich J, Hollander N (2009) Dendritic cell-based therapeutic vaccination against myeloma: vaccine formulation determines efficacy against light chain myeloma. J Immunol 182:1667–1673

    CAS  PubMed  Google Scholar 

  22. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    CAS  PubMed  Google Scholar 

  23. Curtsinger JM, Lins DC, Mescher MF (1998) CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C-) to TCR/CD8 signaling in response to antigen. J Immunol 160:3236–3243

    CAS  PubMed  Google Scholar 

  24. Diaz-Montero CM, El Naggar S, Al Khami A, El Naggar R, Montero AJ, Cole DJ, Salem ML (2008) Priming of naive CD8+ T cells in the presence of IL-12 selectively enhances the survival of CD8+CD62Lhi cells and results in superior anti-tumor activity in a tolerogenic murine model. Cancer Immunol Immunother 57:563–572

    CAS  PubMed  Google Scholar 

  25. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    CAS  PubMed  Google Scholar 

  26. Eberlein TJ, Rosenstein M, Rosenberg SA (1982) Regression of a disseminated syngeneic solid tumor by systemic transfer of lymphoid cells expanded in interleukin 2. J Exp Med 156:385–397

    CAS  PubMed  Google Scholar 

  27. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, Figdor CG, Adema GJ (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345

    CAS  PubMed  Google Scholar 

  28. Eyrich M, Burger G, Marquardt K, Budach W, Schilbach K, Niethammer D, Schlegel PG (2005) Sequential expression of adhesion and costimulatory molecules in graft-versus-host disease target organs after murine bone marrow transplantation across minor histocompatibility antigen barriers. Biol Blood Marrow Transplant 11:371–382

    CAS  PubMed  Google Scholar 

  29. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809–8814

    CAS  PubMed  Google Scholar 

  30. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    CAS  PubMed  Google Scholar 

  31. Gallucci S, Lolkema M, Matzinger P (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255

    CAS  PubMed  Google Scholar 

  32. Garrity T, Pandit R, Wright MA, Benefield J, Keni S, Young MR (1997) Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into dendritic cells. Int J Cancer 73:663–669

    CAS  PubMed  Google Scholar 

  33. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP (2005) Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 202:907–912

    CAS  PubMed  Google Scholar 

  34. Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP (2006) Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6:383–393

    CAS  PubMed  Google Scholar 

  35. Gazitt Y, Akay C, Thomas C 3rd (2006) No polarization of type 1 or type 2 precursor dendritic cells in peripheral blood stem cell collections of non-hodgkin’s lymphoma patients mobilized with cyclophosphamide plus G-CSF, GM-CSF, or GM-CSF followed by G-CSF. Stem Cells Dev 15:269–277

    CAS  PubMed  Google Scholar 

  36. Gruber A, Brocker T (2005) MHC class I-positive dendritic cells (DC) control CD8 T cell homeostasis in vivo: T cell lymphopenia as a prerequisite for DC-mediated homeostatic proliferation of naive CD8 T cells. J Immunol 175:201–206

    CAS  PubMed  Google Scholar 

  37. Guo F, Chang CK, Fan HH, Nie XX, Ren YN, Liu YY, Zhao LH (2008) Anti-tumour effects of exosomes in combination with cyclophosphamide and polyinosinic–polycytidylic acid. J Int Med Res 36:1342–1353

    CAS  PubMed  Google Scholar 

  38. Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR (1989) Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci USA 86:10104–10107

    CAS  PubMed  Google Scholar 

  39. Hallahan DE, Staba-Hogan MJ, Virudachalam S, Kolchinsky A (1998) X-ray-induced P-selectin localization to the lumen of tumor blood vessels. Cancer Res 58:5216–5220

    CAS  PubMed  Google Scholar 

  40. Hallahan DE, Virudachalam S (1999) Accumulation of P-selectin in the lumen of irradiated blood vessels. Radiat Res 152:6–13

    CAS  PubMed  Google Scholar 

  41. He H, Wisner P, Yang G, Hu HM, Haley D, Miller W, O’Hara A, Alvord WG, Clegg CH, Fox BA, Urba WJ, Walker EB (2006) Combined IL-21 and Low-Dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model. J Transl Med 4:24

    CAS  PubMed  Google Scholar 

  42. Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC, Klebanoff CA, Rosenberg SA, Leonard WJ, Restifo NP (2008) IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111:5326–5333

    CAS  PubMed  Google Scholar 

  43. Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, Weinberg AD, Wolchok JD, Houghton AN (2009) OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med 206:1103–1116

    CAS  PubMed  Google Scholar 

  44. Holtl L, Ramoner R, Zelle-Rieser C, Gander H, Putz T, Papesh C, Nussbaumer W, Falkensammer C, Bartsch G, Thurnher M (2005) Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide. Cancer Immunol Immunother 54:663–670

    PubMed  Google Scholar 

  45. Hong JH, Chiang CS, Tsao CY, Lin PY, McBride WH, Wu CJ (1999) Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. Int J Radiat Biol 75:1421–1427

    CAS  PubMed  Google Scholar 

  46. Hoover SK, Barrett SK, Turk TM, Lee TC, Bear HD (1990) Cyclophosphamide and abrogation of tumor-induced suppressor T cell activity. Cancer Immunol Immunother 31:121–127

    CAS  PubMed  Google Scholar 

  47. Horvath R, Budinsky V, Kayserova J, Kalina T, Formankova R, Stary J, Bartunkova J, Sedlacek P, Spisek R (2009) Kinetics of dendritic cells reconstitution and costimulatory molecules expression after myeloablative allogeneic haematopoetic stem cell transplantation: implications for the development of acute graft-versus host disease. Clin Immunol 131:60–69

    CAS  PubMed  Google Scholar 

  48. Hu DE, Moore AM, Thomsen LL, Brindle KM (2004) Uric acid promotes tumor immune rejection. Cancer Res 64:5059–5062

    CAS  PubMed  Google Scholar 

  49. Huang J, Wang Y, Guo J, Lu H, Lin X, Ma L, Teitz-Tennenbaum S, Chang AE, Li Q (2007) Radiation-induced apoptosis along with local and systemic cytokine elaboration is associated with DC plus radiotherapy-mediated renal cell tumor regression. Clin Immunol 123:298–310

    CAS  PubMed  Google Scholar 

  50. Huck SP, Tang SC, Andrew KA, Yang J, Harper JL, Ronchese F (2008) Activation and route of administration both determine the ability of bone marrow-derived dendritic cells to accumulate in secondary lymphoid organs and prime CD8+ T cells against tumors. Cancer Immunol Immunother 57:63–71

    PubMed  Google Scholar 

  51. Hwang LN, Yu Z, Palmer DC, Restifo NP (2006) The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumor. Cancer Res 66:1132–1138

    CAS  PubMed  Google Scholar 

  52. Ibe S, Qin Z, Schuler T, Preiss S, Blankenstein T (2001) Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med 194:1549–1559

    CAS  PubMed  Google Scholar 

  53. Ikezawa Y, Nakazawa M, Tamura C, Takahashi K, Minami M, Ikezawa Z (2005) Cyclophosphamide decreases the number, percentage and the function of CD25(+) CD4(+) regulatory T cells, which suppress induction of contact hypersensitivity. J Dermatol Sci

  54. Ishihara H, Tanaka I, Nemoto K, Tsuneoka K, Cheeramakara C, Yoshida K, Ohtsu H (1995) Immediate-early, transient induction of the interleukin-1 beta gene in mouse spleen macrophages by ionizing radiation. J Radiat Res (Tokyo) 36:112–124

    CAS  Google Scholar 

  55. Jabbari A, Harty JT (2005) Cutting edge: differential self-peptide/MHC requirement for maintaining CD8 T cell function versus homeostatic proliferation. J Immunol 175:4829–4833

    CAS  PubMed  Google Scholar 

  56. Jahrsdorfer B, Weiner GJ (2008) CpG oligodeoxynucleotides as immunotherapy in cancer. Update Cancer Ther 3:27–32

    PubMed  Google Scholar 

  57. Kawashima H (2006) Roles of sulfated glycans in lymphocyte homing. Biol Pharm Bull 29:2343–2349

    CAS  PubMed  Google Scholar 

  58. Kedl RM, Rees WA, Hildeman DA, Schaefer B, Mitchell T, Kappler J, Marrack P (2000) T cells compete for access to antigen-bearing antigen-presenting cells. J Exp Med 192:1105–1113

    CAS  PubMed  Google Scholar 

  59. Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, Kroemer G (2009) Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis 14:364–375

    PubMed  Google Scholar 

  60. Klebanoff CA, Finkelstein SE, Surman DR, Lichtman MK, Gattinoni L, Theoret MR, Grewal N, Spiess PJ, Antony PA, Palmer DC, Tagaya Y, Rosenberg SA, Waldmann TA, Restifo NP (2004) IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA 101:1969–1974

    CAS  PubMed  Google Scholar 

  61. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA, Waldmann TA, Restifo NP (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 102:9571–9576

    CAS  PubMed  Google Scholar 

  62. Klebanoff CA, Gattioni L, Restifo NP (2006) CD8+ T-cell memory in tumot immunology and immunotherapy. Immunol Rev 211:214–224

    CAS  PubMed  Google Scholar 

  63. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26:111–117

    CAS  PubMed  Google Scholar 

  64. Ko HJ, Lee JM, Kim YJ, Kim YS, Lee KA, Kang CY (2009) Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol 182:1818–1828

    CAS  PubMed  Google Scholar 

  65. Ko JS, Bukowski RM, Fincke JH (2009) Myeloid-derived suppressor cells: a novel therapeutic target. Curr Oncol Rep 11:87–93

    CAS  PubMed  Google Scholar 

  66. Kohlmeyer J, Cron M, Landsberg J, Bald T, Renn M, Mikus S, Bondong S, Wikasari D, Gaffal E, Hartmann G, Tuting T (2009) Complete regression of advanced primary and metastatic mouse melanomas following combination chemoimmunotherapy. Cancer Res 69:6265–6274

    CAS  PubMed  Google Scholar 

  67. Koike N, Pilon-Thomas S, Mule JJ (2008) Nonmyeloablative chemotherapy followed by T-cell adoptive transfer and dendritic cell-based vaccination results in rejection of established melanoma. J Immunother 31:402–412

    PubMed  Google Scholar 

  68. Lappin MB, Weiss JM, Delattre V, Mai B, Dittmar H, Maier C, Manke K, Grabbe S, Martin S, Simon JC (1999) Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology 98:181–188

    CAS  PubMed  Google Scholar 

  69. Lau J, Sartor M, Bradstock KF, Vuckovic S, Munster DJ, Hart DN (2007) Activated circulating dendritic cells after hematopoietic stem cell transplantation predict acute graft-versus-host disease. Transplantation 83:839–846

    PubMed  Google Scholar 

  70. Limpens J, Van Meijer M, Van Santen HM, Germeraad WT, Hoeben-Schornagel K, Breel M, Scheper RJ, Kraal G (1991) Alterations in dendritic cell phenotype and function associated with immunoenhancing effects of a subcutaneously administered cyclophosphamide derivative. Immunology 73:255–263

    CAS  PubMed  Google Scholar 

  71. Liu F, Poursine-Laurent J, Link DC (1997) The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand. Blood 90:2522–2528

    CAS  PubMed  Google Scholar 

  72. Liu JY, Wu Y, Zhang XS, Yang JL, Li HL, Mao YQ, Wang Y, Cheng X, Li YQ, Xia JC, Masucci M, Zeng YX (2007) Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56:1597–1604

    CAS  PubMed  Google Scholar 

  73. Lotze MT, Rosenberg SA (1986) Results of clinical trials with the administration of interleukin 2 and adoptive immunotherapy with activated cells in patients with cancer. Immunobiology 172:420–437

    CAS  PubMed  Google Scholar 

  74. Lou Y, Wang G, Lizee G, Kim GJ, Finkelstein SE, Feng C, Restifo NP, Hwu P (2004) Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo. Cancer Res 64:6783–6790

    CAS  PubMed  Google Scholar 

  75. Ma J, Urba WJ, Si L, Wang Y, Fox BA, Hu HM (2003) Anti-tumor T cell response and protective immunity in mice that received sublethal irradiation and immune reconstitution. Eur J Immunol 33:2123–2132

    CAS  PubMed  Google Scholar 

  76. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179

    CAS  PubMed  Google Scholar 

  77. Marincola FM, Ettinghausen S, Cohen PA, Cheshire LB, Restifo NP, Mule JJ, Rosenberg SA (1994) Treatment of established lung metastases with tumor-infiltrating lymphocytes derived from a poorly immunogenic tumor engineered to secrete human TNF-alpha. J Immunol 152:3500–3513

    CAS  PubMed  Google Scholar 

  78. MartIn-Fontecha A, Sebastiani S, Hopken UE, Uguccioni M, Lipp M, Lanzavecchia A, Sallusto F (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621

    CAS  PubMed  Google Scholar 

  79. McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, Dougherty GJ, Iwamoto KS, Pervan M, Liao YP (2004) A sense of danger from radiation. Radiat Res 162:1–19

    CAS  PubMed  Google Scholar 

  80. Mihalyo MA, Doody AD, McAleer JP, Nowak EC, Long M, Yang Y, Adler AJ (2004) In vivo cyclophosphamide and IL-2 treatment impedes self-antigen-induced effector CD4 cell tolerization: implications for adoptive immunotherapy. J Immunol 172:5338–5345

    CAS  PubMed  Google Scholar 

  81. Mokyr MB, Place AT, Artwohl JE, Valli VE (2006) Importance of signaling via the IFN-alpha/beta receptor on host cells for the realization of the therapeutic benefits of cyclophosphamide for mice bearing a large MOPC-315 tumor. Cancer Immunol Immunother 55:459–468

    CAS  PubMed  Google Scholar 

  82. Morrison SJ, Wright DE, Weissman IL (1997) Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci USA 94:1908–1913

    CAS  PubMed  Google Scholar 

  83. Muranski P, Boni A, Wrzesinski C, Citrin DE, Rosenberg SA, Childs R, Restifo NP (2006) Increased intensity lymphodepletion and adoptive immunotherapy–how far can we go? Nat Clin Pract Oncol 3:668–681

    CAS  PubMed  Google Scholar 

  84. Nagaraj S, Collazo M, Corzo CA, Youn JI, Ortiz M, Quiceno D, Gabrilovich DI (2009) Regulatory myeloid suppressor cells in health and disease. Cancer Res 69:7503–7506

    CAS  PubMed  Google Scholar 

  85. Nakayama M, Itoh K, Takahashi E (1997) Cyclophosphamide-induced bacterial translocation in Escherichia coli C25-monoassociated specific pathogen-free mice. Microbiol Immunol 41:587–593

    CAS  PubMed  Google Scholar 

  86. Ndejembi MP, Tang AL, Farber DL (2007) Reshaping the past: Strategies for modulating T-cell memory immune responses. Clin Immunol 122:1–12

    CAS  PubMed  Google Scholar 

  87. Neben S, Marcus K, Mauch P (1993) Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood 81:1960–1967

    CAS  PubMed  Google Scholar 

  88. Nemoto K, Ishihara H, Tanaka I, Suzuki G, Tsuneoka K, Yoshida K, Ohtsu H (1995) Expression of IL-1 beta mRNA in mice after whole body X-irradiation. J Radiat Res (Tokyo) 36:125–133

    CAS  Google Scholar 

  89. Okada N, Tsujino M, Hagiwara Y, Tada A, Tamura Y, Mori K, Saito T, Nakagawa S, Mayumi T, Fujita T, Yamamoto A (2001) Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. Br J Cancer 84:1564–1570

    CAS  PubMed  Google Scholar 

  90. Overwijk WW, de Visser KE, Tirion FH, de Jong LA, Pols TW, van der Velden YU, van den Boorn JG, Keller AM, Buurman WA, Theoret MR, Blom B, Restifo NP, Kruisbeek AM, Kastelein RA, Haanen JB (2006) Immunological and antitumor effects of IL-23 as a cancer vaccine adjuvant. J Immunol 176:5213–5222

    CAS  PubMed  Google Scholar 

  91. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198:569–580

    CAS  PubMed  Google Scholar 

  92. Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286

    CAS  PubMed  Google Scholar 

  93. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95–103

    CAS  PubMed  Google Scholar 

  94. Pandit R, Lathers DM, Beal NM, Garrity T, Young MR (2000) CD34+ immune suppressive cells in the peripheral blood of patients with head and neck cancer. Ann Otol Rhinol Laryngol 109:749–754

    CAS  PubMed  Google Scholar 

  95. Paulos CM, Kaiser A, Wrzesinski C, Hinrichs CS, Cassard L, Boni A, Muranski P, Sanchez-Perez L, Palmer DC, Yu Z, Antony PA, Gattinoni L, Rosenberg SA, Restifo NP (2007) Toll-like receptors in tumor immunotherapy. Clin Cancer Res 13:5280–5289

    CAS  PubMed  Google Scholar 

  96. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, Palmer DC, Boni A, Muranski P, Yu Z, Gattinoni L, Antony PA, Rosenberg SA, Restifo NP (2007) Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest 117:2197–2204

    CAS  PubMed  Google Scholar 

  97. Pelaez B, Campillo JA, Lopez-Asenjo JA, Subiza JL (2001) Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J Immunol 166:6608–6615

    CAS  PubMed  Google Scholar 

  98. Phipps RP, Mandel TE, Schnizlein CT, Tew JG (1984) Anamnestic responses induced by antigen persisting on follicular dendritic cells from cyclophosphamide-treated mice. Immunology 51:387–397

    CAS  PubMed  Google Scholar 

  99. Prins RM, Shu CJ, Radu CG, Vo DD, Khan-Farooqi H, Soto H, Yang MY, Lin MS, Shelly S, Witte ON, Ribas A, Liau LM (2008) Anti-tumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain. Cancer Immunol Immunother 57:1279–1289

    CAS  PubMed  Google Scholar 

  100. Probst HC, van den Broek M (2005) Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J Immunol 174:3920–3924

    CAS  PubMed  Google Scholar 

  101. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M, Carlei D, Belardelli F (1998) Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest 101:429–441

    CAS  PubMed  Google Scholar 

  102. Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863

    CAS  PubMed  Google Scholar 

  103. Radcliff FJ, Caruso DA, Koina C, Riordan MJ, Roberts AW, Tang ML, Baum CM, Woulfe SL, Ashley DM (2002) Mobilization of dendritic cells in cancer patients treated with granulocyte colony-stimulating factor and chemotherapy. Br J Haematol 119:204–211

    CAS  PubMed  Google Scholar 

  104. Radojcic V, Bezak KB, Skarica M, Pletneva MA, Yoshimura K, Schulick RD, Luznik L (2009) Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination. Cancer Immunol Immunother 59(1):137–148

    PubMed  Google Scholar 

  105. Ramakrishnan R, Antonia S, Gabrilovich DI (2008) Combined modality immunotherapy and chemotherapy: a new perspective. Cancer Immunol Immunother 57:1523–1529

    CAS  PubMed  Google Scholar 

  106. Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483

    CAS  PubMed  Google Scholar 

  107. Rigby SM, Rouse T, Field EH (2003) Total lymphoid irradiation nonmyeloablative preconditioning enriches for IL-4-producing CD4+-TNK cells and skews differentiation of immunocompetent donor CD4+ cells. Blood 101:2024–2032

    CAS  PubMed  Google Scholar 

  108. Rosen SD (2004) Ligands for l-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156

    CAS  PubMed  Google Scholar 

  109. Rosenberg SA (1984) Immunotherapy of cancer by systemic administration of lymphoid cells plus interleukin-2. J Biol Response Mod 3:501–511

    CAS  PubMed  Google Scholar 

  110. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380–384

    CAS  PubMed  Google Scholar 

  111. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319:1676–1680

    Article  CAS  PubMed  Google Scholar 

  112. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308

    CAS  PubMed  Google Scholar 

  113. Roses RE, Xu M, Koski GK, Czerniecki BJ (2008) Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer. Oncogene 27:200–207

    CAS  PubMed  Google Scholar 

  114. Salem ML, AL-Khami AA, EL-Naggar SA, Díaz-Montero CM, Chen Y, Cole DJ (2009) Cyclophosphamide induces dynamic alterations in the host microenvironments resulting in a FLT3L-dependent expansion of dendritic cells. J Immunol (under revision)

  115. Salem ML, Diaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O, Montero AJ, Khafagy A, Cole DJ (2009) Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol 182:2030–2040

    CAS  PubMed  Google Scholar 

  116. Salem ML, El-Naggar SA, Cole DJ (2009) Cyclophosphamide induces bone marrow to yield higher numbers of precursor dendritic cells in vitro capable of functional antigen presentation to T cells in vivo. Cell Immunol (submitted)

  117. Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ (2006) The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine 24:5119–5132

    CAS  PubMed  Google Scholar 

  118. Salem ML, Kadima AN, El-Naggar SA, Rubinstein MP, Chen Y, Gillanders WE, Cole DJ (2007) Defining the ability of cyclophosphamide preconditioning to enhance the antigen-specific CD8+ T-cell response to peptide vaccination: creation of a beneficial host microenvironment involving type I IFNs and myeloid cells. J Immunother 30:40–53

    CAS  PubMed  Google Scholar 

  119. Schiavoni G, Mattei F, Di Pucchio T, Santini SM, Bracci L, Belardelli F, Proietti E (2000) Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030

    CAS  PubMed  Google Scholar 

  120. Schumacher TN, Restifo NP (2009) Adoptive T cell therapy of cancer. Curr Opin Immunol 21:187–189

    CAS  PubMed  Google Scholar 

  121. Shackleton M, Davis ID, Hopkins W, Jackson H, Dimopoulos N, Tai T, Chen Q, Parente P, Jefford M, Masterman KA, Caron D, Chen W, Maraskovsky E, Cebon J (2004) The impact of imiquimod, a Toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun 4:9

    PubMed  Google Scholar 

  122. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    CAS  PubMed  Google Scholar 

  123. Shi Y, Galusha SA, Rock KL (2006) Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 176:3905–3908

    CAS  PubMed  Google Scholar 

  124. Song W, Levy R (2005) Therapeutic vaccination against murine lymphoma by intratumoral injection of naive dendritic cells. Cancer Res 65:5958–5964

    CAS  PubMed  Google Scholar 

  125. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C, Ghiringhelli F, Terme M, Carpentier AF, Darrasse-Jeze G, Lemonnier F, Zitvogel L (2006) Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176:2722–2729

    CAS  PubMed  Google Scholar 

  126. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, Kroemer G (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15:3–12

    CAS  PubMed  Google Scholar 

  127. Tong Y, Song W, Crystal RG (2001) Combined intratumoral injection of bone marrow-derived dendritic cells and systemic chemotherapy to treat pre-existing murine tumors. Cancer Res 61:7530–7535

    CAS  PubMed  Google Scholar 

  128. Torihata H, Ishikawa F, Okada Y, Tanaka Y, Uchida T, Suguro T, Kakiuchi T (2004) Irradiation up-regulates CD80 expression through two different mechanisms in spleen B cells, B lymphoma cells, and dendritic cells. Immunology 112:219–227

    CAS  PubMed  Google Scholar 

  129. Vierboom MP, Bos GM, Ooms M, Offringa R, Melief CJ (2000) Cyclophosphamide enhances anti-tumor effect of wild-type p53-specific CTL. Int J Cancer 87:253–260

    CAS  PubMed  Google Scholar 

  130. Vuckovic S, Kim M, Khalil D, Turtle CJ, Crosbie GV, Williams N, Brown L, Williams K, Kelly C, Stravos P, Rodwell R, Hill GR, Wright S, Taylor K, Gill D, Marlton P, Bradstock K, Hart DN (2003) Granulocyte-colony stimulating factor increases CD123hi blood dendritic cells with altered CD62L and CCR7 expression. Blood 101:2314–2317

    CAS  PubMed  Google Scholar 

  131. Wada S, Yoshimura K, Hipkiss EL, Harris TJ, Yen HR, Goldberg MV, Grosso JF, Getnet D, Demarzo AM, Netto GJ, Anders R, Pardoll DM, Drake CG (2009) Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res 69:4309–4318

    CAS  PubMed  Google Scholar 

  132. Wang LX, Li R, Yang G, Lim M, O’Hara A, Chu Y, Fox BA, Restifo NP, Urba WJ, Hu HM (2005) Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing. Cancer Res 65:10569–10577

    CAS  PubMed  Google Scholar 

  133. Wright DE, Cheshier SH, Wagers AJ, Randall TD, Christensen JL, Weissman IL (2001) Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood 97:2278–2285

    CAS  PubMed  Google Scholar 

  134. Wrzesinski C, Paulos CM, Gattinoni L, Palmer DC, Kaiser A, Yu Z, Rosenberg SA, Restifo NP (2007) Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells. J Clin Invest 117:492–501

    CAS  PubMed  Google Scholar 

  135. Wrzesinski C, Restifo NP (2005) Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Curr Opin Immunol 17:195–201

    CAS  PubMed  Google Scholar 

  136. Xun CQ, Thompson JS, Jennings CD, Brown SA, Widmer MB (1994) Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83:2360–2367

    CAS  PubMed  Google Scholar 

  137. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    CAS  PubMed  Google Scholar 

  138. Zaft T, Sapoznikov A, Krauthgamer R, Littman DR, Jung S (2005) CD11chigh dendritic cell ablation impairs lymphopenia-driven proliferation of naive and memory CD8+ T cells. J Immunol 175:6428–6435

    CAS  PubMed  Google Scholar 

  139. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, Berzofsky JA, Leonard WJ (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148

    CAS  PubMed  Google Scholar 

  140. Zhang B, Bowerman NA, Salama JK, Schmidt H, Spiotto MT, Schietinger A, Yu P, Fu YX, Weichselbaum RR, Rowley DA, Kranz DM, Schreiber H (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55

    CAS  PubMed  Google Scholar 

  141. Zhang Y, Louboutin JP, Zhu J, Rivera AJ, Emerson SG (2002) Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J Clin Invest 109:1335–1344

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Grant 1 R01 CA94856-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Labib Salem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, M.L., Cole, D.J. Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination. Cancer Immunol Immunother 59, 341–353 (2010). https://doi.org/10.1007/s00262-009-0792-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0792-6

Keywords

Navigation