Skip to main content

Advertisement

Log in

Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) is a water-soluble analogue of 17-(allylamino)-17-demethoxygeldanamycin (17AAG), a compound currently in clinical trials. These preclinical studies: (1) characterized 17DMAG concentrations in plasma, normal tissues, and tumor after i.v. delivery to mice; and (2) correlated tumor and normal tissue 17DMAG concentrations with alterations in heat shock protein 90 (HSP90) and selected HSP90-chaperoned proteins.

Methods

At specified times after i.v. administration of 75 mg/kg 17DMAG, SCID mice bearing s.c. MDA-MB-231 human breast xenografts were killed and plasma and tissues were retained. 17DMAG concentrations were determined by HPLC. Raf-1, heat shock protein 70 (HSP70), and HSP90 in tissues were determined by Western blotting.

Results

Peak plasma 17DMAG concentration was 15.4±1.4 μg/ml. The area under the plasma 17DMAG concentration versus time curve was 1072 μg/ml min, corresponding to a total body clearance of 70 ml/kg/min. Peak 17DMAG concentrations in liver (118.8±5.7 μg/g), kidney (122.9±10.6 μg/g), heart (81.3±8.1 μg/g), and lung (110.6±25.4 μg/g) occurred at 5–10 min, while peak concentrations in spleen (70.6±9.6 μg/g) and tumor (9.0±1.0 μg/g) occurred at 30–45 min. At 48 h, 17DMAG was detectable in tumor but not in any normal tissue. Raf-1 in tumors of 17DMAG-treated mice killed at 4, 7, 24 and 48 h was about 20% lower than in tumors from vehicle-treated mice. HSP90 and HSP70 in tumors of 17DMAG-treated animals were significantly lower than in tumors of control animals at 4, 7, and 24 h. Hepatic Raf-1 was decreased by more than 60% at all times after 17DMAG treatment; however, hepatic HSP90 was not affected. HSP70 was undetectable in livers of vehicle-treated mice or mice killed at 2 or 4 h after 17DMAG treatment, but was detected in livers at 7, 24 and 48 h. 17DMAG did not affect renal Raf-1. In contrast, renal HSP70 and HSP90 were decreased by more than 50% at 2 and 4 h after 17DMAG treatment. Renal HSP70 increased approximately twofold above that in kidneys from vehicle-treated control mice at 7 and 24 h, while HSP90 relative protein concentration was no different from that in controls.

Conclusions

Plasma pharmacokinetics of 17DMAG in tumor-bearing mice were similar to those previously reported in nontumor-bearing mice. 17DMAG was distributed widely to tissues but was retained for longer in tumors than normal tissues. Raf-1, HSP90, and HSP70 were altered to different degrees in tumors, livers, and kidneys of 17DMAG-treated animals. These data illustrate the complex nature of the biological responses to 17DMAG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akaike A (1979) A bayesian extention of the minimal AIC procedures of autoregressive model fitting. Biometrika 66:237

    Google Scholar 

  2. An WG, Schnur RC, Neckers L, Blagosklonny MV (1997) Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother Pharmacol 40:60

    Google Scholar 

  3. An WG, Schulte TW, Neckers LM (2000) The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ 11:355

    CAS  PubMed  Google Scholar 

  4. Bagatell R, Khan O, Paine-Murrieta G, Taylor CW, Akinaga S, Whitesell L (2001) Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin Cancer Res 7:2076

    CAS  PubMed  Google Scholar 

  5. Bamberger CM, Wald M, Bamberger AM, Schulte HM (1997) Inhibition of mineralocorticoid and glucocorticoid receptor function by the heat shock protein 90-binding agent geldanamycin. Mol Cell Endocrinol 131:233

    Article  CAS  PubMed  Google Scholar 

  6. Banerji U, Walton MI, Orr R, Kelland L, Judson IR, Workman P (2000) Development and validation of pharmacodynamic end points in tumor and normal tissue to assess the effect of the HSP90 molecular chaperone inhibitor 17-allylamino-17-demethoxy geldanamycin (17AAG). Proc Am Assoc Cancer Res 41:721a

    Google Scholar 

  7. Banerji U, O’Donnel A, Scurr M, Benson C, Stapleton S, Raynaud F, Clarke S, T1urner A, Workman P, Judson I (2003) A pharmacokinetically (PK)–pharmacodynamically (PD) guided phase I trial of the heat shock protein 90 (HSP90) inhibitor 17-allylamino,17-demethoxydgeldanamycin (17AAG). Proc Am Soc Clin Oncol 22:199

    Google Scholar 

  8. Basso AD, Solit DB, Munster PN, Rosen N (2002) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21:1159

    Article  CAS  PubMed  Google Scholar 

  9. Blagosklonny MV (2002) Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16:455

    Article  CAS  PubMed  Google Scholar 

  10. Blagosklonny MV, Toretsky J, Bohen S, Neckers L (1996) Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci U S A 93:8379

    Article  CAS  PubMed  Google Scholar 

  11. Brunton VG, Steele G, Lewis AD, Workman P (1998) Geldanamycin-induced cytotoxicity in human colon-cancer cell lines: evidence against the involvement of c-Src or DT-diaphorase. Cancer Chemother Pharmacol 41:417

    Article  CAS  PubMed  Google Scholar 

  12. Chen HS, Singh SS, Perdew GH (1997) The Ah receptor is a sensitive target of geldanamycin-induced protein turnover. Arch Biochem Biophys 348:190

    Google Scholar 

  13. Chen EX, Bies R, Ramanthan RK, Zuhowski EG, Trump DL, Egorin MJ (2002) Population pharmacokinetic (PK) analysis of 17-(allylamino)-17-demethoxygeldanamycin (AAG) in adult patients with advanced solid tumors. Proc Am Soc Clin Oncol 484:122a

    Google Scholar 

  14. Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289

    Article  CAS  PubMed  Google Scholar 

  15. Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P (2000) Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19:4125

    Article  CAS  PubMed  Google Scholar 

  16. D’Argenio DZ, Schumitzky A (1979) A program package for simulation and parameter estimation in pharmacokinetic systems. Comput Programs Biomed 9:115

    Article  CAS  PubMed  Google Scholar 

  17. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442

    Google Scholar 

  18. Egorin MJ, Rosen DM, Wolff JH, Callery PS, Musser SM, Eiseman JL (1998) Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res 58:2385

    CAS  PubMed  Google Scholar 

  19. Egorin MJ, Sentz DL, Zuhowski EG, Dobson JM, Schulte TW, Neckers LM, Eiseman JL (1999) PC3 human prostrate xenograft retention of, and oncoprotein modulation by, 17-allylaminogeldanamycin (17AAG) in vivo. Proc Am Assoc Cancer Res 40:517

    Google Scholar 

  20. Egorin MJ, Zuhowski EG, Rosen DM, Sentz DL, Covey JM, Eiseman JL (2001) Plasma pharmacokinetics and tissue distribution of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) in CD2F1 mice1. Cancer Chemother Pharmacol 47:291

    Article  CAS  PubMed  Google Scholar 

  21. Egorin MJ, Lagattuta TF, Hamburger DR, Covey JM, White KD, Musser SM, Eiseman JL (2002) Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol 49:7

    Article  CAS  PubMed  Google Scholar 

  22. Eiseman JL, Grimm A, Sentz DL, Lessor T, Gessner R, Zuhowski EG, Nemieboka N, Egorin MJ, Hamburger A (1999) Pharmacokinetics of 17-allylamino (17-demethoxy) geldanamycin in SCID mice bearing MDA-MB-453 xenografts and alterations in the expression of p185Erb-B2 in the xenografts following treatment. Cancer Res 5(Suppl):3837

    Google Scholar 

  23. Glaze ER, Smith AC, Johnson DW, McCormick DL, Brown AB, Levin BS, Krishnaraj R, Lyubimov A, Egorin MJ, Tomaszewski JE (2003) Dose range-finding toxicity studies of 17-DMAG. Proc Am Assoc Cancer Res 44:162

    Google Scholar 

  24. Goetz M, Toft J, Reid J, Sloan J, Atherton P, Adjei A, Croghan G, Weinshilboum R, Erlichman C, Ames M (2002) A phase I trial of 17-allyl-amino-geldanamycin (17-AAG) in patients with advanced cancer. Euro J Cancer 38:54

    Google Scholar 

  25. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Anal Oncol 14:1169

    Article  CAS  Google Scholar 

  26. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843

    Article  CAS  PubMed  Google Scholar 

  27. Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61:4003

    CAS  PubMed  Google Scholar 

  28. Jez JM, Chen JC, Rastelli G, Stroud RM, Santi DV (2003) Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem Biol 10:361

    Article  CAS  PubMed  Google Scholar 

  29. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407

    Article  CAS  PubMed  Google Scholar 

  30. Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P (1999) DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst 91:1940

    Article  CAS  PubMed  Google Scholar 

  31. Kim S, Kang J, Hu W, Evers BM, Chung DH (2003) Geldanamycin decreases Raf-1 and Akt levels and induces apoptosis in neuroblastomas. Int J Cancer 103:352

    Google Scholar 

  32. Kim S, Kang J, Qiao J, Kamal A, Burrows FJ, Evers BM, Chung DH (2003) Heat shock protein 90 inhibitors reduce neuroblastoma growth in vivo. Proc Am Assoc Cancer Res 44:152

    Google Scholar 

  33. Lavictoire SJ, Parolin DA, Klimowicz AC, Kelly JF, Lorimer IA (2003) Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J Biol Chem 278:5292

    Article  CAS  PubMed  Google Scholar 

  34. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, Zhong H (2002) Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res 62:2478

    Google Scholar 

  35. Maloney A, Workman P (2002) HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3

    CAS  PubMed  Google Scholar 

  36. Mandler R, Wu C, Sausville EA, Roettinger AJ, Newman DJ, Ho DK, King CR, Yang D, Lippman ME, Landolfi NF, Dadachova E, Brechbiel MW, Waldmann TA (2000) Immunoconjugates of geldanamycin and anti-HER2 monoclonal antibodies: antiproliferative activity on human breast carcinoma cell lines. J Natl Cancer Inst 92:1573

    Article  CAS  PubMed  Google Scholar 

  37. Miller P, DiOrio C, Moyer M, Schnur RC, Bruskin A, Cullen W, Moyer JD (1994) Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res 54:2724

    Google Scholar 

  38. Munster PN, Basso A, Solit D, Norton L, Rosen N (2001) Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. See: E.A. Sausville, Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters, Clin. Cancer Res., 7: 2155–2158, 2001. Clin Cancer Res 7:2228

    CAS  PubMed  Google Scholar 

  39. Munster PN, Marchion DC, Basso AD, Rosen N (2002) Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3’-kinase-AKT-dependent pathway. Cancer Res 62:3132

    Google Scholar 

  40. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61

    Article  CAS  PubMed  Google Scholar 

  41. Nimmanapalli R, Bhalla K (2002) Novel targeted therapies for Bcr-Abl positive acute leukemias: beyond STI571. Oncogene 21:8584

    Article  CAS  PubMed  Google Scholar 

  42. Nimmanapalli R, O’Bryan E, Bhalla K (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61:1799

    Google Scholar 

  43. Nimmanapalli R, O’Bryan E, Kuhn D, Yamaguchi H, Wang HG, Bhalla KN (2003) Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-XL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases. Blood 102:269

    Article  CAS  PubMed  Google Scholar 

  44. Noker PE, Thompson RB, Smith AC, Tomaszewski JE, Page JG (1999) Toxicity and pharmacokinetics of 17-allylaminogeldanamycin (17-AAG, NSC-330507) in dogs. Proc Am Assoc Cancer Res 40:121

    Google Scholar 

  45. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143:901

    Article  CAS  PubMed  Google Scholar 

  46. Page JG, Noker PE, Tomaszewski JE, Smith AC (1999) Lack of schedule dependent toxicity of 17-allylaminogeldanamycin (17-AAG, NSC-330507) in rats. Proc Am Assoc Cancer Res 40:121

    Google Scholar 

  47. Panaretou B, Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1998) ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J 17:4829

    Article  CAS  PubMed  Google Scholar 

  48. Piper PW (2001) The Hsp90 chaperone as a promising drug target. Curr Opin Investig Drugs 2:1606

    CAS  PubMed  Google Scholar 

  49. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65

    Article  CAS  PubMed  Google Scholar 

  50. Rocci ML Jr, Jusko WJ (1983) LAGRAN program for area and moments in pharmacokinetic analysis. Comput Programs Biomed 16:203

    Article  PubMed  Google Scholar 

  51. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260

    Article  CAS  PubMed  Google Scholar 

  52. Sasaki K, Yasuda H, Onodera K (1979) Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. J Antibiot (Tokyo) 32:849

    Google Scholar 

  53. Scheibel T, Buchner J (1998) The Hsp90 complex—a super-chaperone machine as a novel drug target. Biochem Pharmacol 56:675

    Article  CAS  PubMed  Google Scholar 

  54. Schnur RC, Corman ML, Gallaschun RJ, Cooper BA, Dee MF, Doty JL, Muzzi ML, Moyer JD, DiOrio CI, Barbacci EG (1995) Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem 38:3806

    CAS  PubMed  Google Scholar 

  55. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273

    Article  CAS  PubMed  Google Scholar 

  56. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16:5839

    CAS  PubMed  Google Scholar 

  57. Smith V, Hobbs S, Court W, Eccles S, Workman P, Kelland LR (2002) ErbB2 overexpression in an ovarian cancer cell line confers sensitivity to the HSP90 inhibitor geldanamycin. Anticancer Res 22:1993

    Google Scholar 

  58. Smith V, Sausville EA, Camalier RF, Fiebig HH, Burger AM (2002) 17-DMAG (NSC 07545), a water-soluble geldanamycin analog, has superior in vitro and in vivo antitumor activity compared to the hsp90 inhibitor 17-AAG. Eur J Cancer 38 [Suppl 7]:60

    Google Scholar 

  59. Smith V, Sausville EA, Camalier RF, Fiebig HH, Burger AM (2003) 17-DMA-geldanamycin is a novel water-soluble, orally bioavailable Hsp90 inhibitor with potent in vitro and in vivo anticancer activity. Proc Am Assoc Cancer Res 44:153

    Google Scholar 

  60. Solit DB, Zheng FF, Drobnjak M, Munster PN, Higgins B, Verbel D, Heller G, Tong W, Cordon-Cardo C, Agus DB, Scher HI, Rosen N (2002) 17-Allylamino-17-demethoxygeldanamycin induces the degradation of androgen receptor and HER-2/neu and inhibits the growth of prostate cancer xenografts. Clin Cancer Res 8:986

    CAS  Google Scholar 

  61. Solit DB, Anana M, Valentin G, De La Cruz A, Tong W, Busam K, Reuter V, Kelly WK, Rosen N, Scher H (2003) Phase I trial of 17-AAG (17-allylamino-17-demethoxygeldanamycin) in patients (pts) with advanced cancer. Proc Am Soc Clin Oncol 22:198

    Google Scholar 

  62. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239

    Article  CAS  PubMed  Google Scholar 

  63. Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305

    Article  CAS  PubMed  Google Scholar 

  64. Takimoto CH, Diggikar S (2002) Heat shock protein and proteasome targeting agents. Hematol Oncol Clin North Am 16:1269

    PubMed  Google Scholar 

  65. Uehara Y, Hori M, Takeuchi T, Umezawa H (1986) Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol 6:2198

    CAS  PubMed  Google Scholar 

  66. Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18:1517

    CAS  PubMed  Google Scholar 

  67. Wilson RH, Takimoto CH, Agnew EB, Morrison G, Grollman F, Thomas RR, Saif MW, Hopkins J, Allegra C, Grochow L, Szabo E, Hamilton JM, Monahan BP, Neckers L, Grem JL (2001) Phase I pharmacologic study of 17-(allylamino)-17-demethoxygeldanamycin (AAG) in adult patients with advanced solid tumors. Proc Am Soc Clin Oncol 20:82a

    Google Scholar 

  68. Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276:3702

    Article  CAS  PubMed  Google Scholar 

  69. Yamaki H, Suzuki H, Choi EC, Tanaka N (1982) Inhibition of DNA synthesis in murine tumor cells by geldanamycin, an antibiotic of the benzoquinoid ansamycin group. J Antibiot (Tokyo) 35:886

    Google Scholar 

  70. Yeh KC, Kwan KC (1978) A comparison of numerical integrating algorithms by trapezoidal, Lagrange, and spline approximation. J Pharmacokinet Biopharm 6:79

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Diane Mazzei and her colleagues in the University of Pittsburgh Animal Facility; without their expert assistance, these studies would not have been possible. We also thank Mr Ezekiel Woods for excellent secretarial assistance and the UPCI Hematology/Oncology Writing Group for constructive suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Eiseman.

Additional information

This work was supported by contract NO1-CM07106 and Grant 2P30 CA47904, awarded by the National Cancer Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiseman, J.L., Lan, J., Lagattuta, T.F. et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 55, 21–32 (2005). https://doi.org/10.1007/s00280-004-0865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0865-3

Keywords

Navigation